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Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell’s demon
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We present a complete-quantum description of a multiparticle Szilard engine that consists of a working
substance and a Maxwell’s demon. The demon is modeled as a multilevel quantum system with specific quantum
control, and the working substance consists of identical particles obeying Bose-Einstein or Fermi-Dirac statistics.
In this description, a reversible scheme to erase the demon’s memory by a lower-temperature heat bath is used.
We demonstrate that (1) the quantum control of the demon can be optimized for a single-particle Szilard engine
so that the efficiency of the demon-assisted thermodynamic cycle could reach the Carnot cycle’s efficiency and
(2) the low-temperature behavior of the working substance is very sensitive to the quantum statistics of the
particles and the insertion position of the partition.
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I. INTRODUCTION

Maxwell introduced in 1871 a notorious being, known as
Maxwell’s demon (MD) nowadays, to discuss the “limitations
of the second law of thermodynamics” [1]. Such a demon
distinguishes the velocities of the gas particles and controls
a tiny door on a partition of the gas container to create a
temperature difference, which breaks the Clausius statement
of the Second Law of Thermodynamics (SLoT). To reveal the
essence of the the MD, Szilard proposed a single-particle heat
engine [2], named the Szilard heat engine (SHE). The demon
in SHE distinguishes the positions of the particles after the
partition has been inserted. With the help of the MD, SHE
can absorb heat from a single heat resource and convert it into
work without apparently evoking other changes in the cycle.
Szilard pointed out that the SLoT was no longer violated
if one considered the entropy increase during the measure-
ment. Brillouin generalized Szilard’s argument and identified
the thermodynamic entropy with the informational entropy
first [3].

However, the measurement could be carried out without any
change in entropy [4]. Actually, it was realized that a logically
irreversible process must be “accompanied by dissipative
effects” [5] in the physical realization of the information
processing, which is known as Landauer’s erasure principle.
Bennett used this point of view in the study of the MD paradox
and pointed out that the erasure of the demon’s memory
instead of the measurement was logically irreversible and
thus must be accompanied by dissipative effects [4]. With
these observations, the conventional cycle presented by Szilard
is indeed not a thermodynamic cycle because the demon’s
memory has not been erased to complete the cycle. The SLoT
will be saved if one considers the erasure process to finish
the cycle of the demon. As people believe the essence of
information should be discussed in the framework of quantum
mechanics, various quantum versions of SHE have been
proposed with different views about quantum measurements.
One proposal is semiclassical [6,10]. The working substance
in this proposal is quantum mechanic, while the demon is
considered as a classical controller whose role is to extract
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information through measurement and control the system. The
paradox of the MD was solved by arguing Landauer’s erasure
principle. However, the final solution should include the MD
in the cycle and treat the MD in a quantum fashion [7,11]. For
SHE, it is also proved the existence of the MD will not violate
the SLoT in Ref. [8], where the MD is modeled as a two-level
system.

The focus of study in both classical and quantum mechan-
ical frameworks is the erasure process, which is crucial to
solving the MD paradox. In an ordinary way, the demon and
the working substance are in contact with the same heat bath.
After erasing the demon by applying some work, one will
find that SHE cannot extract work in a cycle at all and the
SLoT is not violated [9]. However, a more general erasure
should be done with a lower-temperature heat bath, which
is also called a heat sink. In this situation, we turn SHE
into a thermal dynamic cycle, where the nonviolation of the
SLoT can be proved by illustrating that it does not exceed
Carnot’s efficiency. It is realized that the effective temperature
of the MD’s initial state actually characterizes the error in the
control of the heat engine [7,8]. Our previous work in Ref. [8]
emphasized the functions of the demon with errors in the
study of the single-particle SHE. But the erasure schemes in
Refs. [7,8] are irreversible. Therefore, the efficiencies of the
heat engines in these papers cannot reach the Carnot cycle’s
efficiency. One purpose of the present paper is to establish an
optimal scheme of the thermodynamic cycle with a reversible
erasure process, assisted by the demon. It is shown that the
partition-removing process is not always reversible, which
leads to the lower efficiency. We also find the existence of
the optimal expansion position to improve the efficiency of
the single-particle SHE to the Carnot cycle’s efficiency. The
other purpose of this paper is to reveal the role of the quantum
statistical properties of the working substance. We generalize
our previous works about a demon-assisted quantum heat
engine by using a multiparticle working substance, which is
the ideal Bose or Fermi gases, and find that the ratio of the
work extracted to the working temperature has discontinuous
behavior, and that discontinuous behavior is closely related to
the degenerate-ground-state phenomenon.

The paper is organized as follows: In Sec. II we describe
the model of quantum multiparticle SHE and the working
scheme briefly. In Sec. III we study in detail the five steps
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of the working scheme: insertion, measurement, controlled
expansion, removing, and erasure separately and calculate the
work applied and heat transferred in each step. In Sec. IV the
efficiency of the engine is evaluated. It is found that our heat
engine’s efficiency cannot exceed the Carnot cycle’s efficiency.
For single-particle SHE, we optimize the scheme to make the
efficiency of the engine reach the one of Carnot’s. In Sec. V
we discuss the behavior of the engine in a low-temperature
regime and show the ratio of the work extracted to the working
temperature is closely related to the degenerate point (whose
definition can be seen in this section) and the particles’
statistical properties. Conclusions and remarks are given in
Sec. VI.

II. QUANTUM MULTI-PARTICLE SZILARD ENGINE

The working substance is modeled as a collection of N

particles confined in a chamber, which is described as a
one-dimensional infinitely deep square well with width L

illustrated in Fig. 1(a). Generally the particles can satisfy
any distribution, Bose distribution, or Fermi distribution. We
calculate the canonical partition function Zn(l) as follows,
where the subscript n denotes the number of the particles
in the well and l represents the width of the well. Its
explicit expression is given in Appendix A. In the following
calculations, we do not specify the concrete partition functions
in most cases. The results obtained are valid for both Bose and
Fermi distributions except for the case we claim specifically.

