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We compare dynamic mean-field and dynamic cavity methods to describe the stationary states of dilute kinetic
Ising models. We compute dynamic mean-field theory by expanding in interaction strength to third order, and
we compare to the exact dynamic mean-field theory for fully asymmetric networks. We show that in diluted
networks, the dynamic cavity method generally predicts magnetizations of individual spins better than both
first-order (“naive”) and second-order (“TAP”) dynamic mean-field theory.
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I. INTRODUCTION

(Classical) statistical mechanical systems in equilibrium
are described by the Gibbs measure, which connects the
propensity of a system to move between two states taken in
isolation (the energy differences between these two states) to
the probability of finding the system in one of the states, when
all states are available. This relation is normally used to find
equilibrium statistics of a system (magnetizations, correlation
functions, etc.) by sampling a dynamics for which the Gibbs
measure is a stationary state. A Markov chain Monte Carlo
(MCMC) method, such as Glauber dynamics for Ising systems,
which we will review briefly below in Sec. II, can work if the
sample average converges quickly enough to Gibbs measure,
and if the quantity to be measured has wide support in phase
space. Well-known scenarios in which this is the case are spin
systems in the high-temperature phase and when measuring,
e.g., total magnetization. In the low-temperature phase, the
relaxation time to the Gibbs distribution can be very long.
On the other hand, if the quantity to be measured is, e.g., the
magnetization of a single spin, then MCMC in a large system
is slow for the trivial reason that one needs to sweep through all
the spins while just being interested in the changes in and the
average over one of them. If the interactions are weak, marginal
probability distributions can be computed perturbatively in
mean-field theory [1–3], which give closed equations for,
e.g., single-spin magnetizations. For dilute systems, where
every spin is not connected to most other spins, very powerful
message-passing methods have been developed by physicists,
information theorists, and computer scientists over the past two
decades to compute marginals of Gibbs distributions quickly
and accurately [4,5]. While these cavity equations cannot (in
their simplest form) deal with the complex phases of random
spin systems at low temperature, in suitable scenarios they are
much more accurate than mean-field theory, and they greatly
improve on MCMC for single-site magnetization and other
local properties by substituting a cumbersome sampling by
a direct deterministic computation. The cavity method has
been found to have many technological as well as fundamental
applications [5–9].

The situation is very different for out-of-equilibrium sys-
tems, which in itself is an extremely broad term covering
everything from macroscopic hydrodynamics (turbulence)

[10] and physical and chemical kinetics [11] to interdisci-
plinary applications of statistical physics to neuroscience,
population biology, and other fields [12,13]. We consider here
the model systems obtained when generalizing the MCMC
rules of Ising spin systems (Glauber dynamics) from the
equilibrium case (symmetric interactions) to a nonequilibrium
case (nonsymmetric interactions). Such “kinetic Ising” models
are only conceptual—but tractable—models of real spin
systems driven out of equilibrium, and have mainly been
studied with applications to neuroscience in mind [14–17].
From a mathematical point of view, they are specific examples
of Markov chains that do not obey detailed balance conditions.
In contrast to equilibrium systems, there is hence no simple
expression for a stationary state akin to a Gibbs measure, but
such a state, when it exists, is a (complicated) function of all the
details of the model. On the other hand, MCMC works as well
in such systems as for standard equilibrium Ising models, and
mean-field theory has been developed up to second order in the
interaction strength [18]. This leaves open the case of dilute
kinetic Ising models, where in the equilibrium case cavity
methods would be preferable. A dynamic cavity method has
only very recently been developed for majority dynamics [19]
and Glauber dynamics [20] and was investigated by us for
parallel and sequential update schemes in [21].

The dynamic cavity method as outlined in [21] comprises
first an ansatz on probability distributions, similar to a standard
cavity, then the belief propagation (BP) ansatz that cavity
distributions factorize, and then also a further assumption of
Markovianity. As discussed in [22], the second assumption
is exact for fully asymmetric models with the parallel update
rule. In a more general case, however, in which either the
interaction matrix has both a symmetric and an asymmetric
component or the update rule is different, it is merely an
approximation. The numerical results of [21], which showed
that for some such mixed instances the dynamic cavity is quite
accurate, were somewhat unexpected. The main motivation
for the present paper is therefore to show more systematically
in what parameter ranges the dynamic cavity converges (for
these models), where it is accurate compared to MCMC,
and to compare its predictions to mean-field theory. We will
show that for dilute kinetic Ising models, the dynamic cavity
works also for the magnetizations of individual spins, and is
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considerably more accurate than mean-field calculations of the
same quantities.

Kinetic Ising models have been studied with other ap-
proaches, and we outline them briefly here. When the
discreteness of states is relaxed to a spherical Ising model,
Sompolinsky and Zippelius developed a Langevin equation
formalism [23], later extended by Crisanti and Sompolinsky
to the nonequilibrium case [24], where several phases of
these (dynamical) models are outlined. Although pioneering,
predicting magnetizations of individual spins is beyond the
scope of such methods, as the sphericity approximation has
been made. The dynamic replica theory (DRT) has been
applied to kinetic Ising models [25]. However, due to the
nature of replica theory, it only applies to averages over
ensembles of models. Sommers developed a path-integral
formulation for the Glauber dynamics [26], which was at
that time only investigated approximately. As an alternative
approach to path-integral formulation, generating functional
analysis was developed to study nonequilibrium statistical
mechanics of disordered systems [27]. It was shown by Neri
and Bollé in [20] that at least in some cases, a dynamic
cavity analysis explicitly averaged over a random ensemble
recovers the results of generating functional analysis. Recently,
Hertz and Roudi [28,29] used generating functional analysis to
derive mean-field theories for infinite-range spin glass models.
Another motivation for this work was to compare the accuracy
of the predictions of single-site magnetizations by the dynamic
mean-field formula of [28] to the dynamic cavity for dilute
mixed models.

The paper is organized as follows. In Sec. II, we describe
the Glauber dynamics for spin glasses, the model that we
will study. In Sec. III, we discuss two approaches to a
dynamic version of the TAP corrections to first-order mean-
field theory [18,28–30], while in Sec. IV we derive dynamic
cavity equations for diluted networks in parallel update. This
derivation should be seen as a clearer alternative (we hope)
to [20] and our earlier contribution [21]. The main results of
this paper, on the convergence phase of the dynamic cavity and
on a comparison between the predictions of dynamic cavity
and mean-field theory to MCMC, are presented in Sec. V. In
Sec. VI, we conclude and discuss possible application areas of
the dynamic cavity.

