
PHYSICAL REVIEW E 85, 031122 (2012)

Relaxation in finite and isolated classical systems: An extension of Onsager’s regression hypothesis
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In order to derive the reciprocity relations, Onsager formulated a relation between thermal equilibrium
fluctuations and relaxation widely known as regression hypothesis. It is shown in the present work how
such a relation can be extended to finite and isolated classical systems. This extension is derived from the
fluctuation-dissipation theorem for the microcanonical ensemble. The results are exemplified with a nonintegrable
system in order to motivate possible applications to dynamical systems and statistical mechanics of finite systems.
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I. INTRODUCTION

In his seminal work on the reciprocity relations [1],
Onsager formulated a hypothesis about the decay of thermal
equilibrium fluctuations that was essential in his derivation.
From this hypothesis, Onsager was able to relate the relaxation
of nonequilibrium macroscopic observables, obtained from
phenomenological equations, to the decay rate of equilibrium
fluctuations of those quantities. Such a relation between those
two apparently different phenomena is however quite expected
from the point of view of the fluctuation-dissipation theorem
derived [2] 20 years after Onsager’s work. Indeed, since the
derivation of the reciprocity relations from linear response
theory, Onsager’s regression hypothesis is understood as a
different but equivalent statement of the fluctuation-dissipation
theorem.

On the other hand, Onsager’s reciprocity relations have
already been extended to far from equilibrium conditions [3]
in different contexts [4] where nonlinear effects are taken into
account. Those extensions are based on fluctuation theorems
which quite often are derived from the so-called “chaotic
hypothesis” [5]. Hence the fluctuation theorems play the role
of a linear response theory beyond near equilibrium conditions
and have been also applied to understand the nonequilibrium
behavior of systems far from the thermodynamic limit [6].

Onsager’s original work and its extensions mentioned
above always focus on systems in contact with reservoirs.
Here however we intend to study the near equilibrium
behavior of isolated systems when they are finite and standard
linear response theory cannot be applied. The relaxation to
equilibrium of finite and almost isolated quantum systems
has been studied experimentally using cold atoms [7] and has
motivated several theoretical works which try to understand
it and discuss the controversies related to the role played
by the nonintegrability in this process [8–10]. For classical
systems under such constraints, we show here that a simple
extension of the fluctuation-dissipation theorem [11,12] shows
very clearly the importance of the dynamics in the relaxation to
equilibrium within a description that is essentially Onsager’s
regression hypothesis extended to this new situation. An
important extension of the fluctuation-dissipation theorem for
the microcanonical ensemble was first derived by Nielsen [11].
It deals with thermodynamic responses to thermal disturbances
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as, for example, heat pulses. In Ref. [12], only the response
to mechanical disturbances, i.e., those which can be described
as additional terms in the Hamiltonian, are considered. Since
they treat different aspects of the same subject, these works
complement each other.

II. DERIVATION

We start presenting the usual regression hypothesis ex-
pressed in mathematical terms. Let us consider a system
described by the following Hamiltonian

H (λo + dλ) = H (λo) + dλ
∂H

∂λ

∣∣∣∣
λ=λo

. (1)

When the value of the parameter λ is suddenly switched from
λ1 = λo + dλ to λo at t = to, the nonequilibrium average value
B̄ of an observable B of the system evolves as [13]

B̄(t − to) = 〈B〉λo
− dλ

kBT
Cλ1 (t − to), (2)

for t > to, where 〈·〉λo
denotes the equilibrium average value

when λ = λo, kB is the Boltzmann constant, T is the temper-
ature, and

Cλ1 (t) = 〈δA(0)δB(t)〉λ1 (3)

is the correlation function with δX(t) = X(t) − 〈X〉λ1 and A =
(∂H/∂λ)|λ=λo

.
Equation (2) is Onsager’s regression hypothesis expressed

mathematically. It states that the relaxation of B̄ to the
equilibrium value is possible as long as the correlation function
Cλ1 (t) decays to zero. On the other hand, if the relaxation
process can be described by some sort of phenomenological
equation, one obtains the decay of Cλ1 (t) from (2). Since
Eq. (2) is derived in the usual context of the canonical
ensemble, the decay of the correlation function is interpreted
as a consequence of the heat bath influence.

