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Predictability of extreme events in a nonlinear stochastic-dynamical model
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The objective of this work is to evaluate the potential of reduced order models to reproduce the extreme event
and predictability characteristics of higher dimensional dynamical systems. A nonlinear toy model is used which
contains key features of comprehensive climate models. First, we demonstrate that the systematic stochastic
mode reduction strategy leads to a reduced order model with the same extreme value characteristics as the full
dynamical models for a wide range of time-scale separations. Second, we find that extreme events in this model
follow a generalized Pareto distribution with a negative shape parameter; thus extreme events are bounded in
this model. Third, we show that a precursor approach has good forecast skill for extreme events. We then find
that the reduced stochastic models capture the predictive skill of extreme events of the full dynamical models
well. Consistent with previous studies we also find that the larger the extreme events, the better predictable they
are. Our results suggest that systematically derived reduced order models have the potential to be used for the
modeling and statistical prediction of weather- and climate-related extreme events and, possibly, in other areas
of science and engineering too.
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I. INTRODUCTION

The accurate modeling and probabilistic prediction of
natural extreme and catastrophic events are of utmost impor-
tance for the insurance and reinsurance industry, catastrophe
modeling companies, policy makers, and the wider society.
Natural catastrophes include earthquakes, hurricanes, winter
storms, and flooding, and the corresponding financial losses
can reach billions of dollars.

The Intergovernmental Panel on Climate Change (IPCC)
has stated that it is likely that anthropogenic climate change
leads to changes in the frequency and intensity of weather and
climatic extreme events [1]. The first 6 months of 2011 incurred
insurance losses of about US$60 billion, which is about five
times the average for the first 6 months of the year in the period
2001–2010 [2]. This illustrates the challenge that societies are
facing in mitigating the effects of natural catastrophes.

The natural starting point in characterizing extreme events
is extreme value statistics. This is a very mature statistical
framework but it is based on the assumption that extreme
events are independent and identically distributed (iid). How-
ever, there is mounting evidence that many natural extreme
events are clustered; i.e., extreme events come in bunches.
A prime example is European wind storms [3]. This shows
that the dependence structure of the underlying dynamics has
to be taken into account for the estimation of the occurrence
frequencies of extremes. It has been shown that a strong serial
dependence in time series leads to clustering of extreme events
[4]. This illustrates the need to better understand extreme
events in dynamical systems which have a temporal depen-
dence structure [5–10] and also to investigate the predictability
of extreme events [11–13]. If extreme events were indeed
iid, their distribution function would also provide the mean
return periods of extreme events of a given magnitude. The
serial dependence of extreme events leads to clustering and
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thus the mean return periods can be misleading, because large
events can recur sooner than expected. This issue is particularly
important for the insurance and reinsurance industry.

The most common approach to predicting weather- and
climate-related extreme events is the use of high-dimensional
numerical weather and climate prediction models. This is
typically done by use of ensemble predictions. These ensemble
predictions start from different initial conditions. However,
current numerical weather and climate prediction systems tend
to be underdispersive. This means that the observed state being
forecasted is too often outside of the forecast ensemble [14],
which leads, among other things, to an underestimation of
extreme events. Furthermore, the computational expense of
state-of-the-art weather and climate prediction models limits
the number of ensembles and simulation length of climate
simulations.

In many applications, in particular, insurance and reinsur-
ance, one is not interested in whether an extreme event will
occur on a particular day in a particular location. Rather,
one is interested in the expected number of extreme events
exceeding a certain threshold over the next year. For this
purpose one needs very long time series in order to estimate
the waiting-time distribution between consecutive extreme
events and the propensity of clustering of extreme events. This
calls for alternative methods of predicting extreme events to
complement the above computationally expensive prediction
systems.

An attractive alternative to high-dimensional models is
reduced order models. In a series of papers, Majda et al.
[15–18] introduced a stochastic mode reduction strategy to
systematically derive stochastic climate models. These models
are nonlinear and have both additive and multiplicative noise
components and are thus different from Langevin equations.
This mode reduction strategy is strictly valid only in the limit
of infinite time scale separation but has been shown also to
perform well in systems with only small time scale separations.
The stochastic mode reduction strategy has been successfully
applied to realistic complex atmospheric circulation models

031134-11539-3755/2012/85(3)/031134(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.031134


CHRISTIAN FRANZKE PHYSICAL REVIEW E 85, 031134 (2012)

[20,21]. These studies verified the ability of the reduced
order models to accurately reproduce average statistics like
autocorrelation functions and probability density functions
(PDFs) with as few as four modes.