II. THE PARALLEL SPIN UPDATE SCHEME
IN DILUTE KINETIC ISING MODELS

The asymmetric dilute Ising model is defined over a set
of N binary variables �σ = {σ1, . . . ,σN }, and an asymmetric
graph G = (V,E), where V is a set of N vertices and E is a
set of directed edges. A binary variable σi is associated with
each vertex vi . The graphs G are taken from random graph
ensembles with bounded average connectivity. Following the
parametrization of [27], we introduce a connectivity matrix cij ,
where cij = 1 if there is a link from vertex i to vertex j , cij = 0
otherwise, and matrix elements cij and ckl are independent
unless {kl} = {ji}. The random graph is then specified by
marginal (one-link) distributions

p(cij ) = c

N
δ1,cij

+
(

1 − c

N

)
δ0,cij

(1)

and conditional distributions

p(cij | cji) = εδcij ,cji
+ (1 − ε) p(cij ), (2)

where i,j ∈ {1, . . . ,N} and i < j . In this model, the average
degree distribution is given by c, and the asymmetry is
controlled by ε ∈ [ 0,1 ]. The two extreme values of ε give,
respectively, a fully asymmetric network (ε = 0), where the
probabilities of having two directed links between pairs of
variables are uncorrelated, and a symmetric network (ε = 1),
where the two links i → j and j → i are present or absent
together. The parameter set is completed by a (real-valued)
interaction matrix Jij . Additional assumptions on the Jij , i.e.,
smallness or that they are random with suitable distribution, are
stated when used. However, for concreteness, the reader may in
much of this paper think of Jij as being independent identically
distributed random variables with zero mean and variance 1

c

(Gaussian or binary) such that for the fully connected networks
(c = N ), the interactions scale as the Sherrington-Kirkpatrick
model [31].

The interactions among spins determine the dynamics of
the system. In the parallel update scheme, which will be
considered here, at each (discrete) time, all spins are updated
according to the Glauber rule,

σi(t + 1)

=
{+1 with probability {1 + exp[−2β hi(t + 1)]}−1,

−1 with probability {1 + exp[2β hi(t + 1)]}−1,

(3)

where hi(t) is the effective field acting on spin i at time step t ,

hi(t) =
∑
j∈∂i

Jji σj (t − 1) + θi(t), (4)

and the parameter β, analogous to inverse temperature, is a
measure of the overall strength of the interactions. The notation
j ∈ ∂i in (3) and (4) indicates all vertices having a direct link
to node i and θi is the (possibly time-dependent) external field
acting on spin i. In this paper, we will adhere to the convention
that the interaction indices are written in the same order as
the temporal order of the interacting spins. Hence we have
Jijσi(s)σj (s + 1) and Jjiσj (s)σi(s + 1).

The joint probability distribution over all the spin histo-
ries p(�σ (0), . . . ,�σ (t)) has in principle the following simple
Markov form:

P (�σ (0), . . . ,�σ (t)) =
t∏

s=1

W [ �σ (s) | �h(s)] p(�σ (0)), (5)

where W is the appropriate transition matrix describing
dynamics and updates. If we had a full understanding of
joint probability distribution defined in (5), we could compute
time-dependent macroscopic quantities such as magnetization
and correlations. The evolution of a single spin is (trivially)
defined by summing over the histories of all spins except one,

Pi(σi(0), . . . ,σi(t)) =
∑

�σ\i (0),...,�σ\i (t)

P (�σ (0), . . . ,�σ (t)), (6)
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which can be further marginalized to the probability of one
spin at one time,

pi[σi(s)] =
∑

σi (0),...,σi (s−1),σi (s+1),...,σi (t)

Pi(σi(0), . . . ,σi(t)),

(7)

and similarly for pairwise joint probability of the histo-
ries of two spins, Pij (σi(0), . . . σi(t),σj (0), . . . ,σj (t)) and
pij (σi(s),σj (s ′)). Consequently, the time evolution of single-
site magnetization can be obtained from Eq. (6) as

mi(t) =
∑
σi (t)

σi(t) pi[σi(t)] (8)

and similarly the correlation functions

cij (s,t) =
∑

σi (s),σj (t)

σi(s)σj (t)pij (σi(s),σj (t)). (9)

Substituting Eq. (8) into the dynamics defined in (5), we have

mi(t) =
〈

tanh

⎛
⎝∑

j∈∂i

Jjiσj (t − 1) + θi(t)

⎞
⎠〉 , (10)

where the angular brackets are the average with respect
to trajectory history. Equation (10) is exact for the time-
dependent magnetization. It is not directly practical, since
the marginal over one spin at one time (the magnetization)
depends on the joint distribution of all the spins influencing it
at the previous time, but as we will see in Sec. III B, it can be
used as a starting point of a perturbative calculation.

III. MEAN-FIELD THEORIES, TAP, AND THE EXPANSION
IN SMALL INTERACTIONS

The mean-field theory of spin glass systems started with
the Sherrington-Kirkpatrick (SK) model [31]. In this model,
all spins interact with all other spins (infinite-range couplings),
which motivates the simplest mean-field or “naive mean-field”
approximation mi = tanh β(

∑
j Jjimj + θi). Shortly after-

ward, a more accurate mean-field theory (TAP) was introduced
by introducing the Onsager reaction for the SK model. This
corrects mj inside the tanh to mj − βJijmi(1 − mj )2, where
Jijmi is the field from spin i on spin j and where χjj = β(1 −
m2

j ) can be interpreted as a local susceptibility at spin j [1].
Since in equilibrium the Ising Jij = Jji , the TAP equilibrium
mean-field theory is hence mi = tanh(β

∑
j Jjimj + βθi −

β2mi

∑
j J 2

ji(1 − m2
j )). As stated in [1], these results can be

derived from the cavity approach. These can also be derived
by observing that in equilibrium, a susceptibility is related to
a correlation by fluctuation dissipation, and the appropriate
correlation was computed by a perturbative argument [1]. For
a later approach using field-theoretical methods, expanding
a functional determinant describing the fluctuations around a
mean-field stationary point of an action, see, e.g., [32] and
references therein.

In equilibrium Ising systems, the naive mean-field and the
TAP approximations can further be computed by expanding
the Boltzmann distribution in the interaction strength [33]. To
first and second order in interactions, this result agrees with
naive mean-field and TAP.

Recently, a dynamic version of TAP was derived by Hertz
and Roudi [28,29] by a field-theoretical argument, and we
show here in Sec. III B below that this also follows from
information geometry, essentially a systematic expansion in
interaction strength. For completeness, we will also show that
the same dynamic version of TAP follows from the “exact
mean-field theory” of Mézard and Sakellariou [30], as already
pointed out in [34].

Outside equilibrium fluctuation dissipation does not hold.
Conceptually one could therefore say that “dynamic TAP”
as such is undefined, or, alternatively, that a proper general-
ization of TAP to a nonequilibrium system should be based
on fluctuation relations generalizing fluctuation-dissipation
theorems [35] (a task we have not attempted to carry out).
In this paper, however, we take a more pragmatic approach,
and understand “dynamic TAP” to be the formulas derived
in [28,29].

