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Irreversibilities and efficiency at maximum power of heat engines:
The illustrative case of a thermoelectric generator
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Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat
engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency ηCA is commonly
believed to be an absolute reference for real heat engines; however, a different but general expression for the case
of stochastic heat engines, ηSS, was recently found and then extended to low-dissipation engines. The discrepancy
between ηCA and ηSS is here analyzed considering different irreversibility sources of heat engines, of both internal
and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a
physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency
at maximum output power. In the limit of pure external dissipation, we obtain ηCA, while ηSS corresponds to the
case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be
operated by tuning the different sources of irreversibility, also is evidenced.
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I. INTRODUCTION

When Sadi Carnot was reflecting on the motive power of
heat, the first law of thermodynamics was not yet formulated.
Although the so-called caloric theory, which states that heat
can neither be created nor destroyed, was widely accepted,
Carnot proposed an idealized model of heat engine showing
that the fraction of energy that can be extracted as work from
heat transiting between two thermostats at temperatures Thot

and Tcold respectively, cannot exceed 1 − Tcold/Thot, the upper
limit which defines the Carnot efficiency ηC [1]. This limit can
be reached only if the process is fully reversible. Carnot’s basic
assumption that heat is conserved is incorrect but his intuition
paved the way to the second law of thermodynamics and the
related concept of irreversibility.

A reversible transformation in a thermodynamic system is
quasistatic and hence requires an infinite time to complete.
As a consequence, the ideal Carnot engine is a zero-power
engine; furthermore, it is off the arrow of time since no
dissipative element ensures causality. For practical purposes,
real thermodynamic engines must produce power and not just
work to be useful, so one usually seeks maximum efficiency
at nonzero power or, even more, maximum output power.
Causality can be restored by introducing dissipation through
finite thermal conductances between the ideal Carnot engine
and the heat reservoirs, as Chambadal [2], Novikov [3], and
Curzon and Ahlborn [4] did to derive a simple, yet general,
expression for the efficiency at maximum power:

η
Pmax

= 1 −
√

Tcold/Thot ≡ ηCA, (1)

which is known as the Curzon-Ahlborn efficiency. These
seminal works put forward a then new kind of system called
endoreversible (reversible only when considered alone, but not
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when finite thermal contacts are involved [5]) and gave rise to
finite-time thermodynamics. Equation (1) was rederived as a
general result of linear irreversible thermodynamics in Ref. [6].

Recently, another general yet different expression has
appeared for efficiency at maximum power:

η
Pmax

= ηC/(2 − γ ηC) ≡ ηSS, (2)

where γ is a parameter related to the ratio of entropy
production at each end of the engine. This result was obtained
by Schmiedl and Seifert using a stochastic heat engine model
[7]. More recently, an extension of this result to the class of
low-dissipation heat engines was reported by Esposito and
coworkers [9,10]. The main purpose of this paper thus is to
explain and discuss the discrepancy between ηCA and ηSS.

We observed that the hypothesis used in Ref. [7] to obtain
ηSS differs from the assumption of the endoreversible engine
in that no dissipative thermal contacts are involved, and
irreversibilities arise only from internal processes (this class
of engine is referred to as an exoreversible engine [8]). This
observation led us to focus on sources of irreversibility in real
thermal engines. These sources are varied and include friction
and heat leaks. In models which account for the coupling of
the engine to the reservoirs, the irreversibility may also
originate in the finiteness of the heat transfer rate. A continued
increase of the speed of a heat engine operation results in
a decrease in both power and efficiency because of friction
and finite-rate heat transfer; conversely, in a slow regime
operation heat leaks become the preponderant irreversibility
source, which negatively impacts on output power and hinders
efficiency at finite-rate heat transfer.

Thermoelectric generators (TEGs) are devices which cou-
ple electric and heat currents, and hence constitute a very
interesting type of real thermal engine, for which three sources
of irreversibilities are identified: the Joule effect (obviously an
internal process), the heat leak represented by the open-circuit
thermal conductance K0, and the dissipative thermal contacts
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to the heat reservoirs. Twenty years ago, Gordon [11] studied
the impact of these three kinds of irreversibility on the behavior
of a TEG by comparing the relation between the produced
power P and the efficiency η for various cases. Interestingly,
he demonstrated that a TEG with only Joule dissipation or only
dissipative thermal contacts (endoreversible case) exhibits the
same behavior: an open P vs η curve where the electrical
open circuit condition allows the Carnot efficiency to be
attained. On the contrary, when heat leaks are introduced, the
P vs η curve becomes closed: in the open-circuit condition
the efficiency vanishes, as for the closed-circuit condition.
These results show that heat leaks should not be treated
on the same footing as Joule heating and thermal contact
dissipation. We emphasize that the case where only heat leaks
are considered is unphysical and presents no interest per se
because electrical transport is then not allowed to take place.
This may explain why this situation is not treated in Ref. [11].