In the model, the MD is described as a quantum system with
N + 1 energy levels to record the complete information about
how many particles are in each compartment after the insertion
process. We may use a demon with a number of energy levels
less than N + 1, but it can record only partial information
of the working substance, which decreases the work extract.
We consider in the present paper only the demon with N + 1
levels, with |i〉 its i-th eigenstate and �i the energy of state

FIG. 1. (Color online) Modeling the chamber of gas by a one-
dimensional infinite square well. (a) The chamber is modeled as a
one-dimensional infinite square well with width L where the particles
are confined. The inner lines in the well represent the single-particle
energy levels of the well. (b) After the insertion, the chamber is split
into two chambers, which are modeled as two 1D infinite square wells
with widths l and L − l, respectively. The inner lines represent the
single-particle energy levels.

|i〉. The energy of |0〉 is set to be the zero point of energy, i.e.,
�0 = 0. For a demon without errors, its initial state is a pure
state, namely, ρd0 = |0〉〈0|. In this paper we study the demon
with errors generally, whose initial state can be written as

ρd0 = p
(0)
0 |0〉〈0| + p

(0)
1 |1〉〈1| + · · · + p

(0)
N |N〉〈N |. (1)

When p
(0)
i vanish for all i �= 0, this demon returns to the one

without errors, where |0〉 is the standard state. For a demon
with errors, a larger population p

(0)
0 in the state |0〉 means a

more efficient demon [8].
The thermodynamic cycle consists of the five steps. At

the beginning, the working substance is in equilibrium with
the heat resource at a higher temperature T1, and the demon is
initially in the state ρd0 [see Eq. (1)]. In the first step, a partition
is inserted at position l, which splits the initial well into two,
with widths being l and L − l, respectively [see Fig. 1(b)].
After the insertion, there are N + 1 possible situations, and
one does not know which situation happens. Suppose i to
be the number of the particles in the right compartment.
Then the N + 1 situations correspond to i = 0,1, . . . ,N . In
the second step, the demon measures the working substance
and records this information in its memory. For the error-free
demon, it would be in the state |i〉 for the ith situation after
the measurement. However, the demon with errors may record
wrong information. For example, the working substance is in
the 0th situation while the demon is in the state |1〉 as illustrated
in Fig. 2(a). In the third step, the partition acts as a piston and
expands under the control of the demon. Specifically, if the
demon is in the state |i〉, it will move the piston to the position
li [see Fig. 2(b)]. Actually one can optimize the expansion
position li to get the best efficiency. In the fourth step, the
partition is removed, and the working substance returns to
its initial state. After these four steps, the working substance
absorbs heat from the heat resource and converts it into work.
It seems to violate the SLoT. However, the demon has not
returned to its initial state to complete the cycle. Thus, an
additional step, step five, is needed to erase the memory of the
demon. The effect of this step saves the SLoT as pointed out
by Landauer’s erasure principle.

III. QUANTUM THERMODYNAMIC CYCLE
OF MULTIPARTICLE SZILARD ENGINE

In this section we analyze in detail the thermodynamic
cycle of the quantum multiparticle SHE. We calculate the heat
absorbed and work applied in each step.

A. Step 1: Insertion

In the first step, the partition is inserted isothermally, which
means the working substance is in contact with a heat resource
and the process is quasistatic. Before the insertion, the state of
working substance ρs0 is

ρN (L) = 1

ZN (L)
e−β1HN (L), (2)

where β1 = 1/T1 is the inverse temperature and the Boltzmann
constant is set to be a unit, i.e., kB = 1, and HN (L) represents
the Hamiltonian of N particles confined in the infinite square
well with width L. ZN (L) is the corresponding partition
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FIG. 2. (Color online) The states of the chamber and the demon
(a) before and (b) after the expansion process. (a) After the
measurement, the demon has revealed the number of the particles in
the right compartment i and recorded this information in its memory.
If the demon is error free, then its inner state (or memory) will be
|i〉. However, when the demon contains some errors, there would be
some mistakes in the demon’s memory. For example, subfigure (2)
shows a situation when i = 0 and the demon is in state |1〉. Thus, there
are total (N + 1)2 situations after the measurement for a system with
N particles. Here the total of nine situations are listed for N = 2.
(d) After the measurement, the partition acts as a piston under the
control of the demon. If the demon is in the state |i〉, the piston
will move to a new position li . Such movement is called controlled
expansion. Here the results of the expansion for all nine situations are
listed for N = 2.

function, and its explicit expression is presented in Ap-
pendix A. After the insertion, the chamber is split into two
parts with widths l and L − l, respectively, and the substance
is in an equilibrium state as

ρs,ins =
N∑

i=0

Pi(l)ρ
L
N−i(l) ⊗ ρR

i (L − l). (3)

Here ρL
N−i(l) describes an equilibrium state of the left chamber

with a similar meaning as those in ρN (L):

Pi(l) = ZN−i(l)Zi(L − l)∑N
i=0 ZN−i(l)Zi(L − l)

, (4)

which is the probability to find i particles in the right chamber
with insertion position being l. As the process is isothermal, the
work applied in this step is the difference of the free energies
after and before the insertion, i.e.,

Wins = Fs,ins − Fs0, (5)

and the heat absorbed is

Qins = T1(Ss,ins − Ss0). (6)

The free energy and the entropy are given in terms of the
partition functions as

Fs,ins = −T1 ln

[
N∑

i=0

ZN−i(l)Zi(L − l)

]
, (7)

Fs0 = −T1 ln ZN (L), (8)

and

Ss,ins =
(

1 − β1
∂

∂β1

)
ln

[
N∑

i=0

ZN−i(l)Zi(L − l)

]
, (9)

Ss0 =
(

1 − β1
∂

∂β1

)
ln ZN (L), (10)

respectively. As shown in Ref. [6], in quantum mechanics
framework, the insertion work Wins is no longer zero. More-
over, it was proved in Ref. [8] that limT →∞ Wins = ∞.

