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In this paper, we study many geometrical properties of contour loops to characterize the morphology of
synthetic multifractal rough surfaces, which are generated by multiplicative hierarchical cascading processes. To
this end, two different classes of multifractal rough surfaces are numerically simulated. As the first group, singular
measure multifractal rough surfaces are generated by using the p model. The smoothened multifractal rough
surface then is simulated by convolving the first group with a so-called Hurst exponent, H ∗. The generalized
multifractal dimension of isoheight lines (contours), D(q), correlation exponent of contours, xl , cumulative
distributions of areas, ξ , and perimeters, η, are calculated for both synthetic multifractal rough surfaces. Our
results show that for both mentioned classes, hyperscaling relations for contour loops are the same as that of
monofractal systems. In contrast to singular measure multifractal rough surfaces, H ∗ plays a leading role in
smoothened multifractal rough surfaces. All computed geometrical exponents for the first class depend not only
on its Hurst exponent but also on the set of p values. But in spite of multifractal nature of smoothened surfaces
(second class), the corresponding geometrical exponents are controlled by H ∗, the same as what happens for
monofractal rough surfaces.
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I. INTRODUCTION

Random phenomena in nature generate ubiquitously fractal
structures that show self-similar or self-affine properties [1–4].
When the fractal structure of a system is uniform and free of
irregularities, we have a monofractal structure. A monofractal
system can be characterized by a single scaling law with one
scaling exponent in all scales. For a self-affine surface and
interface, this exponent is called roughness exponent or Hurst
exponent (H ). A surface with larger H seems locally smoother
than the surface with smaller H [2,3].

In topics ranging from biology [5,6], surface sciences
[7–10], turbulence [11–13], diffusion-limited aggregation
[14], bacterial colony growth [15], climate indicators [16],
to cosmology [17], there are many surfaces and interfaces
that exhibit multifractal structures. A multifractal system can
be considered a combination of many different monofractal
subsets [2,3]. Multifractality manifests itself in systems with
different scaling properties in various regions of the system.
In addition, multifractals can be described by infinite different
numbers of scaling exponents h(q), where q can be a real
number. The appearance of infinite different numbers ensures
that the theoretical and numerical studies of multifractal
surfaces is more complicated than those of monofractal ones.
Changing one of the h(q)’s can lead to different feature
in the system. One of the important characteristics of the
multifractality is the presence of the singularity spectrum,
f (α), which associates the Husdorff dimension f (α) to the
subset of the support of the measure μ, where the Hölder
exponent is α; in other words, f (α) = dimH {x|μ(Bx(ε)) ∼
εh}, where Bx(ε) is an ε-box centered at x.

A single scaling exponent can be determined for a
monofractal structure by use of various methods [2,6,18–22].
Not only a spectrum of exponents but also different algorithms
should be computed for a multifractal feature (power spectral,
distribution method, and so on) and these may give different
results for a typical multifractal case [23]. Thus, the better
and more complete the theoretical framework, the better our
understanding, providing deeper insight into observational
multifractal rough surfaces.

Recently, isoheight contour lines have been utilized to
explore the topography of rough surfaces and they have
exhibited interesting capabilities [24–31]. The contour plot
consists of closed nonintersecting lines in the plane that
connects points of equal heights. The fractal properties of
the contour loops of the rough surfaces can be described by
just the Hurst exponent [30,31]. This result was confirmed
in different systems with quite different structures in recent
years both experimentally and numerically. Using a numerical
approach, the predicted relations were confirmed in glassy
interfaces and turbulence [32], in two-dimensional fractional
Brownian motion [26], in KPZ surfaces [25], and in discrete
scale-invariant rough surfaces [27]. The predictions were also
confirmed by using experimental data coming from the AFM
analysis of WO(3) surfaces [24].

However, although there have been many studies concern-
ing the contour lines of monofractal rough surfaces, there are
neither theoretical nor numerical inferences about the contour
lines of multifractal rough surfaces. Because of the presence
of numerous exponents in the multifractal surfaces, theoretical
study of multifractal surfaces seems to be difficult. Moreover,
in many previous methods, the exponents determined by fractal
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analysis generally provide information about the average
global properties, whereas geometrical analysis addresses
information from point to point. J. Kondev et al. pointed
out that geometrical characteristics can discriminate various
monofractal rough surfaces that have a similar power spectrum
[31,33]. Therefore, the geometrical properties may introduce
a new opportunity to characterize multifractal surfaces.

It is worth noting that because contour sets are the
intersection of a horizontal surface in a particular height
fluctuation and do not reflect the full properties of fluctuations
in various scales, it is not trivial that the geometrical prop-
erties of multifractal rough surfaces based on the isoheight
nonintersecting feature behave in a multifractal manneras
well. Therefore, we use a new approach to investigate these
processes.