We will now derive (2) in a different context, namely, when
the system is isolated and finite, i.e., there is no heat bath and
the number of degrees of freedom is such that the system is
not in the thermodynamic limit. We consider first the system
in equilibrium under H (λo + dλ). When t is equal to to, λ1 is
suddenly switched to λo. The system then relaxes to a new equi-
librium state. Assuming that the system was not far from the
final equilibrium state, a linear response calculation describes
the relaxation process. Although the situation requires the
microcanonical ensemble, the fundamental equations of linear
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response theory do not rely on any particular ensemble [14].
For t > to the Hamiltonian is H (λo) and the situation can be
stated as follows: a system, whose Hamiltonian is initially
given by (1), is in equilibrium when at t = to the generalized
force dλ is suddenly removed and H (λo + dλ) → H (λo).
Therefore, from the linear response theory, one obtains [14]

B̄(t − to) − 〈B〉λ1 = dλ

∫ t

−∞
ds φBA(E,t − s)�(s − to), (4)

where �(x) is the step function and 〈B〉λ1 is the following
microcanonical average over the phase space points (q,p):

〈B〉λ1 =
∫

dq dp ρλ1 (q,p) B(q,p), (5)

with the distribution function ρλ1 given by

ρλ1 (q,p) = δ [E − H (q,p,λ1)]

Zλ1 (E)
, (6)

where Zλ1 (E) = ∫
dq dp δ [E − H (q,p,λ1)].

The response function φBA(E,t − s) is [14]

φBA(E,t − s) = 〈{δA(s),δB(t)}〉λ1 , (7)

where {·,·} is the Poisson bracket, δX(t) = X(q(t),p(t)) −
〈X〉λ1 , (q(t),p(t)) is the solution of Hamilton’s equations of
motion for N degrees of freedom, B is any observable, and
A = (∂H/∂λ)|λ=λo

.
The fluctuation-dissipation theorem [12] yields then

F̃BA(z,ω) = i

zω
χ̃BA(z,ω), (8)

where

χ̃BA(z,ω)

= 1

2π

∫ ∞

−∞
dτ

∫ ∞

0
dE e−(iωτ+Ez) [Zλ(E)φBA(E,τ )] ,

(9)
F̃BA(z,ω)

= 1

2π

∫ ∞

−∞
dτ

∫ ∞

0
dE e−(iωτ+Ez) [Zλ(E)CBA(E,τ )] ,

(10)

and CBA(E,τ ), with τ = t − s, is the following correlation
function

CBA(E,t − s) = 〈δA(s)δB(t)〉λ, (11)

which differs from (3) because of the microcanonical average.
Thus, Eq. (8) leads to

φBA(E,τ ) = − 1

Zλ(E)

∂2

∂τ∂E
[Zλ(E)CBA(E,τ )] . (12)

The integral in (4) can be written as∫ t

−∞
ds φBA(t − s)�(s − to) =

∫ t−to

0
dτ φBA(τ ), (13)

and from (12) and (13) one obtains∫ t−to

0
dτ φBA(τ ) = − 1

Zλ

∂

∂E
[ZλCBA(τ )]

∣∣∣∣
t−to

0

. (14)

The dependence on E was omitted for convenience.