B. Step 2: Measurement

In the second step, the total system is isolated from the
heat bath. The demon finds out the number of the particles
in the right compartment. This measurement process aims at
establishing the correlation between the working substance
and the demon. For the demon with no error, the state of the
demon after the measurement is |i〉 when there are i particles
in the right compartment. For the demon with errors, its initial
state is a mixed state. Thus, we should appoint the final states
of the demon for all situations. Let the final state be |fi(j )〉
when the demon is initially in the state |j 〉 and the number
of the particles in the right compartment is i. Mathematically
fi : j �→ fi(j ) is a map from the set {0,1, . . . ,N} to itself. If
the demon is error-free, the final state will be |i〉 when there
are i particles in the right compartment, which leads the first
constraint of fi , i.e., fi(0) = i. With this notation, the operator
representing this measurement is

U =
N∑

i=0

⎡
⎣∑

li

∣∣ψi
li

〉〈
ψi

li

∣∣⊗ N∑
j=0

|fi(j )〉〈j |
⎤
⎦ , (11)

where |ψi
li
〉 represents the li-th eigenstate of the working

substance when there are i particles in the right compartment.
For a physical operation, U should be unitary (so that it is
a quantum nondemolition premeasurement), which leads to
another constraint of fi(j ). That is, for a fixed i, when j

runs over from 0 to N , fi(j ) should also run over from
0 to N . Thus, {fi(j )|j = 0,1, . . . ,N} is a permutation of
{0,1, . . . ,N}, which satisfies fi(0) = i. When N = 1, there
is only one function of such kind, and the corresponding
operator U represents a controlled-NOT operation. For N > 1,
such a function exists. One realization is fi(j ) ≡ i + j

(mod N + 1).
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After the measurement, the state of the total system
becomes ρmea = Uρs,ins ⊗ ρd0U

†, namely,

ρmea =
N∑

j=0

|j 〉〈j | ⊗
N∑

i=0

Pi(l)p
(0)
f −1

i (j )
ρL

N−i(l) ⊗ ρR
i (L − l),

(12)

where f −1
i : j �→ f −1

i (j ) is the inverse of the map fi . It
follows from Eq. (12) that there is a possibility that the demon
is in the state |i〉 while the number of particles in the right
compartment is not i. That is exactly what we mean by “error”
within the demon. Due to the isolation from the heat bath,
there is no heat transferred, Qmea = 0, and the work applied is
just the energy change during the measurement:

W =
N∑

j=0

[(
N∑

i=0

Pi(l)p
(0)
f −1

i (j )

)
− p

(0)
j

]
�j, (13)

which compensates for the energy difference between the
initial state and the final state of the demon during the
measurement. Therefore, if all the energy levels of the demon
are degenerate, one will not apply any work to perform the
measurement. Thus the work applied may not always be
nonzero [4].

C. Step 3: Controlled Expansion

In this step the partition in the chamber acts as a piston and
will be moved to the position according to the memory of the
demon. Specifically, if the state of the demon is |i〉, the final
position will be li , which is called expansion position. This
expansion process is slow enough, and the working substance
is in contact with the heat resource during the total expansion
process. Thus the state of the total system after the controlled
expansion is

ρexp =
N∑

j=0

|j 〉〈j | ⊗
N∑

i=0

Pi(l)p
(0)
f −1

i (j )
ρL

N−i(lj ) ⊗ ρR
i (L − lj ).

(14)

However, the “impenetrability” of the piston does not make
this process an isothermal process since the transition between
two states with different numbers of the particles in the
right compartment is forbidden. Thus we should deal with
this expansion process for each situation separately. For the
situation when the demon is in state |j 〉 and there are i particles
in the right compartment, the work applied Wij is

Wij = −T1 ln ZN−i(lj )Zi(L − lj ) + T1 ln ZN−i(l)Zi(L − l),

and the heat absorbed Qij is

Qij = T1
{
S
[
ρL

N−i(lj ) ⊗ ρR
i (L − lj )

]
− S
[
ρL

N−i(l) ⊗ ρR
i (L − l)

]}
.

The probability of this situation is pij = Pi(l)p
(0)
f −1

i (j )
. Thus,

the total work applied and the total heat absorbed are

Wexp =
N∑

j=0

N∑
i=0

pijWij , (15)

Qexp =
N∑

j=0

N∑
i=0

pijQij , (16)

respectively. One can prove that even if the controlled
expansion is not isothermal, the heat absorbed also satisfies
the relationship Q = T �S, where �S is the entropy change
of the total system. Since the states with different numbers of
the particles in the right compartment are orthogonal to each
other, the entropies of the total system before and after the
controlled expansion are

Smea = H ({pij }) +
N∑

j=0

N∑
i=0

pijSmea,ij , (17)

Sexp = H ({pij }) +
N∑

j=0

N∑
i=0

pijSexp,ij , (18)

respectively, where H ({pij }) = −∑ij pij ln pij . Thus, we
have the following relationship:

T1�S = T1(Sexp − Smea) =
N∑

j=0

N∑
i=0

pijT1(Sexp,ij − Smea,ij )

=
N∑

j=0

N∑
i=0

pijQij = Qexp. (19)

D. Step 4: Removing

After the controlled expansion, the partition will be re-
moved slowly while the working substance is in contact with
the heat resource. Because the state in Eq. (14) before removing
it is not a thermal equilibrium state (it is because the controlled
expansion is not an isothermal process; see the last subsection),
one should carefully deal with this step. Once lifted a little,
the partition is no longer “impenetrable,” and the particles can
fly between the two sides of the chamber freely to reach an
equilibrium state. Thus the removing process consists of two
substeps (see Fig. 3). After the first substep is finished, the

FIG. 3. (Color online) The removing process. (a) Before the
removing, the state of the working substance may not be an
equilibrium state because of the “impenetrability” of the partition
(see Sec. III C). (b) When the partition is lifted a little, it is no longer
impenetrable, and the particles can fly between the two sides of the
chamber freely to reach the equilibrium state. (c) The partition keeps
being lifted and finally can be removed isothermally.
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partition has been lifted to create a small slit with width dp

through which the particles can fly from one side to the other.
However small the width dp of the slit is, the working substance
can reach its equilibrium state. Thus, we can let the width of
the slit tend to zero, i.e., dp → 0, which makes this substep
a thermalization process of the working substance while the
partition remains still. Thereafter the state of the system after
the first substep becomes

ρ
′
rev =

N∑
j=0

p
(1)
j |j 〉〈j | ⊗

N∑
i=0

Pi(lj )ρL
N−i(lj ) ⊗ ρR

i (L − lj ),

(20)

where p
(1)
j =∑N

i=0 Pi(l)pf −1
i (j ). During this process, there is

no work applied (since dp → 0), and the heat absorbed is
exactly the difference between the inner energies of the total
system before and after the first substep:

Q′
rev =

N∑
j=0

N∑
i=0

[
p

(1)
j Pi(lj ) − Pi(l)p

(0)
f −1

i (j )

]
× {U[ρL

N−i(lj )
]+ U

[
ρR

i (L − lj )
]}

. (21)