Before turning to the technical discussion, let us note that
since mean-field and TAP have obvious computational advan-
tages, these theories have been applied in much wider settings
than those in which they have been derived, particularly in
neuroscience. For a recent review, see [36] and references
therein.

A. Fully asymmetric networks: A reduced theory

In this subsection, we recall the theory in [30], with a view
to compute the expansion in small interactions to third order.
We start by rewriting the exact equation (10) in the following
explicit form:

mi(t) =
∑

σi (t),σ∂i (t−1)

p[σ∂i(t − 1)]σi(t)

× eβσi (t)[
∑

j∈∂i Jjiσj (t−1)+θi (t)]

2 cosh
[
β
(∑

j∈∂i Jjiσj (t − 1) + θi(t)
)] , (11)

where σ∂i is the collection of spins neighboring i with cji �= 0,
and p[σ∂i(t − 1)] is the corresponding joint probability dis-
tribution. In a fully asymmetric network, when an interaction
coefficient Jji in the above is nonzero, then the opposite Jij

is zero. Each of the spins σj (t − 1) on the right-hand side,
therefore, does not depend directly on spin i on yet one time
step before, i.e., on σi(t − 2). Furthermore, the distribution of
each of the σj (t − 1) will in turn depend on distributions of
other σk(t − 2), but the distribution of these σk(t − 2) does
not depend on the σj (t − 1). If there are no short paths in
the interaction graph between any pairs of spins σj on the
right-hand side of (11) except through the cavity spin σi(t), or
if such paths are unimportant, then the spins σj (t − 1) will be
independent in an asymmetric network, and the effective field
hi(t) = θi(t) + ∑

j∈∂i Jjiσj (t − 1) acting on σi(t) will be the
sum of independent random variables.

When the number of interacting spins is large, the distribu-
tion of hi(t) follows from the central limit theorem,

p[hi(t)] = 1√
2πVi(t)

exp

[
− [hi(t) − 〈hi(t)〉]2

2Vi(t)

]
, (12)

where 〈hi(t)〉 = θi(t) + ∑
j∈∂i Jjimj (t − 1) and Vi(t) =

〈hi(t)〉2 − 〈h2
i (t)〉. We note that to arrive at this result, first the

thermodynamic limit (N → ∞) is taken at given connectivity
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c [so that the terms Jjimj (t − 1) are independent], and then
c is taken large (so that there are many of them). In general,
Vi(t) is defined as

Vi(t) =
∑

j∈∂i,k∈∂i

JjiJki[〈σj (t − 1)σk(t − 1)〉

−mj (t − 1)mk(t − 1)]. (13)

With the additional assumption that the interaction coefficients
Jji are random, independent, evenly distributed, and small, the
sum is dominated by the diagonal terms, i.e.,

Vi(t) =
∑
j∈∂i

J 2
ji

[
1 − m2

j (t − 1)
]
. (14)

This gives the “exact mean-field” theory of [30]:

mi(t) =
∫

Dx tanh

⎡
⎣β

⎛
⎝θi(t) +

∑
j

Jjimj (t − 1)

+ x

√∑
j

J 2
ji[1 − m2

j (t − 1)]

⎞
⎠
⎤
⎦ (15)

with the Gaussian measure Dx = dx√
2π

e− x2

2 . Equation (15)
can be iterated starting from some initial condition to get all
magnetizations at any time, and is exact when the assumptions
hold, i.e., when the network is fully asymmetric, when the
cavity assumptions hold, when any spin is influenced by a
large number of other spins, and when the interactions are
random, independent, evenly distributed, and small.

To expand (15) in small interactions, we introduce ci(t) ≡√∑
j J 2

ji [1−m2
j (t−1)] and take all these quantities of order ε. We

have

tanh{β[〈hi(t)〉 + ci(t)x]}
= tanh[β〈hi(t)〉] + xci(t)β{1 − tanh2[β〈hi(t)〉]}

−x2c2
i β

2 tanh[β〈hi(t)〉]{1 − tanh2[β〈hi(t)〉]} + O(ε3),

(16)

where every odd term in this expansion will give zero when
integrated against a Gaussian measure. Therefore, we have

mi(t) = tanh[β〈hi(t)〉] − β2 tanh[β〈hi(t)〉]
×{1 − tanh2[β〈hi(t)〉]}c2

i (t) + O(ε4). (17)

We would like to write the right-hand side of (17) as
tanh{β[〈hi(t)〉 + 
i(t)]} + O(ε4). A comparison shows that
this is possible setting 
i(t) = β tanh[β〈hi(t)〉]c2

i (t). We
therefore have to fourth order the following functional ex-
pression:

mi(t) = tanh (β{〈hi(t)〉 − β tanh[β〈hi(t)〉]c2
i (t)}) + O(ε4).

(18)

To first order in ε, the solution is

mi(t) = tanh

⎡
⎣β

⎛
⎝∑

j∈∂i

Jjimj (t − 1) + θi(t)

⎞
⎠
⎤
⎦ + O(ε2),

(19)

which is the “dynamic naive mean field.” Inserting this back
in (18), we have the “dynamic TAP” of [28,29],

mi(t) = tanh

⎡
⎣β

⎛
⎝∑

j∈∂i

Jjimj (t − 1) + θi(t)

⎞
⎠

− β2mi(t)
∑
j∈∂i

J 2
ji[1 − m2

j (t − 1)]

⎤
⎦ + O(ε4). (20)

The last term inside the tanh is of order ε2 and a form analogous
to the Onsager backreaction term; there is no third-order
correction in ε in this theory.

B. The information geometry viewpoint

We will now derive the analogs of (19), (20), and a third-
order term by following the approach of information geometry
[3,18,37]. Let �σ (0), . . . ,�σ (t) be the time history of a collection
of spins. We assume that these spins have been generated
by a kinetic Ising model with parallel updates and (possibly)
time-dependent external fields. The joint probability of the
history of all the spins is then

P (�σ (0), . . . ,�σ (T )|�θ(0), . . . ,�θ (T ),{Jij })

=
T∏

t=1

∏
i

exp(σi(t)hi(t))/2 cosh(hi(t)),

hi(t) = θi(t) +
∑

j

Jjiσj (t − 1). (21)

In information geometry, the space of these model is con-
sidered as a manifold with coordinates being the (many)
parameters �θ (0), . . . ,�θ (T ),{Jij }. A submanifold is the family
of independent models,

P ind(�σ (0), . . . ,�σ (T )|�θ ind(0), . . . ,�θ ind(T ))

=
T∏

t=1

∏
i

exp(σi(t)hi(t))/2 cosh(hi(t)),

hi(t) = θ ind
i (t). (22)

A mean-field approximation is defined as the independent
model with the same magnetizations as the full model [37].
For our case, it is easily seen that mi(t) = tanh[θ ind

i (t)] is
the variational equation with respect to parameter θ ind

i (t) of
the Kullback-Leibler divergence D−1[p|pind] = ∑

p ln p

pind .
Therefore, the mean-field approximation in information geom-
etry can also be seen as the independent model with the least
Kullback-Leibler divergence from the full model [3,18,37].