The objective of this study is to evaluate the potential of the
reduced order models to accurately reproduce extreme value
statistics and predictive skill. Because the mode reduction
strategy used is only strictly valid in systems with widely
different time scales, which is seldom the case in realistic
systems, we have to prove empirically the success of the
reduced models a posteriori, and in this article we provide
evidence that reduced order models indeed can be used for the
prediction of extreme events in high-dimensional systems with
small time scale separation. Of course, for practical real-world
applications the reduced models need always to be carefully
calibrated and extensively tested.

In Sec. II we introduce a simple nonlinear climate model
and derive its reduced order version by applying the stochastic
mode reduction strategy. Then we discuss the extreme value
characteristics of the models in Sec. III, their predictability
in Sec. IV, and their likely dynamical origin in Sec. V.
Conclusions are given in Sec. VI.

II. NONLINEAR STOCHASTIC-DYNAMICAL MODEL

A. Stochastic mode reduction strategy

We use a four-mode stochastic climate model to examine the
potential of the systematic stochastic mode reduction strategy
to derive reduced order models which reproduce extreme
events of the full dynamic models and to examine how well
these extreme events can be predicted [17,22,23]. This simple
stochastic model contains many of the important dynamical
features of comprehensive climate models, though it is of much
lower dimensionality.

The stochastic climate model we are using in this study
has two variables, denoted (x1,x2), which we call climate
modes. These two modes evolve more slowly than the other
two modes, (y1,y2), which represent turbulent eddies and
convective systems. The latter modes evolve much more
rapidly than the climate modes and are not fully resolved in
climate models. In realistic systems there would be many fast
modes, and so in order to mimic their combined effect on the
two slow climate modes, we include damping and stochastic
forcing in the form of − γ

ε
y + σ√

ε
dW in the equations for y,

where W denotes a Wiener process. This parametrization of
the combined effect of the fast modes includes nondiagonal
and nonlinear interactions of the fast modes [16,20]. This
approximation is motivated by the fact that these fast modes are
associated with turbulent energy transfers and strong mixing.
In this study we do not require a detailed description of these
processes because we are only interested in their effect on the
slow resolved modes and not in their detailed evolution. The
stochastic climate model is given by

dx1 = μ
(
(−x2(L12 + a1x1 + a2x2) + d1x1 + F1)

+ L13y1 + B1
123x2y1 + (

B2
131 + B2

113

)
x1y1

)
dt, (1a)

dx2 = μ
(
(+x1(L21 + a1x1 + a2x2) + d2x2 + F2)

+L24y2 + B1
213x1y1 + (

B3
242 + B3

224

)
x2y2

)
dt, (1b)

dy1 =
(

− L13x1 + B1
312x1x2 + B2

311x1x1 + F3 − γ1

ε
y1

)
dt

+ σ1√
ε
dW1, (1c)

dy2 =
(

− L24x2 + B3
422x2x2 + F4 − γ2

ε
y2

)
dt + σ2√

ε
dW2.

(1d)

The parameter ε controls the time-scale separation between
the slow and the fast variables. Energy conservation of
the nonlinear operator requires that B1

123 + B1
213 + B1

312 =
0, B2

131 + B2
113 + B2

311 = 0, and B3
242 + B3

224 + B3
422 = 0, and

energy is defined as E = 1
2 |x|2, where x = (

x1

x2
). The linear

operator matrix L is skew symmetric. The climate and
fast modes are nonlinearly coupled through triad and dyad
interactions.

The deterministic part of the above model, (1), has the same
functional form as a comprehensive climate model and their
structural form is given by [16,20,21]

dz = Fdt + Lzdt + B(z,z)dt, z =
(

x
y

)
, (2)

where x denotes the slow and y the fast components. The
structural form of the fast dynamics can be written as [16]

dy = Fydt + Lyydt + Lxxdt + Byxx(x,x)dt

+Byxy(x,y)dt + Byyy(y,y)dt (3)

The stochastic mode reduction strategy now assumes that the
explicit nonlinear self-interaction through Byyy(y,y) of the fast
variables y can be represented by a linear stochastic process
[16]:

Byyy(y,y)dt ∼ −γ

ε
y + σ√

ε
dW. (4)

The validity and success of this assumption for climate
models have been shown in previous studies [15–17,19–23].
Furthermore, the approximation in Eq. (4) has been relaxed
in the seamless reduction procedure in Ref. [20]. But for
the purposes of this paper we prefer to derive the reduced
order model directly on the level of the stochastic differential
equations, which allows a more intuitive understanding of the
procedure.