After the thermalization, the working substance is in a thermal
equilibrium state, which makes the rest substep, the second
substep, an isothermal process. After removing it, the working
substance returns to its initial state, and the correlation between
the working substance and the demon no longer exists. During
the second substep, the work applied and the heat absorbed are

Wrev = T1

⎧⎨
⎩− ln ZN (L) +

N∑
j=0

p
(1)
j

× ln

⎡
⎣ N∑

i=0

ZN−i(lj )Zi(L − lj )

⎤
⎦
⎫⎬
⎭ , (22)

Qrev = T1

⎧⎨
⎩S(ρs0) −

N∑
j=0

p
(1)
j S[ρs,ins(lj )]

⎫⎬
⎭ , (23)

respectively, and the state of the total system after the removing
process is

ρrev =
N∑

j=0

p
(1)
j |j 〉〈j | ⊗ ρs0. (24)

One can see that the state of the demon does not return to
its initial state, which does not make the above four steps
a thermodynamic cycle. Thus, an addition step, erasure, is
needed.

E. Step 5: Erasure

In Eq. (24) the state of the demon after the removing process
is

ρd1 =
N∑

j=0

p
(1)
j |j 〉〈j |, (25)

which is different from the initial state of the demon. As part
of the engine, the demon should be reinitialized to complete

the cycle. Because the entropy of ρd1 is different from the
entropy of ρd0, such a reinitialization process, or erasure
process, cannot be realized by a unitary evolution and must
be a logical irreversibility process accompanied by dissipative
effects [5]. A natural way to complete the reinitialization
process is to make use of a thermalization process. It can
be shown that the heat bath used in the thermalization process
is a heat sink instead of a heat resource. Because the entropy
of ρd1 is larger than the entropy of ρd0, the heat must be
transferred from the demon to the heat bath. It seems that
after a series of complex tasks, the demon needs to be cooled
down. According to thermodynamics, the best reinitialization
process is a reversible one, which does not cost additional
dissipative work. Before going into the general discussion, we
first consider a three-level demon as an example to find how
to reinitialize or erase the demon reversibly.

The three-level demon considered is shown in Fig. 4, where
the three states are |0〉, |1〉, and |2〉 respectively. The energy
of the state |0〉 is set to be zero, and the energy of the
state |i〉 is �i for i = 1,2. For a demon in its initial state,
the populations of the three levels are p

(0)
0 , p

(0)
1 , and p

(0)
2 ,

respectively [see Fig. 4(d)]. To be more concrete, we assume
that p

(0)
0 = 0.7 while p

(0)
1 = 0.2 and p

(0)
2 = 0.1. Suppose that

the populations become p
(1)
0 = 0.3, p(1)

1 = 0.5, and p
(1)
2 = 0.2,

respectively, after the removing process [see Fig. 4(a)]. In order
to reinitialize it by using a reversible scheme by means of a
heat bath with T2 = 1, we adjust the demon’s energy-level
spacings adiabatically [see Figs. 4(a) and 4(b)]. After being
adjusted, the level spacings are changed from �i (i = 1,2) to
�′

i [see Fig. 4(b)]. During this process, the population of each
state remains unchanged. Thus, the new level spacings satisfy
the following relationship to ensure that the effective temper-
ature of the demon is T2, i.e.,

p
(1)
i

p
(1)
0

= exp

(
− �′

i

T2

)
, (26)

for i = 1,2, which implies �′
1 = −0.5108 and �′

2 = 0.4055.
Next, the demon is kept in contact with the heat bath at
temperature T2 without any undesired irreversible heat transfer,
and we adjust the energies of its levels isothermally [see
Figs. 4(b) and 4(c)]. In this process, the population of each level
changes as the level spacings change, and the final populations
are adjusted to be p

(0)
0 , p

(0)
1 , and p

(0)
2 , respectively, which are

the initial populations of the demon. Therefore the new level
spacings �′′

i (i = 1,2) satisfy the relationship

p
(0)
i

p
(0)
0

= exp

(
−�′′

i

T2

)
, (27)

which implies �′′
1 = 1.2528 and �′′

2 = 1.9459 [see Fig. 4(c)].
After that, the population of each state has returned to its
initial value while the level spacings do not. Thus we need
another adiabatical adjusting process as in the first step to
reinitialize the level spacings [see Figs. 4(c) and 4(d)]. These
three substeps complete the reinitialization process and are
all reversible, which makes the total reinitialization process
reversible.
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FIG. 4. (Color online) Erasing the memory of a three-energy-
level demon reversibly. Suppose that the populations of the three
levels after the removing process the partition are p

(1)
0 = 0.3, p

(1)
1 =

0.5, and p
(1)
2 = 0.2 as in (a) and the initial state’s populations of the

three levels are p
(0)
0 = 0.7, p(0)

1 = 0.2, and p
(0)
2 = 0.1 as in (d). In step

1 (a),(b), the demon is isolated from the heat bath, and the energy-level
spacings are adjusted from �i to �′

i for i = 1,2. During this process,
the populations of the levels remain constant. The new level spacings
are chosen so that the demon has an effective temperature T2 = 1 after
the adjusting, which implies �′

1 = −0.5108 and �′
2 = 0.4055. In

(b) the minus sign in front of �′
1 is due to the negative value of

�′
1. In step 2 (b),(c), the demon is in contact with a real heat bath

at temperature T2, and the energies of the levels are adjusted. In
this step the populations of the levels change while its energy
spacings change. The goal of this step is to let the populations
of the levels return to be p

(0)
0 , p

(0)
1 , and p

(0)
2 . Thus the new level

spacings are �′′
1 = 1.2528 and �′′

2 = 1.9459. In step 3 (c),(d), the
demon is isolated from the heat bath again, and its level spacings are
adjusted to return to its initial values. The isolation guarantees that
the populations of the levels are not changed. Thus the state of the
demon has returned to its initial state.