Following the approach of [18], we take the interaction
parameters (Jij ) as small parameters (of order ε), and we
assume that the differences 
θi(t) = θi(t) − θ ind

i (t) can be
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expanded in ε:


θi(t) = ε

(1)
i (s) + ε2


(2)
i (s) + · · · . (23)

We can then write, in analogy with Eq. 3.2 of [18],

0 = mi(t) − mind
i (t) = ε

∑
i,s

∂mi(t)

∂θi(s)

∣∣∣∣
ind



(1)
i (s)

+ ε
∑
j,k

∂mi(t)

∂Jkl

∣∣∣∣
ind

Jkl + ε2
∑
i,s

∂mi(t)

∂θi(s)

∣∣∣∣
ind



(2)
i (s)

+ ε2

2

∑
JK

∂2mi(t)

∂�J ∂�K

∣∣∣∣
ind


(1)�J 
(1)�K + O(ε3). (24)

Here �J stands for the set of all interacting couplings and
external fields and J runs over relevant indices. The subscript
indicates that all derivatives are evaluated at the independent
model, and the left-hand side is zero because this is the
variational equation. In the last term, the sum goes over all
the parameters labeled J,K and the parameter increments are
the first-order terms 


(1)
i (s) and Jkl ; on third and higher orders,

mixed terms of 

(1)
i (s) and 


(2)
i (s) will appear. A calculation

presented in Appendix A gives the results



(1)
i (t) = −

∑
j

Jjimj (t − 1), (25)



(2)
i (t) = mi(t)

∑
k

J 2
ki

[
1 − m2

k(t − 1)
]
, (26)



(3)
i (t) = −

∑
k

[
1 − m2

k(t − 1)
]
Jki


(2)
k (t − 1). (27)

Equation (23) together with the variational equation can be
rewritten as

tanh−1 mi(t)

= θi(t) − ε

(1)
i (s) − ε2


(2)
i (s) − ε3


(3)
i (s) +O(ε4). (28)

It is seen that to ε this is “dynamic naive mean field” [compare
(19)], to ε2 this is “dynamic TAP” [compare (20)], and to
ε3 typically there is a nonzero term absent in (20). Such a
higher-order difference between the exact mean-field theory
for the asymmetric model and the field-theoretical approach of
[28,29] was also pointed out in [30] (p. 4, in text below Eq. (7)).

IV. DYNAMIC CAVITY METHOD

The cavity method for equilibrium systems was introduced
in [38,39] while the dynamic version was studied only

recently [19–21]. In contrast to the equilibrium case, using
only the cavity assumption does not in general provide us
with an efficient algorithm in the dynamic case, but further
assumptions are necessary. In this section, we derive the
dynamic cavity method for the kinetic Ising problem, taking a
more explicit route than in [20] and [21].

A. Cavity and BP on spin histories

We consider a number of spins evolving according to a
dynamics such as (5), and we let Xi denote the whole history
of spin i, Xi = (σi(0),σi(1), . . . ,σT (0)). The probability in (5)
can then be alternatively interpreted as a joint probability of
spin histories, P (X1,X2, . . . ,XN ), and this probability can be
represented by a graph where nodes i and j are connected
if either Jij or Jji (or both) are nonzero. The corresponding
product form is

P (X1,X2, . . . ,XN )

=
∏

i

e
∑

s θi (s)σi (s)
∏
ij

e
∑

s Jij σi (s)σj (s+1)

×
∏

i

e−∑
s log 2 cosh[θi (s)+∑

j Jjiσj (s−1)], (29)

which is already normalized. Belief propagation is expected
to work well if this graph is locally treelike, i.e., if all
loops are long, and can be ignored [5]. In (29), this is
never the case, even if the couplings are fully asymmetric,
for the simple reason that if spins i and j drive spin k,
then they are coupled both by the terms σi(t)σk(t + 1) and
σj (t)σk(t + 1), and by the normalization log 2 cosh hk(t + 1).
However, these couplings are of a rather peculiar type. To
proceed, we introduce four different marginal probabilities.
The first Pi is the marginal probability of spin history Xi . The
second Pi+∂i is the marginal probability on the set of histories
{Xi

⋃
X∂i}. The third P∂i is the marginal on the set of histories

X∂i . The fourth and last is P (i), a cavity distribution on X∂i .
We take this as the marginal on X∂i in a revised model in
which both the spin history Xi as well as the normalization
log 2 cosh hi(t) have been eliminated. All four probabilities
depend on external field parameters that are not necessarily the
same. In particular, we will express P∂i with one set of external
fields and P (i) with another set of external fields. By definition,
Pi+∂i = W (Xi | X∂i)P∂i . The peculiarity of the model is that
the (normalized) conditional probability W (Xi | X∂i) is already
explicitly included in (29). We can therefore compare

P∂i( �X∂i) = Pi+∂i(Xi

⋃
X∂i)

W (Xi |X∂i)
∝

∏
j∈∂i

e
∑

s θj (s)σj (s)+∑
k∈∂j

∑
s Jkj σk(s)σj (s+1)−∑

s log 2 cosh[θj (s)+∑
k Jkj σk(s−1)]

×
∑

�X\{Xi

⋃
X∂i }

∏
k �=i,∂i

(
e
∑

s θk (s)σk (s)
∏
l∈∂k

e
∑

s Jklσk(s)σl (s+1)
∏
k

e−∑
s log 2 cosh[θk (s)+∑

l Jlkσl (s−1)]

)
(30)

to

P (i)(X∂i) ∝
∏
j∈∂i

e
∑

s θj (s)σj (s)+∑
k∈∂j,k �=i

∑
s Jkj σk(s)σj (s+1)−∑

s log 2 cosh[θj (s)+∑
k �=i Jkj σk(s−1)]

×
∑

�X\{Xi

⋃
X∂i }

∏
k �=i,∂i

(
e
∑

s θk(s)σk (s)
∏
l∈∂k

e
∑

s Jklσk(s)σl (s+1)
∏
k

e−∑
s log 2 cosh[θk(s)+∑

l Jlkσl (s−1)]

)
. (31)
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This comparison shows that P∂i with external fields θj (t) is the
same as P (i) with modified external fields θj (t) + Jijσi(t − 1).
Since Pi(Xi) = ∑

X∂i
W (Xi | X∂i)P∂i(X∂i), we can therefore

write the marginal probability Pi as

Pi(Xi | θi(0), . . . ,θi(t), · )

=
∑

σ∂i (0)···σ∂i (t−1)

P (i)(X∂i(0) |θ (i)
∂i (0), . . . ,θ (i)

∂i (t), · )

×
t∏

s=1

Wi[σi(s) | hi(s)] pi[σi(0)], (32)

where · indicates all the parameters (external fields and
interactions) that are the same on the two sides of the equation,
and

θ
(i)
j (s) = θj (s) + Jijσi(s − 1), s = 0, . . . ,t (33)

is the set of external fields that are modified.
The next step is to make the belief propagation assumption

that the spin histories are taken independent in the cavity graph:

P (i)(X∂i |θ (i)
∂i (0), . . . ,θ (i)

∂i (t), · )

=
∏
j∈∂i

μj→i

(
Xj |θ (i)

j (0), . . . ,θ (i)
j (t), · )

. (34)

Here we used μi→j to represent marginal probabilities of
neighboring spins, as is standard in the BP literature.