Consistent with comprehensive climate models, the
stochastic climate model has a quadratically nonlinear part
that conserves energy [denoted B in Eq. (2)], a linear operator
[denoted L in Eq. (2)], and a forcing [denoted F in Eq. (2)]. The
linear operator has two contributions: one is a skew-symmetric
part formally similar to the Coriolis effect and Rossby wave
propagation; the other is a negative definite symmetric part
formally similar to dissipative processes, such as surface drag
and radiative damping. Explicit inclusion of linear nondiagonal
components (e.g., topography) would be straightforward but
is not done here in order to keep the model relatively
simple.

We now apply the systematic stochastic mode reduction
procedure [15–17,20–23] to the model, (1), to obtain an
explicit reduced stochastic equation for the slow variables x.
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See [15–17] for a detailed derivation of the reduced order
equations. In the limit that ε → 0 the reduced order stochastic
model is given by

dx1(t) = (−x2(t)(L12 + a1x1(t) + a2x2(t)) + d1x1(t) + F1)dt

+ ε

γ1

(
L13F3 − L13L13x1(t) + B1

123F3x2(t)

+L13B
1
312x1(t)x2(t) − L13B

1
123x1(t)x2(t)

+L13B
2
311x

2
1 (t) + B1

312B
1
123x1(t)x2

2 (t)

+B1
123B

2
311x2(t)x2

1 (t) + (
B2

131 + B2
113

)(
B2

311x
3
1 (t)

−L13x
2
1 (t) + B1

312x
2
1 (t)x2(t) + F3x1(t)

))
dt

+ ε
1

2

σ 2
1

γ 2
1

(
B1

213B
1
123x1(t) + (

L13 + B1
123x2(t)

+ (
B2

131 + B2
113

)
x1(t)

) (
B2

131 + B2
113

))
dt

×√
ε
σ1

γ1

(
L13 + B1

123x2(t) + (
B2

131 + B2
113

)
x1(t)

)

× dW1(t),

dx2(t) = (x1(t) (L21 + a1x1(t) + a2x2(t)) + d2x2(t)

+ F2) dt + ε

γ2

(
(L24F4 − L24L24x2(t)

+ L24B
3
422x

2
2 (t) + (

B3
242 + B3

224

) (
B3

422x
3
2 (t)

− L24x
2
2 (t) + F4x2(t)

) )
dt

+ ε

γ1

(−B1
213L13x1(t)x1(t) + B1

213B
2
311x

3
1 (t)

+ B1
213B

1
312x1(t)x1(t)x2(t) + B1

213F3x1(t)
)
dt

+ ε
1

2

σ 2
1

γ 2
1

(
B1

213B
1
123x2(t) + L13B

1
213

+ (
B2

131 + B2
113

)
B1

213x1(t)
)
dt

+ ε
1

2

σ 2
2

γ 2
2

(
L24 + (

B3
242 + B3

224

)
x2(t)

)

× (
B3

242 + B3
224

)
dt + √

ε
σ1

γ1
B1

213x1(t)dW1(t)

+√
ε
σ2

γ2

(
L24 + (

B3
242 + B3

224

)
x2(t)

)
dW2(t). (5)

Equation (5) is in Ito form.
To highlight the new structural form of the reduced model

we rewrite Eq. (5) in compact functional form:

dx = F̃ dt + L̃xdt + B̃(x,x)dt + M̃(x,x,x)dt

+ σ̃1dW1 + σ̃2(x)dW2. (6)

The reduced model has two structurally new terms: (i) a cubic
term M̃ and (ii) a multiplicative noise term σ̃2(x)dW2. Both
of these terms stem from the nonlinear coupling between the
climate and fast modes [18]. The reduced model, (5), has
so-called correlated additive and multiplicative (CAM) noise
[18,24],

σ̃2(x)dW2 = (a + bx2)dW2, (7)

where a = σ2
γ2

L24 and b = σ2
γ2

(B3
242 + B3

224). In CAM noise
the same noise realization acts in both an additive and a
multiplicative fashion at the same time. CAM noise produces
non-Gaussian statistics with heavy tails and has been shown
to be important in climate [18,24]. CAM noise is one possible
mechanism for producing extreme events. But CAM noise only
effectively models the deterministic nonlinear interactions of
the full dynamics.