In this paper, we try to investigate multifractal structures
utilizing contour loops. We study the multifractal properties of
a particular kind of multifractal surfaces. Two different types of
synthetic multifractal rough surfaces, namely singular measure
and smoothened features, are generated. Two mentioned types
have a multifractal nature. Despite the complex nature of the
model, the hyperscaling relation is satisfied for both categories.
In addition, from a contouring analysis, all geometrical
exponents for various smoothened multifractal rough surfaces
are controlled by the corresponding so-called Hurst exponent,
H ∗. This is also what happens for monofractal cases. However,
for a singular measure multifractal rough surface, geometrical
exponents depend on the set of p values that is used to generate
the underlying rough surface based on the multiplicative
cascade model.

The structure of the paper is as follows. In the next
section we will review multifractal rough surfaces. The
hierarchical model to generate the surfaces will also given
in this section. The multifractal detrended fluctuation analysis
in two dimensions that is used to characterize the multifractal
properties of rough surfaces will be explained in Sec. III. In
Sec. IV, nonlinear scaling exponents of multifractal rough
surfaces are introduced. Section V will be devoted to numerical
results for determining the scaling exponents of the contour
loops in multifractal rough surfaces. In the last section we will
summarize our findings.

II. MULTIFRACTAL ROUGH SURFACE SYNTHESIS

Recently, there has been an increasing interest in the notion
of multifractality because of its extensive applications in
different areas such as complex systems in industrial and
natural phenomena. Dozens of methods for the synthesis
of multifractal measures or multifractal rough surfaces have
been invented. One of the most common methods that
can be followed deterministically and stochastically is the
multiplicative cascading process [4,11,22,34]. Some of these
synthesis methods are known as the random β model [12], α

model [35], log-stable models, log-infinitely divisible cascade
models [36,37], and p model [11]. They were successfully
applied in the studies related to rain in one dimension, clouds
in two dimensions, and landscapes in three dimensions, as well
as many other fields [36–39].

The p-model method was proposed to mimic the kinetic
energy dissipation field in fully developed turbulence [11].

The so-called p model represents the spatial version of the
weighted curdling feature and is known as a conservative
cascade. It is based on Richardson’s picture of energy transfer
from cores to fine scales based on splitting eddies in a random
way [40]. In this model there is no divergency in corresponding
moments, in contrast to the so-called hyperbolic of the α

model [11,41].
On the other hand, many scaling exponents of this model

can be determined analytically; therefore, it is a proper
method to simulate synthetic multifractal processes ranging
from surface sciences and astronomy to high-energy physics,
such as cosmology and particle physics, e.g., QCD parton
shower cascades, and cosmic microwave background radiation
[42–44]. In the context of the p model simulating a synthetic
one-dimensional data set, consider an interval with size L.
Divide L into two parts with equal lengths. The value of the
left half corresponds to the fraction 0 � p � 1 of a typical
measure μ while the right-hand segment is associated to the
remaining fraction (1 − p). By increasing the resolution to
2−n, the multiplicative process divides the population in each
part in the same way (see the upper panel of Fig. 1).

To simulate a mock multifractal rough surface in two
dimensions, one can follow the same procedure as above.
Starting from a square, one breaks it into four subsquares
of the same sizes. The associated measures for each cell at this
step are p1μ for the upper right cell, p2μ for the upper left
cell, p3μ for the lower right cell, and p4μ for the lower left
cell. The conservation of probability at each cascade step is
p1 + p2 + p3 + p4 = 1. This partitioning and redistribution
process repeats and we obtain, after many generations, say n,
2n × 2n cells of size l/L = 2−n (see lower panel of Fig. 1).
In the stochastic approach, the fraction of measure for each
subcell at an arbitrary generation is determined by a random
variable A with a definite probability distribution function
P (A). By redistribution of measure, based on independent
realization of the random A at smaller scales, one can generate
a random singular measure over a substrate with size L × L

as

μn(r; l) = μ

n(l)∏
i=1

Ai(r), n(l) = log2

(
L

l

)
→ ∞, (1)

where r shows the coordinate of the underlying cell with size l.
In this work, we rely on the stochastic version of the cascade p

model to generate the synthetic two-dimensional multifractal
rough surface (see Figs. 2 and 3). The probability distribution
function for our approach is given by

P (A) = 1
4 [δ(A − A1) + δ(A − A2)

+ δ(A − A3) + δ(A − A4)], (2)

where

A1 = p1, A2 = p2,
(3)

A3 = p3, A4 = p4.