The above example inspires us to construct the reversible
reinitialization scheme in a more general case. In the following
discussion, a detailed scheme of the reinitialization process is
presented. In the first substep, we adjust the energy level of
the state |j 〉 for j �= 0 adiabatically while the energy of |0〉
is kept fixed. The corresponding new state is denoted as |j ′〉.
During this substep, the demon is isolated from the heat sink.
The target is to let the demon’s effective temperature be T2,
which is the temperature of the heat sink. Thus, the new level
spacing �′

j satisfies

exp(−β2�
′
j ) =

∑N
i=0 Pi(l)pf −1

i (j )∑N
i=0 Pi(l)pf −1

i (0)

, (28)

and the demon after the first substep is in the state

ρd,era1 =
N∑

j=0

[
N∑

i=0

Pi(l)pf −1
i (j )

]
|j ′〉〈j ′|. (29)

It should be noticed that Eq. (28) always has a so-
lution except for some extreme conditions, for example,∑N

i=0 Pi(l)pf −1
i (j ) = 0 or T2 = 0. If these extreme conditions

happen, we will use some tricks to deal with it. In the case of
T2 = 0, we will introduce a small positive quantity ε and let
T ′

2 be T2 + ε. Next we will use T ′
2 instead of T2 to calculate the

parameters of the scheme such as �′
i and �′′

i . Such a scheme
is not reversible. However, if ε tends to zero, the scheme will
tend to behave as a reversible scheme. In the following, we
assume that Eq. (28) does have a solution. In this substep,
there is no heat transfer, and the work applied is

Wini,1 =
N∑

j=1

[
N∑

i=0

Pi(l)pf −1
i (j )

]
(�′

j − �j ). (30)

In the second substep, demon is in contact with the heat
sink and the j th level’s energy is adjusted from �′

j to �′′
j

isothermally, where �′′
j satisfies

pi = e−β2�
′′
i∑

i e
−β2�

′′
i

, (31)

and β2 is the inverse temperature of the heat sink. Thus, the
state of the demon after this substep is

ρd,era2 =
N∑

j=0

pj |j ′′〉〈j ′′|, (32)

where |j ′′〉 represents the state corresponding to |j ′〉 after the
adjusting. The work applied and the heat transferred during
this process are

Wini,2 = − 1

β2

N∑
j=1

[ln(1 + e−β2�
′
j ) − ln(1 + e−β2�

′′
j )], (33)

Qini = T2

(
H ({pi}) − H

{[
N∑

i=0

Pi(l)pf −1
i (j )

]})
, (34)

respectively. Here H ({pi}) = −∑i pi ln pi represents the
Shannon entropy of the probability distribution {pi}.

In the last substep, the demon is isolated from the heat sink
again, and the energies of all of its levels are adjusted to its
initial values. Thus the final state of the demon is

∑
j pj |j 〉〈j |,

which is indeed its initial state. During this substep, no heat
transfers, and the work applied is

Wini,3 =
N∑

j=1

pj (�j − �′′
j ). (35)

These three substeps together make up the reinitialization
scheme. Such a scheme involves adjusting the energies of
the demon’s levels, which is not easily realized. In a concrete
experiment, if the quantum system that functions as the MD has
unchangeable energy levels, we will only use an irreversible
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scheme as in Refs. [7,8]. As we know in thermodynamics, such
an irreversible reinitialization scheme reduces the efficiency
of the heat engine because of the dissipative effects. Thus,
when it comes to the MD paradox, one needs a reversible
reinitialization scheme without dissipative effects to get a good
physical picture.

IV. EFFICIENCY OF THE SZILARD ENGINE

Combining the results obtained in the above section, one
finally gets the total heat transferred and the work extracted in
the thermodynamic cycle:

(1) The heat absorbed from the heat resource is

Q1 = Qins + Qexp + Q′
rev + Qrev

= T1

⎡
⎣H ({Pi(l)}) +

N∑
j=0

N∑
i=0

Pi(l)pf −1
i (j ) ln Pi(lj )

⎤
⎦ .

(36)

(2) The heat released to the heat sink is

Q2 = −Qini = T2

(
H

[{
N∑

i=0

Pi(l)pf −1
i (j )

}]
− H ({pi})

)
.

(37)

(3) The work extracted is

W = −Wins − Wmea − Wexp − Wrev

−Wini,1 − Wini,2 − Wini,3, (38)

which can be checked to satisfy the first law of thermodynam-
ics, i.e., W = Q1 − Q2.

First, it is emphasized that the result is general without
referring to the statistical properties of the working substance,
since Pi(l) has contained all the information of the distribution.
Thus, Eqs. (36)–(38) are correct both for the Bose system and
the Fermi system. Second, one can optimize the expansion
position lj to maximize the efficiency of SHE. Consider a two-
particle SHE as an example, in which the demon is three-level.
The function fi(j ) that we choose is fi(j ) ≡ i + j (mod 3).
Thus the heat absorbed from the heat resource is

Q1 = T1H ({Pi(l)}) + P0(l)p0 ln P0(l0) + P1(l)p2 ln P1(l0) + P2(l)p1 ln P2(l0) + P0(l)p1 ln P0(l1) + P1(l)p0 ln P1(l1)

+P2(l)p2 ln P2(l1) + P0(l)p2 ln P0(l2) + P1(l)p1 ln P1(l2) + P2(l)p0 ln P2(l2). (39)

Thereafter, the optimized expansion position li should
satisfy

∂Q1

∂l0
= ∂Q1

∂l1
= ∂Q1

∂l2
= 0. (40)

Working out the above equation, one will get the optimized
expansion positions l0max, l1max, and l2max.

Third, an upper limit of the heat absorbed from the heat
resource Q1 in Eq. (36) is estimated. Use the method presented
in the Appendix B, one gets

Q1 � T1

⎡
⎣H ({Pi(l)}) +

N∑
i=0

N∑
j=0

Pi(l)pf −1
i (j ) ln

Pi(l)pf −1
i (j )∑N

i=0 Pi(l)pf −1
i (j )

⎤
⎦ = T1

(
H

[{
N∑

i=0

Pi(l)pf −1
i (j )

}]
− H ({pi})

)
. (41)

Therefore the efficiency of the SHE has the upper limit:

η = 1 − Q2

Q1
� 1 − T2

T1
. (42)

Thus, it is clear that the efficiency of the SHE cannot exceed
the Carnot cycle’s efficiency when the erasure process or
reinitialization process is considered, which saves the SLoT.
It can be seen more clearly when N = 1, which represents a
single-particle SHE. For a single-particle SHE, there is only
one realization of fi(j ), and the corresponding measurement
process is indeed a controlled-NOT operation as in Refs. [7,8],
i.e., f0(j ) = j for j = 0,1 while f1(1) = 0 and f1(0) = 1. The
formulas Eqs. (36) and (37) are reduced to

Q1 = T1[H (P0(l),P1(l)) + P0(l)p0 ln P0(l0)

+P1(l)p1 ln P1(l0) + P0(l)p1 ln P0(l1)

+P1(l)p0 ln P1(l1)] (36′)

and

Q2 = T2[H (P0(l)p1 + P1(l)p0,P0(l)p0

+P1(l)p1) − H (p0,p1)], (37′)

respectively. It is easy to maximize Q1 to find that l0max and
l1max satisfy

P0(l0max) = P0(l)p0

P0(l)p0 + P1(l)p1
, (43)

P0(l1max) = P0(l)p1

P0(l)p1 + P1(l)p0
, (44)

and the maximum of Q1 is

Q1max = T1[H (P0(l)p0 + P1(l)p1,P0(l)p1 + P1(l)p0)

−H (p0,p1)]. (45)
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FIG. 5. (Color online) Work extracted W as the function of
insertion position l/L and the working temperature T1. (a) Bose case
with N = 4. (b) Fermi case with N = 4.