B. Numerical simulations

A 10-member ensemble is created by integrating the model
for 105 time units starting from different initial conditions,
which were chosen randomly. To integrate the model in time
we use a fourth-order Runge-Kutta scheme for the deter-
ministic part and a Euler forward scheme for the stochastic
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FIG. 1. Autocorrelation function (upper row) and marginal PDFs of mode x2. Solid line: full dynamics, Eq. (1). Dashed line: reduced
dynamics, Eq. (5). (a) ε = 1.0, (b) ε = 0.5, and (c) ε = 0.1.
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FIG. 2. Mean excess curves: full dynamics (solid line) and reduced dynamics (dashed line). (a) ε = 1.0, (b) ε = 0.5, and (c) ε = 0.1.

part. We use a time step of 10−5 time unit and data are
saved every 0.0005 time unit. The following parameter values
have been used: μ = 1, B1

123 = 4.0, B1
231 = 4.0, B1

312 = −8.0,
B2

131 = 0.25, B2
113 = 0.25, B2

311 = −0.5, B3
242 = −0.3, B3

224 =
−0.4, B3

422 = 0.7, L13 = −L24 = −0.2, ω = 1.0, a1 = 1.0,
a2 = −1.0, d1 = −0.2, d2 = −0.1, γ1 = γ2 = 1.0, σ1 = 3.0,
and σ2 = 1.0. The forcing vector (F1,F2,F3,F4) is given by
(−0.25,0,0,0) and the bare truncation has two stable fixed
equilibrium points [17,23]. The bare truncation is the part of
Eqs. (1a) and (1b) which involves only the slow variables
(x1,x2) and the forcing F . An extensive discussion of the
bifurcation structure of the bare truncation is given in Ref. [17].
This set of parameter values was chosen because the model
then produces extreme values as shown below. Our main
results are fairly insensitive to the exact model parameter
values.

To demonstrate the ability of the reduced model to repro-
duce key characteristics of the full model we compute the
autocorrelation function (Fig. 1) and marginal PDF (Fig. 1)
for mode x2 (mode x1 performs very similarly). The reduced
model reproduces the full dynamics very accurately for ε =
0.1 and increasingly less acurately for ε = 0.5 and ε = 1.0.

For all three ε values the autocorrelation time scale is very
well captured, and also the highly non-Gaussian features of
the marginal PDFs are very well reproduced by the reduced
models. The reduced models also reproduce third- and fourth-
order two-time statistics [19,20] very well (not shown). The
largest discrepancy in the statistics is for ε = 1.0. This is to
be expected because the stochastic mode reduction strategy is
only valid in the asymptotic limit that ε → 0. Similar results
of the stochastic mode reduction strategy have been reported
in Refs. [17,22,23].

A visual inspection of Fig. 1 reveals that the PDFs are highly
non-Gaussian. The PDFs are highly skewed and kurtotic and
have heavy tails. This suggests that the toy model produces

extreme events. Whether the extreme values follow an extreme
value distribution is investigated next.

III. EXTREME EVENT CHARACTERISTICS

There are two common approaches in extreme value
statistics: block maxima and threshold exceedances. In the
block maxima approach one examines the maximum value
over a fixed period; in climate applications this is usually
1 year. This approach has the disadvantage that many high-
amplitude events get discarded. Here we use the threshold
exceedance approach. In this approach extreme events are
defined as events which are larger than a given fixed threshold.
This is also the more relevant approach for many practical
applications; e.g., one is usually interested in the prediction of
the number of hurricanes and European windstorms exceeding
a certain threshold which will occur in the next season.

A. Generalized Pareto distribution

In order to examine the extreme value characteristics of
the stochastic climate models we use a threshold exceedance
approach and fit a generalized Pareto distribution (GPD [25])
whose PDF is given by

f(ξ,μ,σ )(x) = 1

σ

(
1 + ξ (x − μ)

σ

)(− 1
ξ
−1)

, (8)

where ξ denotes the shape parameter, μ the threshold (or
location parameter), and σ the scale parameter. The shape
and scale parameters are fitted with a standard maximum
likelihood approach [25]. The GPD is generalized in the sense
that it contains three special cases: (i) when ξ > 0 the GPD is
equivalent to an ordinary Pareto distribution, (ii) when ξ = 0
the GPD becomes an exponential distribution, and (iii) for
ξ < 0 the GPD is a short-tailed Pareto type II distribution.