We now consider the subgraph T
(i)
j connected to one spin j

in the cavity of i. In analogy to that presented above, we want
to compare the marginal on the set of neighbors to spin j in
T

(i)
j to the cavity distribution on the same set of variables. As

above, the first with one set of external fields is the same as the
second with another set of external fields, and we therefore find
the following recursion equations (“BP update equations”):

μj→i

(
Xj |θ (i)

j (0), . . . ,θ (i)
j (t), ·

T
(i)
j

)

=
∑
X∂j\i

∏
k∈∂j\i

μk→j

(
Xk|θ (i),(j )

k (0), . . . ,θ (i),(j )
k (t − 1), ·

T
(i)
j

)

×
t∏

s=1

wj

[
σj (s)

∣∣h(i)
j (s)

]
μj→i[σj (0)], (35)

where ·
T

(i)
j

indicates all the parameters (external fields and

interactions) that are the same on the two sides of the equation,
and

θ
(i),(j )
k (s) = θ

(i)
k (s) + Jjkσj (s − 1), s = 0, . . . ,t (36)

is the set of external fields that are modified. Since in fact
θ

(i)
k (s) = θk(s) (spin k is not directly connected to i), we note

that in (36) the upper index (i) can be dropped on both sides.
The effective field on spin j in T

(i)
j is

h
(i)
j (s) =

∑
k∈∂j\i

Jkj σk(s − 1) + θj (s) (37)

and wj [σj | h(i)
j (s)] is the transition probability for the single

spin j in the model on T
(i)
j .

The marginal probability over the history of one spin (“BP
output equation”) follows from (32) and (34) and is

Pi(Xi | θi(0),. . .,θi(t), · )

=
∑
X∂i

∏
k∈∂i

μk→i

(
σk(0),. . .,σk(t−1)|θ (i)

k (0),. . .,θ (i)
k (t−1), · )

×
t∏

s=1

Wi[σi(s) | hi(s)] pi[σi(0)]. (38)

Equations (35) and (38) are the dynamic cavity equations
for our system. Both are large sets of equations connecting
marginal distributions and cavity distributions between two
probabilistic models with different parameters. In general,
these equations are (as far as we know) only of conceptual
value since on top of connecting different models, the right-
hand side also involves on the order of 2T |∂i| operations. In BP,
such an operation would have to be iterated (for all variables)
a number of times to reach convergence: as T grows large, this
becomes unfeasible for the same reason that ordinary BP does
not work well if the state space of each variable is large.

We can define (and will later use) marginalizations of the
messages down to one time (it is no restriction to take this time
as the last time):

μt
j→i

[
σj (t)

∣∣θ (i)
j (t)

]
=

∑
σj (0),...,σj (t−1)

μj→i(σj (0), . . . ,σj (t)|θ (i)
j (0), . . . ,θ (i)

j (t))

(39)

but in general these quantities do not obey closed equations
among themselves. An important exception are fully asymmet-
ric networks, since there at most one of Jij and Jji is nonzero.
We note that in (35) and (38), the probability distribution of
spin i depends on the neighbors ∂i through the effective fields
h

(i)
j (s) and hi(s), but the messages sent from the neighbors to

i also depend parametrically on the history of i through the
modified external fields θ

(i)
k . This backaction is absent for the

fully asymmetric case where θ
(i)
k = θk independent of spin i.

B. The projected dynamic BP

As discussed, the marginalization of dynamic BP over
one time is not in general a Markov process. However, the
long-time behavior of dynamics (stationary state) is often
demanded in many cases. In this section, we explain an
approximation scheme for computing marginal probabilities
for one spin over one time in stationary state, a procedure
called one-time approximation in [20] and time factorization
in [21,22].

We start with the dynamic BP for the time histories of
messages, i.e., Eq. (35), where on the right-hand side the time
trajectory of messages sent from neighboring spins carries the
information from the whole time history of those spins. We
note that the full dynamics Eq. (5) is in fact Markov. This,
and the need to introduce some approximation, motivates the
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time-factorization ansatz, which we write for the terms on the
right-hand side of Eq. (35):

μk→j (σk(0), . . . ,σk(t) | ·
T

(j )
k

) =
t∏

s=0

μs
k→j

[
σk(s) | ·

T
(j )
k

]
, (40)

where ·
T

(j )
k

indicates the parameters of the model, the same
on both sides. Obviously, when inserted into the right-
hand side of (35), such a factorization is not preserved
on the left-hand side. Since we deal with binary vari-

ables, we can introduce time-factorized cavity biases u
T

(j )
k

k→j (s),
again written for the right-hand side of (35), which are
defined by

μs
k→j

[
σk(s) | ·

T
(j )
k

] = eβ[ u
T

(j )
k

k→j (s) σk(s)]

2 cosh
[
β
(
u

T
(j )
k

k→j (s)
)] . (41)

A crucial observation is now that when the time-factorization
ansatz has been made, the cavity biases at different external
fields are simply related. We will need

u
T

(j )
k

k→j (s) = u
T

(i)
j

k→j (s) + Jjkσj (s − 1), s = 0, . . . ,t, (42)

which follows from the relation (36). Inserting (41) and (42)
into (35) gives

μj→i(σj (0), . . . ,σj (t)| ·
T

(i)
j

)

=
∑

σ∂j\i (0),...,σ∂j\i (t−1)

t∏
s=0

∏
k∈∂j\i

× eβσk (s)( u
T

(i)
j

k→j (s) +Jjkσj (s−1))

2 cosh
[
β
(
u

T
(i)
j

k→j (s) + Jjkσj (s − 1)
)]

×
t∏

s=1

wj

[
σj (s)

∣∣h(i)
j (s)

]
μj→i[σj (0)]. (43)

This equation can be marginalized explicitly over the last time
to give

μt
j→i[σj (t)| ·

T
(i)
j

]

=
∑

σj (t−2),σ∂j\i (t−1)

∏
k∈∂j\i

× eβσk (s)(u
T

(i)
j

k→j (t−1)+Jjkσj (t−2))

2 cosh
[
β
(
u

T
(i)
j

k→j (t − 1) + Jjkσj (t − 2)
)]

×wj [σj (t)|h(i)
j (t)]μt−2

j→i[σj (t − 2)| ·
T

(i)
j

]. (44)