Thus, it is found that Q1max is always positive whatever the
insertion position is. Combining Eqs. (37) and (45), one gets
the best efficiency as

ηmax = 1 − Q2

Q1max
(46)

= 1 − T2

T1
. (47)

Then it is concluded that for a single-particle SHE, one can
always choose a good expansion position to let the SHE reach
the Carnot cycle’s efficiency even if the demon contains some
errors. Recall that in step 4 of the thermodynamic cycle, the
removing process, one needs to thermalization the working
substance first. However, for a single-particle SHE, it is found
that the expansion position can always be chosen that the
thermalization process is not needed. Thus, a single-particle
SHE can always be a reversible heat engine with two heat
baths, and its efficiency reaches the Carnot cycle’s efficiency.
On the other hand, for a multiparticle SHE, the thermalization
process is always needed in the removing process, which
makes the heat engine irreversible. Thus, a multiparticle SHE’s
efficiency cannot always reach Carnot cycle’s efficiency.

At the end of this section, a concrete example is presented
to show the difference between the Bose system and the Fermi
system. In this example, a four-particle system is considered
as the working substance. The demon we chosen is a five-level
quantum system with some errors. Its initial state is

ρd0 = 0.7000|0〉〈0| + 0.2100|1〉〈1| + 0.0630|2〉〈2|
+ 0.0189|3〉〈3| + 0.0081|4〉〈4|. (48)

The temperature of the heat sink is fixed that T2 = 1. Denote
the higher temperature and the insertion position as T1 and
l, respectively. Then the work extracted by the heat engine
during a thermodynamic cycle can be numerically calculated
for both the Bose case and the Fermi case. The results are
shown in Fig. 5. As one can see, the patterns in Fig. 5 for
different distributions are quite different. In fact, in the next
section, it is found that the difference between the Bose case
and the Fermi case is most significant in a low-temperature
regime.

V. LOW-TEMPERATURE BEHAVIOR WITH DIFFERENT
QUANTUM STATISTICS

In this section the behavior of a multiparticle SHE when
the working temperature T1 is very low is studied. In Sec. IV a

FIG. 6. (Color online) Asymptotic erasure scheme for T2 = 0.

necessary condition for the heat engine to extract positive work
is found to be T1 > T2. Thus, if T1 considered is very small,
the temperature of the heat sink will be T2 = 0. The demon
in this case is free of errors because it is natural to get a pure
initial state if the demon is reinitialized by a zero-temperature
heat sink. The motivation to involve the demon without error
is to see the difference between the Bose system and Fermi
system more clearly without the effect of the demon’s errors.
As mentioned in step 5 of Sec. III, it is less likely for one
to reinitialize such a demon by using a reversible scheme;
however, one can use an asymptotic scheme to reinitialize the
demon.

Now we first describe the asymptotic scheme in detail.
Similar to the reinitialization scheme in Sec. III, the asymptotic
scheme also contains three substeps. The three substeps are
illustrated in Fig. 6. In the first substep, the energies of the
levels |i〉 for i �= 0 are adjusted from �i to a very small
value �( �=0) adiabatically. During this substep, there is no heat
transferred. In the second substep, the demon is in contact with
the heat sink at temperature T2 = 0 until it is in equilibrium
with the heat sink. During this substep, there is no work
applied, and the final state of the demon is a pure state for
its temperature is zero when � �= 0. In the third substep, the
energies of the demon’s levels are readjusted adiabatically
to its initial value. Thus, these three substeps complete the
reinitialization process of the demon. If we use this scheme,
Q1 in Eq. (36) will not change, and Q2 in Eq. (37) will be
revised to be the heat transferred in the second substep. Due
to the irreversibility of the second substep, this scheme is
not reversible. Nevertheless, if one lets � tend to 0, Q2 will
tend to 0, which makes the scheme reversible. Thus, Eqs. (36)
and (37) will still hold if one uses this asymptotic scheme.
In the following, this asymptotic scheme is used in which the
relationships Q2 = 0 and W = Q1 hold.
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Since the initial state of the demon is a pure state, which
corresponds to the conditions T2 = 0 and pj = δj0, the work
extracted can be given by the relationship W = Q1 and (36)
as

W = T1

[
H ({Pi(l)}) +

N∑
i=0

Pi(l) ln Pi(li)

]

= T1

N∑
i=0

Pi(l) ln

[
Pi(li)

Pi(l)

]
. (49)

This is just the same as that in Ref. [6], and it can be calculated
by a different way from in Ref. [12]. Then we will use Eq. (49)
to study the Bose system and the Fermi system separately.

First, we study the behavior of W/T1 when T1 → 0.
According to Eq. (49), one gets

W

T1
=

N∑
i=0

Pi(l) ln

[
Pi(li)

Pi(l)

]
. (50)

Here the expansion position li have been optimized as in
Sec. IV. Thus Pi(li) is always no less than Pi(l). For a de-
terministic distribution, {Pi(l)|Pi(l) = δij }, W/T1 in Eq. (50)
becomes ln Pj (lj ). Due to the optimization of lj , we have 1 �
Pj (lj ) � Pj (l) = 1 or Pj (lj ) = 1. Thus, it is concluded that
W/T1 is always 0 when {Pi(l)} is a deterministic distribution.
In other words, the necessary condition for a nonzero W/T1

is that the informational entropy H ({Pi(l)}) of the distribution
{Pi(l)} is nonzero.