TABLE I. GPD parameter estimates, with 95% confidence bounds given in parentheses.

Full dynamics Reduced dynamics

ε Shape parameter Scale parameter Shape parameter Scale parameter

0.1 −0.16 (−0.14, −0.17) 1.15 (1.11, 1.18) −0.14 (−0.12, −0.16) 1.22 (1.19, 1.26)
0.5 −0.14 (−0.12, −0.15) 0.76 (0.74, 0.79) −0.16 (−0.15, −0.17) 0.97 (0.95, 0.99)
1.0 −0.14 (−0.13, −0.16) 0.77 (0.75, 0.79) −0.17 (−0.17, −0.18) 0.95 (0.94, 0.97)
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FIG. 3. Quantile-quantile plots: full dynamics (upper row) and reduced dynamics (lower row). (a) ε = 1.0, (b) ε = 0.5, and (c) ε = 0.1.

In order to identify the threshold above which the GPD
applies, we compute the mean excess function [26]:

M(μ) =
∑n

i=1(xi − μ)I[xi�μ]∑n
i=1 I[xi�μ]

. (9)

If the data xi follow a GPD above the threshold μ, then M(μ)
is a linear function. Figure 2 shows that for ε = 0.1 both
the full and the reduced models have approximately linear
mean excess functions for values larger than μ = 4. The mean
excess functions are also approximately linear above μ = 4 for
ε = 0.5 and ε = 1.0 for both the full and the reduced dynamics.
In order to ensure that the data points used are independent
(or at least well decorrelated), we identified the maxima of the
time series above the threshold μ and consider only maxima
which are at least 100 sample points apart from each other (our
results are not sensitive to this particular value).

The parameter values for the GPD model are given in
Table I. For ε = 0.1 the parameter estimates for the full
dynamics are inside the error bounds of the reduced model.
For ε = 0.5 and ε = 1.0 the shape parameters are just outside
the error bounds. However, as we show below, the reduced
models nonetheless reproduce the extreme values of the full
dynamics well.

Using the GPD parameter values we generate variates from
the extreme value distribution and compare them with the

model variable x2 in the form of quantile-quantile (q-q) plots.
A q-q plot is a graphical tool to decide if two data sets stem from
the same distribution. This is done by plotting the quantiles
which denote the point below which a given percentage of
points lies against the quantiles of the second data set. If
both data sets come from the same distribution, the points
will follow the 45◦ reference line. As Fig. 3 shows, for all
three ε values the functions are very well approximated by the
straight 45◦ reference line. For large values deviations from the
straight-line fit are visible but this is to be expected because
the large values are also very rare and the statistic suffers
from sampling issues. This indicates that μ = 4 is indeed a
good threshold value and that x2 follows a GPD well. We
get qualitatively very similar results for x1 and minima. This
shows that the extreme events of both the full and the reduced
dynamics follow a GPD.

We use also q-q plots to verify that the reduced order
models reproduce well the extreme value characteristics
of the full models. As Fig. 4 shows, the reduced models
reproduce the extremes very well for ε = 0.1 and ε = 1.0 and
reasonably well for ε = 0.5. This shows that reduced order
models are able to reproduce the extreme value characteristics
of higher dimensional models, even though for moderate
or no time-scale separation the GPD parameter estimates
are outside the error bounds. This is an important result
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FIG. 4. Quantile-quantile plots comparing the extreme value distributions of the full and reduced dynamics. (a) ε = 1.0, (b) ε = 0.5, and
(c) ε = 0.1.
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FIG. 5. Extremal index of x2 for ε = 0.1: full dynamics (left) and reduced dynamics (right). In each box the central mark is the median,
the edges of the boxes are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered to be outliers, and
outliers are marked individually.

because the investigation of extreme values requires very
long time series and most high-dimensional complex models
are computationally very expensive. These results offer the
potential of improved extreme predictions with reduced order
models.