The projected dynamic cavity is then to use (44) to compute the
terms in a time factorization of the left-hand side of Eq. (35).
Except for fully asymmetric models (with parallel updates),
this approach is not appropriate for transients [22]. However,
when the external fields θi are constant in time and when
a stationary state has been reached, it may be acceptable to
also take the messages independent in time. For one and the

same set of parameter values, the fixed-point equations for the
time-independent time-factorized cavity biases are then

u∗
j→i = 1

2β

∑
σj

σj log

⎡
⎣ ∑

σ∂j\i ,σ ′
j

eβ
∑

k∈∂j\i σk(u∗
k→j +Jjkσ

′
j )

2 cosh[β(u∗
k→j + Jjkσ

′
j )]

× eβ h
(i)
j σj

2 cosh(β h
(i)
j )

eβσ ′
j u

∗
j→i

2 cosh(βu∗
j→i)

⎤
⎦ ,

h
(i)
j =

∑
k∈∂j\i

Jkj σk + θj . (45)

Equation (45) is an ordinary BP solved by iteration, where the
right-hand side is computed from u

(t−1)
k→j at iteration time t − 1,

giving the left-hand side u
(t)
j→i at iteration time t . The spin σj

summed over is then conceptually at time t , the spins σk at
time t − 1, and the last spin σ ′

j at time t − 2, all these in the
iteration time.

Using the iteration time as a proxy for real time, we note
that in a transient, we can compute the time evolution of
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FIG. 1. (Color online) Squared deviation of spin averages between successive update 
(t) = 1/N
∑N

i=1 [mi(t) − mi(t − 1)]2 at the
stationary limit for different values of average connectivity c. Mean magnetizations are calculated by the projected dynamic cavity method,
i.e., Eq. (46). Left panel: partially asymmetric networks with ε = 0.5. Right panel: symmetric network ε = 1. The results are averaged over
BP initial conditions (10 experiences). System size is 1000 and external fields are set to zero.
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FIG. 2. (Color online) Effect of asymmetry (ε = 0,0.5,1) in squared deviation of spin averages between successive update 
(t) =
1/N

∑N

i=1 [mi(t) − mi(t − 1)]2, obtained by projected dynamic BP Eq. (46), at the stationary limit for average connectivity c = 2 (left
panel), c = 3 (middle panel), and c = 4 (right panel). The results are averaged over BP initial conditions (10 experiences). System size is 1000
and external fields are set to zero.

magnetization that would follow from (41) and (37),

mi(t) =
∑

σ∂i\j (t−1),σi (t−2)

eβ
∑

k∈∂i\j [uk→i (t−1)+Jikσi (t−2)]σk (t−1)∏
k∈∂i\j 2 cosh{β [uk→i(t − 1) + Jikσi(t − 2)]} tanh

⎡
⎣β

⎛
⎝∑

j∈∂i

Jji σj (t − 1) + θi

⎞
⎠
⎤
⎦

× eβui→j (t−2)σi (t−2)

2 cosh[βui→j (t − 2)]
. (46)

This is not expected to be accurate unless we are already in
a stationary state. We use it below in Sec. V as a proxy to
monitor if the system is in a stationary state.

V. RESULTS

In this section, we investigate the performance of the
dynamic cavity method in computing stationary states of
diluted spin glass in parallel update, and we compare to MCMC
(Glauber dynamics) and to dynamic mean-field and dynamic
TAP as defined in Sec. III. The convergence of the projected
dynamic cavity (the dynamic cavity in the time-factorized
approximation) is monitored by comparing the magnetization
computed from (46) at successive times for different parameter
values of the model, and these predictions are then compared
to dynamic mean-field and dynamic TAP and MCMC.

A. Convergence of dynamic BP

In order to detect where dynamic BP reaches a stationary
state, we compare single magnetization in two successive time
steps as


(t) = 1/N

N∑
i=1

[mi(t) − mi(t − 1)]2. (47)

Whenever this deviation vanishes, dynamic BP must have
converged to a stationary state. Figure 1 shows the results
for various connectivity parameters in symmetric and partially
symmetric networks. In high temperature, we observe conver-
gence toward a fixed point, whereas in low temperature, BP
does not reach a stationary state. Roughly speaking, dynamic
BP stops converging at a value βcr (c), which depends on the
average connectivity.

0 1 5
 β 

0

0.01

0.02

0.03

0.04

 δ
  -

 n
M

F

 ε  = 0, c = 3
 ε  = 0.5, c = 3
 ε  = 1, c = 3

0 1 5
 β 

0

0.005

0.01

0.015

0.02

0.025

0.03

 δ
  -

 B
P

 ε  = 0, c = 3
 ε  = 0.5, c = 3
 ε  = 1, c = 3

2                   3                  4 2                   3                  4

FIG. 3. (Color online) Mean-square error δ(t) = 1/N
∑N

i=1[mpredicted
i (t) − m

empirical
i (t)]2 of the two approximation methods (dynamic mean

field and dynamic cavity) with respect to the empirical data (Glauber dynamics). Left panel: dynamic mean field Eq. (19) for networks with
different asymmetric parameter (ε = 0,0.5,1) and fixed average connectivity c = 3. Right panel: the corresponding results obtained by the
projected dynamic cavity method Eq. (46) For small β, i.e., high temperature, they are in agreement with numerical simulations. In low β,
however, dynamic BP outperforms dynamic mean field.
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FIG. 4. (Color online) Scatter plot of local magnetizations for dilute asymmetric networks for four different temperature β = 0.4,1,2.5,3.5
and a fixed average connectivity c = 3. Local magnetizations are obtained by dynamic mean field Eq. (19) (green), dynamic TAP Eq. (20)
(red), and projected dynamic BP Eq. (46) (blue). Left panels show the scatter plots in fully asymmetric networks (ε = 0), where the projected
dynamic BP provides exact results; right panels are scatter plots in fully symmetric networks (ε = 1). In high temperature, all three methods
agree with numerical simulations. In low temperature, BP starts to outperform naive mean field and TAP.

In Fig. 2, the convergence of dynamic BP is plotted to
show the effect of asymmetry. In this case, it is simply that for
very asymmetric graphs, BP converges in a very wide region,
presumably for arbitrarily large values of β if the network
grows large enough, and, in general, the more asymmetric the
network, the better the convergence.

B. Performance of dynamic BP

Figure 3 shows a comparison between the dynamic cavity
method and the dynamic mean-field method for total mag-
netization in spin glass systems with different asymmetric
parameters. The results are obtained in the presence of small
external fields θ = 0.001. The dynamic cavity method shows a
strong agreement with numerical simulations of Glauber-type
dynamics when it converges to a stationary state. The dynamic
mean-field method, however, starts to deviate from numerical
simulations already in small β, indicating that it is less accurate
compared to the dynamic cavity method.