Using the joint entropy theorem [14], one gets

Ss,ins = H [{Pi(l)}] +
∑

i

Pi(l)Si, (51)

where Ss,ins is the entropy of the working substance after the
insertion and Si represents the working substance’s entropy
in the condition that the number of the particles in the
right compartment is i. Due to the non-negative property
of entropy, one finds Ss,ins � H ({Pi(l)}). Therefore if the
entropy of the working substance is zero, one will find that
H ({Pi(l)}) = 0 and W/T1 = 0. For a system with its ground
state nondegenerate, its entropy always tends to zero when the
temperature tends to zero, which is referred to as the third
law of thermodynamics. Thus, it is found that, if the insertion
position l makes the ground state of the working substance
nondegenerate, one will always have

lim
T1→0

W

T1
= 0. (52)

However, if the insertion position l makes the ground state
of the working substance degenerate, there will be a chance
that W/T1 tends to nonzero. Such a position l is called a
degenerate point. Thus, the relationship between the low-
temperature behavior of W/T1 and the degenerate point has
been established. A similar result is found in Ref. [13].

Then we look for the degenerate points for both the ideal
Bose system and the ideal Fermi system. For the ideal Bose
system, all particles condense in the ground state of the system
when the temperature is zero. Thus the only chance for the
ground state to be degenerate is that the energy of the left
compartment’s single-particle ground state is the same as that

(a) (b)

FIG. 7. (Color online) Degenerate ground states for a Fermi gas.
When the Fermi surface contains more than one single-particle states,
there is a chance that the ground state of the Fermi gas is degenerate.
For example, the states in (a) and (b) are two ground states of the
system.

of the right compartment, which happens when the widths of
the two compartments are equal to each other. Thereafter it is
found that there is only one degenerate point for the ideal Bose
system, i.e., l = L/2.

For a Fermi system, the particles satisfy Pauli’s exclusion
principle. When the temperature is zero, all the energy
levels under the Fermi surface are occupied. Thus if the ith
single-particle energy level of the left compartment and the
j th single-particle energy level of the left compartment are
both on the Fermi surface, the ground state of the total gas
may be degenerate; see Fig. 7. The index i and j should
satisfy the relationship that i + j − 1 equals the number of
the particles N . Thus there are N situations corresponding
to i = 1,2, . . . ,N . Thereafter it is found that there are N

degenerate points for an ideal Fermi system with N particles.
As the two compartments are modeled as two one-dimensional
infinite square wells with widths l and L − l, respectively, one
can work out their spectrum as in Eq. (A1). Thus the conditions
of the degenerate points can be written as

(h̄iπ )2

2ml2
= [h̄(N + 1 − i)π ]2

2m(L − l)2
. (53)
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FIG. 8. (Color online) W/T1 as the function of the insertion
position l/L and the working temperature T1. (a) A Bose system
with N = 2. (b) A Bose system with N = 3. (c) A Bose system with
N = 4. (d) A Fermi system with N = 2. (e) A Fermi system with
N = 3. (f) A Fermi system with N = 4.
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Therefore the positions of the Fermi system’s degenerate
points are

l

L
= i

N + 1
for i = 1,2, . . . ,N. (54)

So far we have revealed the qualitative difference of the work
extracted by the engine between the Bose-type and the Fermi-
type working substance at low temperature. That difference
in the quantum statistical behavior between the Bose and the
Fermi working substance will disappear as the temperature
T1 increase. The numerical simulation in Fig. 8 quantitatively
illustrates the statistical behavior at finite temperature. When
T1 tends to zero, the numerical calculations confirm the above
results. A similar result is also found in Ref. [13].

VI. CONCLUSION

In summary, the multiparticle SHE has been studied in a
complete quantum framework, where the reinitialization pro-
cess of the MD is discussed in detail. The errors are introduced
in the demon so that one can use a finite-temperature heat
sink to cool the demon while the traditional demon must be
cooled by a zero-temperature heat sink. For a single-particle
SHE, there is a scheme that the whole cycle of the SHE can be
reversible. We illustrated that the efficiency of such a scheme is
indeed the efficiency of Carnot cycle, and other schemes have
lower efficiency. And it is proved that SHE cannot exceed the
limit of the SLoT.

On the other hand, the properties of the SHE with Bose or
Fermi particles are studied. In the high-temperature regime,
these two distributions make no difference. Both of them
reduce to the result of Maxwell distribution. In contrast, the
Bose system and the Fermi system differ from each other in
the low-temperature regime. The origin of the difference is the
difference of the degenerate points of these two distributions.
The SHE whose insertion position is a degenerate point
extracts more work in a cycle. If the temperature is absolute
zero, the ratio of the work extracted to the working temperature
will show some discontinuous properties.
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APPENDIX A: MULTIPARTICLE PARTITION FUNCTION

In this Appendix the explicit expressions of the multi-
particle partition functions for the ideal Bose gas and the
ideal Fermi gas are presented. Let Zn(l,β) be the canonical
partition function for n particles, where β represents the
inverse temperature of the system and l represents some
parameters of the system; e.g., in our paper l means the width
of the infinite square well. To present the explicit expression of
Zn(l,β), the explicit expression of the single-particle partition
function Z1(l,β) is given first. Then the relationship between
the multiparticle partition function and the single-particle
partition function is shown.

The single-particle partition function does not depend on
which distribution the particle satisfies. Once one knows the

single-particle spectrum of the system, one can write its canon-
ical partition function. For example, the single-particle spec-
trum in a one-dimensional infinite square well with width l is

Ei(l) = (h̄iπ )2

2Ml2
, i = 1,2,3, . . . , (A1)

where M is the mass of the particle and i is the index of the
energy levels. Then the single-particle partition function of
this system is

Z1(l,β) =
∞∑
i=1

e−βEi (l). (A2)

When it comes to a multiparticle partition function, we first
take the two-particle system as an example. In this condition,
one gets

Z
bose(fermi)
2 = 1

2

⎡
⎣( ∞∑

m=1

e−βEm

)2

±
∞∑

m=1

e−2βEm

⎤
⎦ , (A3)

where the indices β and l have been omitted for simplicity.
Here the summation,

∑∞
m=1 exp(−2βEm), can be viewed as a

single-particle partition function with spectrum {2Em}. Thus,
it is found that Z

bose(fermi)
2 can be decomposed into some

single-particle partition functions. In general, all the partition
functions of the ideal gas, Zbose(fermi)

n , can be decomposed into
some single-particle partition functions in this way. The next
task is to work out the coefficients in the decomposition.