As Table I reveals, all models have a negative shape
parameter. This indicates that the distribution of excesses
has an upper bound [25]. This is consistent with recent
studies of temperature [27] and windspeed (Franzke, 2012,
in preparation). This is also qualitatively consistent with the
study by Majda et al. [18], which shows that while the normal
form of stochastic climate models allows for a power-law-like
decay of the PDF tail over some range of values, the ultimate
decay is exponential; thus very large values have a vanishing
probability. This is due to energy constraints of the nonlinear
operator which are obeyed by both the full dynamics and the
reduced models.

B. Clustering of extreme events

The stochastic model, Eq. (1), also exhibits clustering of
extreme events as revealed by the extremal index θ [28]. θ

characterizes the extend of temporal dependency of extreme
events. θ is inversely proportional to the average cluster size.
The approach of [28] is based on the asymptotic scaling
properties of block maxima and resampling. The maxima of
blocks of size m scale as m

1
α , where α is the tail exponent. Thus,

by examining a sequence of dyadic block sizes m(j ) = 2j and
resampling, one can estimate the extremal index θ (j ) and the

corresponding uncertainty bounds (see [28] for more details).
Evidence for clustering of extremes is given if θ turns out to
be stable over a range of scales. An extremal index value close
to 1 indicates almost-independent extremes.

Figure 5 shows the extremal index θ (j ) for different block
sizes. For the model simulation with ε = 0.1, it can be seen
that for block sizes j = 9 through j = 12 one gets a stable
estimate of about 0.88, which is significantly different from 1.
Thus, the model exhibits clustering of extreme events which is
reproduced by the reduced model. The θ values of both models
lie inside the error bounds. The simulations with larger ε have
extremal indices very close to 1 and thus show no evidence
of clustering of extreme events. This lack of clustering is also
reproduced by the reduced models. This difference between
the case ε = 0.1 and the case ε = 0.5,1.0 indicates that,
for moderate time-scale separations, the dynamical system,
Eq. (1), has not reached its limiting dynamics. Our results
show that for this system only the limiting dynamics exhibit
clustering of extreme events.

IV. PREDICTABILITY

In this section we examine the predictability of extreme
events in our models. We also examine whether the reduced
models have the same predictive power as the full model. In
order to quantify predictability we use the receiver-operator
characteristic (ROC) curve [12,29]. This curve displays the
true-positive forecast rates (hit rate) against the false-positive
rate (false-alarm rate). The optimal prediction model will be

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false alarm rate

hi
t r

at
e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false alarm rate

hi
t r

at
e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false alarm rate

hi
t r

at
e

FIG. 6. Receiver-operator characteristic curves for the precursors. Full dynamics (solid line) and reduced dynamics (dashed line). The
threshold is 4. (a) ε = 1.0, (b) ε = 0.5, and (c) ε = 0.1.
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FIG. 7. Receiver-operator characteristic curves for ε = 0.1 and

threshold (a) μ = 5 and (b) μ = 6. Full dynamics (solid line) and
reduced dynamics (dashed line).

located in the upper left corner (0,1) of the ROC space, i.e.,
100% true-positive forecasts and 0% false-positive forecasts.
Points along the diagonal line from the lower left to the upper
right corner indicate random forecast guesses. This diagonal
line divides the ROC space. Points above this line indicate
good forecasts, while points below the line represent poor
forecasts. ROC curves are particularly suitable for validating
the predictive skill of rare, extreme events of models [12],
provided that there are sufficiently many extreme events to
reliably compute the ROC statistics. ROC curves do not
explicitly depend on the frequency of occurrence of extreme
events as do some other skill scores.

For the forecast experiments we first generate independent
model time-series realizations by starting the models with ran-
dom initial values. We first identify the probability distribution
of precursors which precede events above a given threshold
μ, similarly to [11] and [12] in the control runs. For this
purpose we bin all states which precede a threshold crossing.
We consider only univariate extremes and focus on x2 but the
precursor is two-dimensional, containing both x1 and x2. Then
we compute the maximum of the joint precursor probability
function xmax

i . The precursor PDF is unimodal (not shown).
To compute the ROC curves we follow the approach used in
Ref. [12]. We vary the allowed distance between the actual
state of the model and the precursor PDF maximum,

D =
√(

x
pre
1 − xmax

1

)2 + (
x

pre
2 − xmax

2

)2
, (10)

from 0 in increments of 0.1 for 50 increments starting from 0.1,
where x

pre
i is the current model state. Whenever D is smaller

than the threshold we anticipate that an extreme event will
occur.