Therefore, the relaxation of B to the new equilibrium state
is described by the following expression for t > to:

B̄(t − to) = 〈B〉λo
− dλ

1

Zλ1

∂

∂E

[
Zλ1CBA(t − to)

]
, (15)

where

〈B〉λo
= 〈B〉λ1 + dλ

1

Zλ1

∂

∂E

[
Zλ1CBA(0)

]
, (16)

since limτ→∞ CBA(τ ) = 0 is assumed.
Analogously to Eq. (2), the relaxation to equilibrium of

B is ruled by a correlation function related to it, and the
relaxation rate is given in terms of the decay rate of equilibrium
fluctuations. Thus, the physical contents of Eq. (15) allow
us to interpret it as an extension of Onsager’s regression
hypothesis to the context of finite and isolated classical
systems.

Despite the analogy with (2), Eq. (15) shows that the
relaxation rate of B̄ [as well as the decay rate of CBA(E,t)]
is given only by the statistical properties of the dynamics
produced by H (λo). Since the system is isolated, there is
no influence of external thermal fluctuations on the decay of
CBA(E,t) or B̄ as in (2). Therefore, one might ask for which
kind of dynamics relaxation occurs. For integrable systems,
whose motion is quasiperiodic, CBA(E,t) would decay only for
N → ∞. Nevertheless, it is well known that CBA(E,t) decays
for chaotic systems [15–17]. For nonintegrable systems, the
complete spectrum of behaviors, from quasiperiodic to chaotic,
could be approximately obtained.

In 1971, van Kampen made a severe criticism of linear
response theory [18] which here, in the context of isolated and
finite systems, seems to be even harder to answer. However,
some of the arguments in the literature [14,19,20] supporting
standard linear response theory come from dynamical systems
theory and are well suited for the present discussion. First,
it is indeed possible, as mentioned above, that a finite and
isolated system shows correlation functions which decay
with time. In particular, if it has a statistical property called
mixing [15,19], it is possible to prove that such decay
necessarily happens. Second, mixing is also responsible to
ensure that an arbitrary smooth distribution in phase space
will approach the microcanonical one for long times. Thus,
although trajectories are very sensitive to small perturbations,
the time evolution of distributions is rather stable. This would
justify the linearization procedure leading to Eq. (4) at least for
a class of systems. There should be also a constraint on time
scales since the response function (12) would be ill defined
for times much shorter than the inverse of the decay rate of
correlations.

III. EXAMPLE

In order to motivate possible applications of Eq. (15) to both
low-dimensional dynamical systems and statistical mechanics
of finite systems, we will consider the relaxation process in a
system described by the following Hamiltonian [21]

H = p2
1

2
+ p2

2

2
+ q2

1q2
2

2
+ λ

(
q4

1 + q4
2

)
4

, (17)
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which is integrable only for λ = 1. It can be verified through
the Poincaré surface of sections that the motion generated by
(17) gets less and less regular as λ decreases from the value
of unity. If on one hand the relaxation process is very well
defined for low-dimensional hyperbolic systems, on the other
hand most of the realistic models used in statistical mechanics
of classical systems are nonintegrable. For a nonintegrable
systems with as few degrees of freedom as (17), relaxation
may or may not happen, and one has to find numerically
the range of parameters where it occurs. In our application
of (15) to this case, we have chosen A = (∂H/∂λ)|λ=λo

=
(q4

1 + q4
2 )/4 and B = A. There is a small range of values of λ

(0.9 � λ � 0.13) where CBA(τ ) can be fitted by the expression
Ae−ατ cos (ωτ ) (see Fig. 1). It is not our aim here to find the
exact functional form of the correlation function. Instead we
want to find out whether a simple description of it (as the one
just written above) is enough to describe the relaxation process
approximately.

The dynamics given by (17) is scalable with energy, i.e., the
Hamilton equations remain invariant under a transformation
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FIG. 1. (Color online) Correlation function CBA(E′,t) for B =
A = (q2

1 + q2
2 )/4 and E′ = 2.5. The solid black lines were obtained

numerically for 4 × 105 initial conditions. The dashed red lines are
the fitting of A′e−α′ t cos (ω′t). (a) λ1 = 0.1, A′ = 21.5, α′ = 0.20,
and ω′ = 1.7. (b) λ1 = 0.12, A′ = 14.5, α′ = 0.17, and ω′ = 1.8.