In the following discussion, the system considered has a
discrete spectrum, and the index of the energy levels is denoted
by i = 1,2,3, . . . . Let ni be the number of the particles in the
ith level. To be convenient, we denote exp(−βEi) as xi for
i = 1,2, . . . , and the multiparticle partition function becomes

Zn =
∑
{ni }

∞∏
i=1

x
ni

i . (A4)

Here the summation condition is that
∑

i ni = n and ni =
0,1,2, . . . for the Bose case or ni = 0,1 for the Fermi case. It
is not difficult to show that

H (t) �
∞∑

n=0

Zbose
n tn =

∏
i

1

1 − xit
, (A5)

E(t) �
∞∑

n=0

Zfermi
n tn =

∏
i

(1 + xit). (A6)

In fact, if t = exp(−βμ), one will find that H (t) and E(t) are
nothing but the grand canonical partition functions for an ideal
Bose case and ideal Fermi case, respectively. In mathematics,
H (t) and E(t) are the generating functions for Zbose

n and Zfermi
n ,

respectively, and they have the following simple relationship:

H (t) = 1

E(−t)
. (A7)
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Next, the single-particle partition function with spectrum
{jEm}, ∑∞

m=1 exp(−jβEm) =∑i x
j

i , is denoted as Pj for
j = 1,2, . . . . Its generating function is

P (t) �
∞∑

j=1

Pj t
j =

∞∑
j=1

∑
i

(xit)
j

=
∑

i

∞∑
j=1

(xit)
j =

∑
i

xi t

1 − xit
. (A8)

Thus, it is found that

P (t) = t

H (t)

dH (t)

dt
, (A9)

i.e.,

P (t)

t
= d

dt
lnH (t). (A10)

By indefinite integration, one finds that

∞∑
j=1

1

j
Pj t

j = lnH (t) + C, (A11)

where C is the constant of integration, and it is not difficult
to find that C = 0. So there is the following important
relationship:

H (t) = exp

⎛
⎝ ∞∑

j=1

1

j
Pj t

j

⎞
⎠ . (A12)

Compare the coefficient of tn in both sides of Eq. (A12), and
one can find that

Zbose
n =

∑
{iα}

1

z({iα})P ({iα}), (A13)

where {iα} = (i1,i2, . . . ,in) and the summation condition is∑
α αiα = n, which corresponds to a summation for all the

Young diagrams with n boxes. The z({iα}) is defined as

z({iα}) = i1!1i1 · i2!2i2 · · · in!nin , (A14)

and the P ({iα}) is the product of some single-particle partition
functions as

P ({iα}) = P
i1
1 · P

i2
2 · · · P in

n . (A15)

Thus we have decomposed the multiparticle partition function
into some single-particle partition functions for Bose case. For
the Fermi case, using the relationship in Eq. (A7), one finds
that

E(t) = exp

⎡
⎣ ∞∑

j=1

(−1)j+1

j
Pj t

j

⎤
⎦ . (A16)

Also, compare the coefficient of tn in both sides of Eq. (A16),
and it is found that

Zfermi
n =

∑
{iα}

(−1)
∑

α(iα−1)

z({iα}) P ({iα}), (A17)

where the summation condition is the same as in the Bose case.

APPENDIX B: THE UPPER LIMIT OF Q1

In this Appendix the upper limit of Q1 in Eq. (36) is
estimated. To this end, a two-particle SHE is used as an
example firstly, in which the demon considered is three-level.
The function fi(j ) is chosen as fi(j ) ≡ i + j (mod 3). Thus
the heat absorbed from the heat resource is the one shown in
Eq. (39). To estimate the upper limit of Q1, Eq. (39) should be
rewritten as

Q1 = T1H ({Pi(l)}) + P0(l)p0 ln P0,0 + P1(l)p2 ln P1,0

+P2(l)p1 ln P2,0 + P0(l)p1 ln P0,1 + P1(l)p0 ln P1,1

+P2(l)p2 ln P2,1 + P0(l)p2 ln P0,2 + P1(l)p1 ln P1,2

+P2(l)p0 ln P2,2, (B1)

where Pi,j satisfy the constraints Pi,j = Pi(lj ) for all i and
j . Thus the original optimization problem becomes to be
an optimization problem with constraints. This optimization
problem with constraints has a maximum solution Q1max since
Q1 in Eq. (B1) has an upper bound T1H ({Pi(l)}) and the
domain of {Pi,j } is closed. Substitute these constraints by
the weaker constraints

∑
i Pi,j = 1 for all j ; then we get

another optimization problem with constraints. After solving
this problem we will get another maximum Q′

1max. Because the
constraints in the latter problem are weaker than the constraints
in the former one, we have Q1max � Q′

1max. Thus Q′
1max is a

upper limit of Q1. The calculation of Q′
1max can be performed

in terms of Lagrange multipliers. Namely, one needs only to
solve an optimization problem without constraint in which the
target function is

Q1({Pi,j }) + λ0

∑
i

Pi,1 + λ1

∑
i

Pi,0 + λ2

∑
i

Pi,2, (B2)

where λ0, λ1, and λ2 are three Lagrange multipliers. Solving
this constraint-free optimization problem, one finds that the
maximum solution Q′

1max is reached when Pi,j satisfies the
following relationships:

P0,0 : P1,0 : P2,0 = P0(l)p0 : P1(l)p2 : P2(l)p1,

P0,1 : P1,1 : P2,1 = P0(l)p1 : P1(l)p0 : P2(l)p2, (B3)

P0,2 : P1,2 : P2,2 = P0(l)p2 : P1(l)p1 : P2(l)p0.

For a general situation, this trick can also be used to find an
upper limit of the heat absorbed from the heat resource Q1. To
this end, one needs only to maximize Q1 under the constraints∑

i Pi(lj ) = 1 for all j . Thus the upper limit of Q1 is given as

Q1 � T1

⎡
⎣H ({Pi(l)}) +

N∑
i=0

N∑
j=0

Pi(l)pf −1
i (j ) ln

Pi(l)pf −1
i (j )∑N

i=0 Pi(l)pf −1
i (j )

⎤
⎦ = T1

(
H

[{
N∑

i=0

Pi(l)pf −1
i (j )

}]
− H ({pi})

)
. (B4)
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