In order to observe the comparison in more detail, we
show also the scatter plot of spin-by-spin magnetization in
Fig. 4. The dynamic cavity method predicts perfectly local
magnetizations for fully asymmetric networks and agrees quite
well with numerical simulations in high temperature for the
fully symmetric network, whereas naive mean field and TAP
start to deviate already at moderate temperatures.

VI. CONCLUSION

Message-passing methods have become an important topic
on the borderline between equilibrium statistical physics and
information theory. In the present paper, we have studied an
extension of message-passing to nonequilibrium Ising spin
systems. In contrast to the equilibrium case, the cavity method
is not immediately useful to describe the dynamics, even if
the topology is suitable, because the messages depend on
whole spin time histories. The time-factorization assumption,

as discussed here and in [20–22] (or some other simplifying
assumption), is necessary to reduce the complexity, but when
so doing, one is generally restricted to stationary states.

We have studied the dynamic cavity in the time-factorized
assumption for stationary states and outlined its convergence
region in parameter strength (β), connectivity (c), and asym-
metry (ε). In analogy with generally known facts about BP,
it can be argued that when the dynamic cavity converges,
it should typically be a good approximation; the region
of convergence is therefore a useful proxy for accuracy.
Expanding on the first results presented in [21], we show that
the convergence region in βincreases with the connectivity. We
also find that the convergence region increases with asymmetry
for several values of connectivity, and that it converges for
any interaction strength for fully asymmetric networks (as
expected). For networks of moderate size, we have directly
compared the dynamic cavity and the dynamic mean field
to direct simulation. For several values of asymmetry and
connectivity, we find that their convergence regions are very
similar, if not identical, but when both methods converge,
then the dynamic cavity method is considerably more accurate
except in the low-β limit, where their performance is about the
same. We have hence shown that the dynamic cavity can be a
useful new approximation to the dynamics of nonequilibrium
spin systems—and any system that can be fruitfully modeled
by such methods.

On the analytical side, we have discussed the special status
of fully asymmetric models, for which the cavity approach is in
some sense exact. We have also rederived the “dynamic TAP”
equation of Hertz and Roudi [28,29] using a straightforward
approach borrowed from Kappen and Spanjers’ treatment
of the stationary state [18], clarifying that this approach is
based on minimizing the distance, in the sense of information
geometry, to the subfamily of independent (but time-changing)
models. Whether such a perturbative argument can be extended
to small deviations from, e.g., fully asymmetric models
remains to be seen.
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APPENDIX A: THE INFORMATION GEOMETRY
CALCULATION TO SECOND ORDER

The following calculations are completely parallel to those
in Appendix 1 of [18] and start from

∂mi(t)

∂θj (s)

∣∣∣∣
ind

= δs,t δij

(
1 − m2

i (t)
)
, (A1)

∂mi(t)

∂Jjk

∣∣∣∣
ind

= δik

(
1 − m2

i (t)
)
mj (t − 1), (A2)

∂2mi(t)

∂θj (s)∂θk(s ′)

∣∣∣∣
ind

= −2mi(t)
[
1 − m2

i (t)
]
δij δikδs,t δs ′,t , (A3)

∂2mi(t)

∂Jjk∂θl(s)

∣∣∣∣
ind

= −2mi(t)
[
1 − m2

i (t)
]
mj (t − 1)δikδilδs,t

+[
1 − m2

i (t)
][

1 − m2
j (t − 1)

]
δikδklδs,t−1,

(A4)

∂2mi(t)

∂Jjk∂Jlm

∣∣∣∣
ind

= δik

[
1 − m2

i (t)
][

1 − m2
j (t − 1)

]
δlkml(t − 2)

+ (jk) ↔ (lm) − 2mi(t)δik

(
1 − m2

i (t)
)
δim

× (
mk(t − 1)mm(t − 1) + δkm

(
1 − m2

k(t − 1)
))

. (A5)

To first order in ε, (24) hence gives∑
s,j

δs,t δij

(
1 − m2

i (t)
)



(1)
j (s)

+
∑
jk

δij

(
1 − m2

i (t)
)
mk(t − 1)Jjk = 0, (A6)

which is simply

A
(1)
i (t) ≡ 


(1)
i (t) +

∑
j

Jjimj (t − 1) = 0. (A7)

This is the same as the “dynamic naive mean field,”

tanh−1[mi(t)] = θi(t) +
∑

k

Jkimk(t − 1) + O(ε2). (A8)

The terms arising from second-order derivatives and first-order
increments can be grouped together as

[
1 − m2

i (t)
]⎛⎝−mi(t)

(
A

(1)
i

)2
(t) −

∑
j

[
1 − m2

j (t − 1)
]

× JjiA
(1)
j (t − 1) − mi(t)

∑
k

J 2
ki

[
1 − m2

k(t − 1)
])

, (A9)

which together with the first-order conditions (A7) and
the term from the first-order derivative and second-order
increment [1 − m2

i (t)]
(2)
i (t) gives



(2)
i (t) = mi(t)

∑
k

J 2
ki

[
1 − m2

k(t − 1)
]
. (A10)

This is the same as “dynamic TAP,” compare (20) above,

tanh−1[mi(t)] = θi(t) +
∑

k

Jkimk(t − 1)

−mi(t)
∑

k

J 2
kim

2
k(t − 1) + O(ε3). (A11)

APPENDIX B: THE INFORMATION GEOMETRY CALCULATION TO THIRD ORDER

Third-order contributions consist partly of terms involving lower than third-order derivatives and higher than first-order
increments. The calculations of these use the same elements as above and are∑

j,s

∂mi(t)

∂θj (s)

∣∣∣∣
ind



(3)
j (s) = [

1 − m2
i (t)

]



(3)
i (t), (B1)

∑
j,s,k,s ′

∂2mi(t)

∂θj (s)∂θk(s ′)

∣∣∣∣
ind



(2)
j (s)
(1)

k (s ′) = −2mi(t)
[
1 − m2

i (t)
]



(2)
i (t)
(1)

i (t), (B2)

∑
j,k,l,s

∂2mi(t)

∂Jjk∂θl(s)

∣∣∣∣
ind

Jjk

(2)
l (s) = −2mi(t)

[
1 − m2

i (t)
]∑

j

mj (t − 1)Jji

(2)
i (t) + [

1 − m2
i (t)

]∑
k

[
1 − m2

k(t − 1)
]
Jki


(2)
k (t − 1),

(B3)

where two terms can be combined to

−2mi(t)
[
1 − m2

i (t)
]



(2)
i (t)

(



(1)
i (t) +

∑
k

Jkimk(t − 1)

)
= 0. (B4)

The remainder is

[
1 − m2

i (t)
] (



(3)
i (t) +

∑
k

[
1 − m2

k(t − 1)
]
Jki


(2)
k (t − 1)

)
(lower-order terms). (B5)
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To proceed with the terms from third-order derivatives and first-order increments, it is useful to introduce the streamlined
notation,

mi = mi(t), m′
i = mi(t − 1), m′′

i = mi(t − 2), etc. (B6)

and similar for all other quantities. It is also useful to note that though the derivatives act on the complete expression involving
both probability density P and the tanh , they partially obey a chain rule when taken to act on the magnetizations alone:

(i) A derivative with respect to an external field θj (s) functions as an ordinary derivative and obeys a chain rule.
(ii) A derivative with respect to an interaction coefficient Jkl acting on a once or more than once primed quantity, such as m′

i

and m′′
i , functions as an ordinary derivative and obeys the chain rule.