(q ′
1,2,p

′
1,2,t

′) → (q1,2,p1,2,t) given by the equations

q1,2

q ′
1,2

=
(

E

E′

)1/4

,
p1,2

p′
1,2

=
(

E

E′

)1/4

,
t

t ′
=

(
E′

E

)1/4

.

(18)

This property of (17) yields A/A′ = (E/E′)2 since (q4
1 +

q4
2 )2 ∝ (E/E′)2, α/α′ = (E/E′)1/4, and ω/ω′ = (E/E′)1/4.

One can also verify that Zλ(E) ∝ E1/2. Therefore, the scaling
with energy allows us to perform the derivative in (15) taking
a certain value E′ as the reference and obtaining CBA(E,t)
from the parameters of CBA(E′,t), keeping of course the same
functional form and the same value of λ. In summary, the
system described by (17) was chosen as an example because
it allows a simple illustration of (15) applied to extremely few
degrees of freedom. For models with Lennard-Jones potentials,
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FIG. 2. (Color online) Relaxation of B̄ for B = (q4
1 + q4

2 )/4
and initial energy E = 5.0. The solid black lines were obtained
numerically for 4 × 105 initial conditions. The dashed red lines are
the predictions of Eq. (15) using CBA obtained numerically and the
scaling property. (a) λ1 = 0.1 switched to λo = 0.12 and the value
of 〈B〉λ1 = 7.54 obtained numerically for 4 × 105 initial conditions
with E = 5.0 and λ1 = 0.1. (b) λ1 = 0.12 switched to λo = 0.1 and
the value of 〈B〉λ1 = 6.55 obtained numerically for 4 × 105 initial
conditions with E = 5.0 and λ1 = 0.12.
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for example, the dependence of correlation functions with
energy is much more complicated and is accessible only
numerically. Besides, it has been shown recently [22] that a
finite collection of (17) can act as an environment that induces
relaxation on a simple degree of freedom.

IV. DISCUSSION AND CONCLUSIONS

All the numerical results were obtained from the integration
of the equations of motion of (17) using a fourth-order
sympletic integrator [23]. In Fig. 1 is shown the numerical
results for CBA(E′,t). Although it is clear that the fitting is not
excellent, one obtains afterwards a good agreement between
numerical and analytical results for the relaxation of B̄.
The analytical results should indeed be called semianalytical
since both 〈B〉λ1 and CBA were obtained numerically. In
Fig. 2, B̄(t − to) is the result of the average over several
B(t − to) obtained from the time evolution of initial conditions
distributed over an energy surface with E = 5.0. In Fig. 2(a)
a sudden switching of λ1 = 0.1 to λo = 0.12 at to leads to
the relaxation of B̄ to a new equilibrium value. Although
amplitude and frequency of oscillations are not correctly
described, the relaxation time and the value of 〈B〉λo

are well

predicted. In Fig. 2(b), the comparison between numerical and
analytical results for B̄ is shown for λ1 = 0.12 switched to
λo = 0.1. As before, amplitude and frequency of oscillations
are roughly described and the value predicted for 〈B〉λo

is not
as good as in Fig. 2(a). The relaxation time however is still in
good agreement with the numerical results.

In conclusion, we have derived an extension of Onsager’s
regression hypothesis from linear response theory when the
system of interest is isolated and finite. Although thermal
fluctuations induced by a heat bath are absent in this con-
text, the expression obtained relates, as usual, relaxation to
equilibrium fluctuations. Hence the different feature is that the
decay of correlations is given only by the intrinsic dynamics
of the system. The relaxation of a nonintegrable system with
two degrees of freedom has illustrated that. The outlook is to
extend the present result to the quantum regime.
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