This problem can be compared to the connection of a perfect
capacitor to a perfect voltage generator: since such a capacitor
cannot sustain a potential discontinuity, it is impossible to
connect both components for a practical purpose unless a
dissipative element such as a resistor is introduced in the
circuit. But one cannot place this irreversibility source at
random: the dissipation is useful to realize the coupling if
the resistor is connected in series with the generator but is
useless if placed in parallel. In that case, as for the thermal
conductance for the TEG, dissipation occurs without resolving
the causality issue. In this paper, we thus analyze a model TEG
that presents no heat leaks. This assumption is equivalent to
that of strong coupling defined by Van den Broeck [6] as the
heat flux is thus only composed of an advective term [12] and
is hence proportional to the electron flux. We only deal with
two irreversibility sources: an internal one (Joule heating) and
an external one (dissipative thermal coupling).

In this context, a question naturally arises: How can in-
ternal and external irreversibilities be compared? We recently
demonstrated the importance of thermal contacts in practical
applications such as a thermoelectric generator coupled to
heat reservoirs with nonideal heat exchangers [13]. Indeed, the
impact of the thermal contacts on the electrical properties of
the TEG is such that an additional electrical resistance appears
in the basic Thévenin model of the TEG. The comparison
between this additional electrical resistance and the standard
Thévenin internal electrical resistance provides a means to
quantify the internal and external sources of irreversibility in
the system.

In this paper we build on the works of Onsager [14],
Callen [15], and Domenicali [16] on irreversible processes to
study a generic model of thermoelectric generator connected
to two temperature reservoirs. This framework permits a very
efficient and physically transparent description of the coupling
of the laws of Ohm and Fourier, which govern the properties of
thermoelectric generators. Considering two limiting cases for
irreversibility sources, that of pure external irreversibility and
that of pure internal irreversibility, we find that the efficiency
at maximum power in these two extreme cases corresponds
exactly in one case to the Curzon-Ahlborn efficiency and in
the other to that calculated by Schmield and Seifert [7]. We
also derive an analytic expression of the efficiency when the
conductances of the thermal contacts placed at both ends of the

FIG. 1. Thermoelectric (left) and thermodynamic (right) pictures
of the thermoelectric generator.

thermoelectric module are equal, and we discuss the obtained
expression in the light of previously published results. This
discussion is then extended to the dissymmetric case.

II. THERMOELECTRIC MODEL

We consider a model thermoelectric generator connected
to two temperature reservoirs, as depicted in Fig. 1. The
temperatures of the heat reservoirs are Tcold and Thot, respec-
tively. The thermal contacts are characterized by two thermal
conductances Kcold and Khot so that the total contact thermal
conductance is given by Kcontact = KcoldKhot/(Kcold + Khot).
The TEG is characterized by its isothermal electrical resistance
R, its Seebeck coefficient α (both of which are constant
inside the module), and its thermal conductance KTEG, which
is composed of a conductive part K0 associated with heat
leaks and an advective part Kadv associated with the electrical
current [12]. In the strong-coupling regime the isothermal
conductance of the generator is supposed to be zero and so the
average heat flux IQ is proportional to the electrical current
I [6]. In the electrical circuit a resistance R′ is due to the
presence of the finite thermal contacts as demonstrated in
Ref. [13]; under the strong-coupling assumption it is given
by R′ = α2T ′/Kcontact, with T ′ being the average temperature
inside the TEG. The voltage across the generator, representing
the thermoelectric conversion, is V ′

oc = α(Thot − Tcold).
The temperatures at both ends of the thermoelectric module,

ThM and TcM are explicitly given by [17]

ThM = KhotThot + 1
2RI 2

Khot + αI
, (3a)

TcM = KcoldTcold + 1
2RI 2

Kcold − αI
, (3b)

Since the average temperature T ′ = (ThM + TcM)/2 de-
pends on the working conditions, the resistance R′ does, too.
To remove this dependence we define a resistance R′′ given
by R′′ = α2T/Kcontact with T = (Thot + Tcold)/2. As a first
approximation R′ ≈ R′′. A simple expression for the power
produced as a function of ThM and TcM reads

P = α(ThM − TcM)I − RI 2. (4)
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FIG. 2. (Color online) Efficiency at maximum power scaled to
the Carnot efficiency and mean temperature T ′ (inset) as functions of
ratio R/R′′.