As Fig. 6 reveals, extreme events are predictable. For all
three cases the ROC curves are well above the diagonal line,
indicating good predictive skill. Furthermore, the reduced
model does an excellent job of predicting extreme events for
ε = 0.1. The predictive skill of the reduced model is still good
for ε = 0.5 and reasonable for ε = 1.0. Figure 7 shows that
the predictive skill is higher for larger extreme events. This
is consistent with the findings of [12] and [13], where they
examined, among other things, observed wind gusts.

V. DYNAMICS OF EXTREME EVENTS

Are the extreme events due to nonlinear interactions of
the slow modes alone or due to coupling with the fast modes
and hence CAM noise in the reduced models? To address
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FIG. 8. Quantile-quantile plots: (a) model simulation with no
multiplicative triads active and (b) model simulation with no bare
truncation active (case with ε = 0.1).

this question we carried out sensitivity experiments where
either the bare truncation is set to 0 (μ = 0) or the nonlinear
coupling between the slow and the fast modes is set to 0
(B1 = B2 = B3 = 0). In the former case extreme events are
caused by nonlinear interactions in the full dynamics or CAM
noise in the reduced dynamics. In the latter case extreme events
are due to the deterministic nonlinearity of the slow x modes,
which is driven by additive white noise.

As Fig. 8 shows, both of these experiments also exhibit
extreme value behavior which again follows a GPD. This
shows that both the deterministic nonlinearity of the bare
truncation and the nonlinear interaction between the slow
and the fast modes can cause extreme events on their own.
However, the magnitude of the extreme events is larger in the
experiments with the bare truncation set to 0 (μ = 0).

Furthermore, predictability experiments show that both
models as well as their reduced dynamics again show good
predictive skill for forecasting extreme events (Fig. 9). This
suggests that both the bare truncation and the nonlinear
interactions between slow and fast modes (or CAM noise for
the reduced dynamics) are important for the extreme event
behavior of this model.

VI. SUMMARY AND DISCUSSION

We have investigated the extreme value and predictability
characteristics of a nonlinear stochastic-dynamical model
which is a toy version of a climate model and its reduced
order version. We find that the extreme values of the
model used follow an extreme value distribution, a GPD.
The shape parameter of the GPD is negative; thus extreme
values are bounded in the used model. This extreme value
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FIG. 9. Receiver-operator characteristic curves: (a) model simu-
lation with no multiplicative triads active and (b) model simulation
with no bare truncation active (case with ε = 0.1).
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behavior was predicted for stochastic climate models by Majda
et al. [18] based on the normal forms of stochastic climate
models.

Then we have examined whether the corresponding re-
duced order models of the nonlinear full dynamical model
reproduce the extreme value characteristics. We find that the
extreme value characteristics are reproduced extremely well in
the case of time-scale separation and are also good for
moderate and even no time-scale separation. We have also
shown that extreme events are better predictable the larger
they are. This is consistent with the findings of [11–13] for
various simple stochastic processes and wind gusts. While
reduced order models usually have problems capturing the
correct decay of the autocorrelation function, it seems to be
much easier for reduced order models to capture the PDFs
even in situations without time-scale separation. Our results
show the potential role that systematically derived nonlinear
reduced order models can play in practical applications like
natural hazard predictions and insurance pricing. Of course, the
reduced models need to be carefully calibrated and extensively
tested for each new application.

While [24] put forward the idea that the amplitude
distribution of atmospheric extreme events follows a
power-law decay due to CAM noise, our results suggest

that the deterministic nonlinearity will prevent fluctuations
from becoming arbitrarily large. This is due to the energy
conservation of the nonlinear operator, which makes the
models nonlinearly stable. It has been shown that in the
reduced models the cubic term acts as a nonlinear damping
[18]. A criterion for this nonlinear stability was derived in
Ref. [18]. These stability criterion can be used for parameter
inference of reduced order models from observed data.

All results in this study are for a simple stochastic toy model.
It remains to be seen whether the reported results are also
valid for more complex models. We also have considered only
stationary processes. Future studies will investigate how well
the reduced order models perform for time-varying forcing.
This is especially important in the context of global warming,
where the IPCC projects an increase in the frequency and
intensity of climate extremes.
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