(iii) A derivative with respect to an interaction coefficient Jkl acting on an unprimed quantity such as mi must be treated
separately, since this derivative will include a term taken on the tanh, which in turn will give a higher-order correlation.

These rules allow us to continue from what has already been computed and write

∂mi

∂θj (s)

∣∣∣∣
ind

= (
1 − m2

i

)
δij δst ,

∂2mi

∂θj (s)∂θk(s ′)

∣∣∣∣
ind

= −2mi

(
1 − m2

i

)
δij δst δikδs ′t ,

∂3mi

∂θj (s)∂θk(s ′)∂θl(s ′′)

∣∣∣∣
ind

= 2
(
1 − m2

i

)(
3m2

i − 1
)
δij δst δikδs ′t δilδs ′′t ,

...

For the mixed terms, we have similarly

∂mi

∂Jjk

∣∣∣∣
ind

= (
1 − m2

i

)
δikm

′
j ,

∂2mi

∂Jjk∂θl(s)∂

∣∣∣∣
ind

= −2mi

(
1 − m2

i

)
δilδs,t δikm

′
j + (

1 − m2
i

)
δik(1 − (m′

j )2)δjlδs,t−1,

∂3mi

∂Jjk∂θl(s)∂θl′(s ′)

∣∣∣∣
ind

= 2
(
1 − m2

i

)(
3m2

i − 1
)
δil′δs ′,t δilδs,t δikm

′
j − 2mi

(
1 − m2

i

)
δilδs,t δik(1 − (m′

j )2)δl′j δs ′,t−1

− 2mi

(
1 − m2

i

)
δil′δs ′,t δik

(
1 − (m′

j )2
)
δjlδs,t−1 + (1 − m2

i )δik(−2m′
j )[1 − (m′

j )2]δjlδs,t−1δjl′δs ′,t−1

...

and

∂2mi

∂Jjk∂Jlm

∣∣∣∣
ind

= δik

(
1 − m2

i

)
[1 − (m′

j )2]δlkm
′′
l + (jk) ↔ (lm) − 2mi

(
1 − m2

i

)
δikδim(m′

km
′
m + χ ′

km),

∂3mi

∂Jjk∂Jlm∂θn(s)

∣∣∣∣
ind

= δik

( − 2mi

(
1 − m2

i

)
δinδs,t (1 − (m′

j )2)δlkm
′′
l

) + δik

(
1 − m2

i

){−2m′
j [1 − (m′

j )2]δjnδs,t−1δlkm
′′
l }

+ δik

(
1 − m2

i

)
[1 − (m′

j )2]δlk(1 − (m
′′
l )

2)δlnδs,t−2 + (jk) ↔ (lm)

+ 2
(
1 − m2

i

)
(3mi − 1)δinδs,t δikδim〈σk(t − 1)σm(t − 1)〉 − 2mi

(
1 − m2

i

)
δikδim(1 − (m′

k)2)δknδs,t−1m
′
m

− 2mi

(
1 − m2

i

)
δikδimm′

k[1 − (m′
m)2]δmnδs,t−1 − 2mi

(
1 − m2

i

)
δikδim

∂χ ′
km

∂θn(s)
...

where we use the correlation function χkm = 〈σk(t)σm(t)〉 − mkmm. Its partial derivative with respect to an external field is
always zero, and the last term in the above equations therefore vanishes. The more cumbersome term is three derivatives with
respect to interaction coefficients, which we can start from

∂3mi

∂pq∂Jjk∂Jlm

∣∣∣∣
ind

= ∂

∂Jpq

⎡
⎣
∑

σ
∂2P (σ )

∂Jjk∂Jlm
tanh(·) + ∑

σ
∂P (σ )
∂Jjk

[1 − tanh2(·)]δimσl(t − 1) + (jk) ↔ (lm)

×∑
σ P (σ )[−2 tanh(·)][1 − tanh2(·)]δimσl(t − 1)δikσj (t − 1)

⎤
⎦ . (B7)

Applying ∂Jpq gives (at least conceptually) eight terms. The term from acting on ∂2P (σ )
∂Jjk∂Jlm

vanishes. The term from acting on
tanh(·) in the first line gives a second derivative with respect to interaction coefficients of a magnetization. The terms from
the second and the third line give combinations involving either second derivatives of a magnetization or first derivatives of a
correlation function. The terms from the last line are a third-order correlation function and further first derivatives of second-order
correlation functions.
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Taking all together, we can sum the contributions to

Third order = 1

6
2
(
1 − m2

i

)(
3m2

i − 1
)[

A
(1)
i (t)

]3 + 2mi

(
1 − m2

i

)



(1)
i (t)

∑
l

[1 − (m′
l)

2]JliA
(1)
l (t − 1) − (

1 − m2
i

)∑
l

Jli

[
A

(1)
l (t)

]2

+ 1

2
2
(
1 − m2

i

)(
3m2

i − 1
)
A

(1)
i (t)

∑
lm

JilJimχlm − 2mi

(
1 − m2

i

)∑
ln

Jli[1 − (m′
l)

2]A(1)
l (t − 1)Jnim

′
n

+ (
1 − m2

i

)∑
ml

JmiJlm[1 − (m′
m)2][1 − (m

′′
l )

2]A(1)
l (t − 2) + (m) ↔ (l) − mi

(
1 − m2

i

)∑
ln,js

JliJni

×
(

∂χln(t − 1)

∂θj (s)

)



(1)
j (s) − 1

3
mi

(
1 − m2

i

)∑
ln,js

JliJni

(
∂χln(t − 1)

∂Jpq

)
Jpq + circ. perm.

+ 1

3

(
1 − m2

i

)(
3m2

i − 1
)∑

lnq

JliJniJqiχ
′
lnq , (B8)

where in the last line we have used χlnq = 〈[σl(t) − ml][σn(t) − mn][σq(t) − mq]〉. All the terms in the above containing the
first-order terms A(1) vanish, the partial derivative terms of the second-order correlation function with respect to external field
vanish, and the last line is at least smaller than ε3. The sole remaining terms hence come from the partial derivatives of second-order
correlation functions with respect to interaction parameters. These are model-dependent, and are evaluated to nonzero for the
sequential update rule in [18]. For the parallel update rule that we look at here, however, they are zero. The collection of terms
(B8), therefore, evaluates to zero.
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