The full analytic expression of the output power P as function
of the electrical current I is cumbersome and can be found
in Ref. [17]. The conversion of the heat current into electric
power is thus characterized by the efficiency η:

η = α(ThM − TcM) − RI

αThM − RI/2
. (5)

All the quantities involved here depend on the electrical current
I , so we have to calculate them numerically as a function of I

in the generator regime to extract the efficiency at maximum
power ηPmax for various values of the TEG internal resistance
R. All other parameters of the TEG, including the thermal
contact conductances, are fixed (their values do not influence
the result for ηPmax ).

We focus first on the symmetric configuration characterized
by the equality of the thermal contact conductances: Khot =
Kcold. The efficiency at maximum power, ηPmax , is represented
as a function of the ratio R/R′′ for a TEG working between
Tcold = 295 K and Thot = 305 K, in Fig. 2. We recover
the expected behavior for extremal cases: if the sources of
irreversibility are mainly external (R/R′′ → 0) then we obtain
ηPmax = ηCA, which agrees with the calculation of Ref. [18];
conversely, if the sources are mainly internal (R/R′′ → ∞),
we obtain the Schmiedl-Seifert efficiency ηPmax = ηSS =
ηC/(2 − ηC/2), since γ = 1/2 for this particular heat engine
(as discussed below). Furthermore, we note a continuous
transition between these two limits.

A. Analytical expression for ηPmax

To gain insight into the dependence of the efficiency at
maximum power on the external and internal irreversibilities
when Khot = Kcold, we derive an analytic expression for the
efficiency. First, we express the electrical current at maximum
power IPmax as [12]

IPmax = α

2

(Thot − Tcold)

R + R′ . (6)

Then, to obtain the average temperature T ′ = (ThM + TcM)/2
inside the TEG, we make the approximation that

IPmax = α(Thot − Tcold)/2(R + R′′) in Eqs. (3a) and (3b). Thus,
T ′ is given by

T ′
Pmax

= T − R′′

R′′ + R

�T 2

16T
, (7)

where �T = Thot − Tcold. The second term on the right-hand
side of Eq. (7), leading to a deviation from T in the case
of an overwhelming contribution of external dissipation, is
important to recover the Curzon-Ahlborn efficiency. This
variation of T ′ reflects a response of the system when the
internal dissipation constraint is relaxed, and it is verified by
the exact numerical calculation as shown in the inset of Fig. 2.
This dependence of the temperature on the ratio R/R′′ cannot
be ignored, so we have to use the above expression of T ′
in the definition of R′ instead of the approximation T ′ = T .
Replacing this whole form of R′ in Eq. (6) and using Eq. (5),
we obtain the following analytic expression for the efficiency
at maximum power in the symmetric configuration:

η
sym
Pmax

= ηC

2

1 + ηC

2(2−ηC)
R′′

R′′+R

1 − ηC

4
R

R′′+R

. (8)

Only leading terms up to the third order in ηC were retained
for the sake of tractability. For R/R′′ → ∞, we recover the
expression found by Schmiedl and Seifert [7]; for R/R′′ → 0,
an expansion to third order in ηC leads to Curzon-Ahlborn
efficiency developed to the same order:

ηPmax = ηC

2
+ η2

C

8
+ η3

C

16
+ O

(
η4

C

)
. (9)

The coefficient at second order in Carnot efficiency remains
the same, 1/8, over the whole range of variation of the
ratio R/R′′. This result is in perfect agreement with that of
Esposito and coworkers [9]. As demonstrated in Fig. 2 this
analytical expression reproduces well the curve derived from
exact formulas.

B. Insight into dissymmetric configuration

The result of Curzon and Ahlborn is interesting and
powerful in that it does not depend on the repartition of
the dissipated energy between hot and cold contacts. The
dissymmetric configuration is characterized by different values
of the thermal contact conductances Khot �= Kcold. However,
Kcontact is kept constant.

To proceed in our analysis, we introduce a contrast
function � = (Khot − Kcold)/(Khot + Kcold) that characterizes
the degree of symmetry. Whatever the the ratio R/R′′, the
numerically computed efficiency at maximum power exhibits
a dependence on � that is linear (not shown here). This de-
pendence is enhanced when internal and external dissipations
are identical, whereas, if one of the irreversibilities vanishes,
the efficiency at maximum power remains independent of
the degree of symmetry of the thermal conductances. This is
coherent with the result of Curzon and Ahlborn for R/R′′ → 0.
For R/R′′ → ∞, since internal dissipation is the leading
contribution, this behavior can be explained by the intrinsic
symmetry of Joule heating: each end of the thermoelectric
module receives half of the heat thus produced; this internal
symmetry implies that γ = 1/2 in the above expression for
ηSS. We cannot explain yet such a dependence for a mixed
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FIG. 3. (Color online) Efficiency at maximum power versus
internal electrical resistance scaled to the Carnot efficiency for various
values of �. Comparison of numerical and analytical results.

internal-external contributions of irreversibilities. This clearly
is an open question. As of yet, we can only propose an educated
guess of the dependence:

ηPmax = η
sym
Pmax

+ 2�
RR′′

(R + R′′)2
η3

C. (10)

This formula fits well to the numerical result and thus presents
an interest: since the dissymmetric configuration has no
influence before the third order in the Carnot efficiency is
reached, the coefficient 1/8 at second order is still present
even in the dissymmetric configuration. This is sufficient to
capture the main features of the influence of the degree of
symmetry � on the efficiency at maximum power, ηPmax , even
if we observe a small discrepancy in comparison to the exact
result, as shown in Fig. 3: higher-order terms are necessary to
obtain a full agreement. In the intermediate situation, where
R is comparable to R′′, the thermal contact with the higher
conductance must be placed on the colder side to improve ηC.
We do not yet have a satisfactory explanation to propose for this
fact. Schmiedl and Seifert [7] showed that, in the general case
of heat engines, if the internal processes do not possess intrinsic
symmetry as does Joule heating (i.e., with γ �= 1/2), the result
can be quite different in the limit R/R′′ → ∞. The efficiency
at maximum power in such a case is, however, independent of
� because the external dissipation is negligible compared to
the internal dissipation.

C. Additional remarks

If all dissipation is produced internally, heat is trapped and
cannot be extracted efficiently as the thermal conductance
under open circuit condition K0 is reduced to zero. As a
consequence, the internal temperature of the device, possibly
quite different from the mean temperature T ′, may become
very high for a macroscopic engine. Preclusion of this
unwanted effect is possible with ballistic devices such as that
presented by Esposito [9]: all the heat is indeed produced at
the interfaces, thus avoiding internal warming. This can still
be considered as internal dissipation since it is caused by a
mesoscopic phenomenon analogous to the Joule effect with
half of the produced heat released on each side [19].

As shown in Figs. 2 and 3, the variation of ηPmax for the
whole range of R/R′′ is quite small: while we believe the
distinction between internal and external dissipation is of
primary importance from a theoretical point of view, it seems
of limited interest for technological applications.

III. CONCLUSION

Using the example of a thermoelectric generator, which is
a touchstone for irreversible thermodynamics theories [20],
we demonstrated a general result of heat engines: the Curzon-
Ahlborn efficiency, although fundamental in the frame of linear
irreversible thermodynamics [6], is not a truly universal upper
bound on efficiency at maximum power of real heat engines, as
inferred in, for example, Refs. [6,21,22], but pertains to endore-
versible engines only, whereas the Schmiedl-Seifert efficiency
stands only for exoreversible engines, where dissipation is
fully internal. The distinction between these two general forms
of efficiency at maximum power thus brings a much needed
conceptual clarification in finite-time thermodynamics. We
also showed that the efficiency at maximum power of real heat
engines may vary continuously between these two extremes as
the sources of irreversibility are tuned. Last but not least, the
analysis of the configuration when dissipation contributions
are mixed, particularly for dissymmetric thermal contacts,
raises new questions which are left open.
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