The so-called multifractal scaling exponent, τ (q), and the
generalized Hurst exponent, h(q), are quantities that represent
the multifractal behaviors of rough surfaces (see Sec. III for
more details). For the p-model cascade, these exponents can
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FIG. 1. Upper panel: Different steps of generating multifractal
rough surface in one dimension. Lower panel: The same steps for
multifractal rough surface in two dimensions [11].

be calculated explicitly. The scaling exponent τ (q) is defined
via a partition function as

Zq(l) = lim
l→0

n(l)∑
i=1

|P (Ai ,l)|q ∼ lτ (q). (4)

Using the value of P (A), e.g., for the binomial cascade model
P (A) = 1

2 [δ(A − p) + δ(A − (1 − p)], one finds

τ (q) = lim
l→0

ln(Zq(l))

ln(l)
= (E − 1)(q − 1) − log2[pq + (1 − p)q], (5)

where E is the dimension of the geometric support, where for
our rough surfaces is E = 2. For the generalized p model, the

FIG. 2. Left: Contour plot at some typical levels of a singular
multifractal rough surface generated by the binomial cascade multi-
fractal method with p = 0.22 (H = 0.803). The right panel indicates
the contour lines of the same surface convolved with H ∗ = 0.700.
The system size is 256 × 256.

analytic expression of the multifractal scaling exponent in two
dimensions is given by [45]

τ (q) = − log2

(
p

q

1 + p
q

2 + p
q

3 + p
q

4

)
. (6)

FIG. 3. Upper panel: A part of height fluctuations of singular
measure mentioned in Fig. 2. Lower panel: The same surface
convolved with H ∗ = 0.700.
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One can use the above theoretical expression to get the most
relevant quantities of the multifractal behavior and check the
reliability and robustness of the numerical method.

Recently, factorial moments, G moments, correlation inte-
grals, void probabilities, combinants, and wavelet correlations
have been used to examine many interesting features of
multiplicative cascade processes [46]. But there is some
ambiguity in the properties of such processes that represent
multifractal phenomena. On the other hand, sensitivity and
accuracy of results are method dependent; consequently, it
is highly advised to simultaneously use various tools in
order to ensure the reliability of given results for underlying
multifractal rough features. Moreover, to make a relation
between experimental data and simulation, generally, we
require more than one characterization [31,47].

In the next section, to investigate the multifractal properties
of simulated rough surfaces in two dimensions, we will
introduce the so-called multifractal detrended fluctuation
analysis.

III. MULTIFRACTALITY OF SYNTHESIS ROUGH
SURFACE

There are many different methods to determine the mul-
tiscaling properties of real as well as synthetic multifractal
surfaces such as spectral analysis [48], fluctuation analysis
[49], detrended fluctuation analysis (DFA) [6,50,51], wavelet
transform module maxima (WTMM) [9,10,13,52,53], and
discrete wavelets [54,55]. For real data sets and in the presence
of noise, the multifractal DFA (MF-DFA) algorithm gives very
reliable results [34,50]. Since it does not require the modulus
maxima procedure, this method is simpler than WTMM;
however, it involves a bit more effort in programming.

In this work, we rely on the two-dimensional multifractal
detrended fluctuation analysis (MF-DFA) to determine the
spectrum of the generalized Hurst exponent, h(q). We then
compare the given results with the theoretical prediction to
check the reliability of our simulation. Suppose that for a rough
surface in two dimensions the height of the fluctuations is
represented by H(r) at coordinate r = (i,j ) with resolution 	.
The MF-DFA in two dimensions has the following steps [34].

Step 1. Consider a two-dimensional array H(i,j ), where
i = 1,2, . . . ,M and j = 1,2, . . . ,N . Divide the H(i,j ) into
Ms × Ns nonoverlapping square segments of equal sizes s × s,
where Ms = [M

s
] and Ns = [N

s
]. Each square segment can be

denoted by Hν,w such that Hν,w(i,j ) = H(l1 + i,l2 + j ) for
1 � i,j � s, where l1 = (ν − 1)s and l2 = (w − 1)s.

Step 2. For each nonoverlapping segment, the cumulative
sum is calculated by

Yν,w(i,j ) =
i∑

k1=1

j∑
k2=1

Hν,w(k1,k2), (7)

where 1 � i,j � s.
Step 3. Calculating the local trend for each segments by a

least-squares of the profile, linear, quadratic or higher-order
polynomials can be used in the fitting procedure as follows:

Bν,w(i,j ) = ai + bj + c, (8)

Bν,w(i,j ) = ai2 + bj 2 + c. (9)

Then determine the variance for each segment as follows:

Dν,w(i,j ) = Yν,w(i,j ) − Bν,w(i,j ), (10)

F 2
ν,w(s) = 1

s2

s∑
i=1

s∑
j=1

D2
ν,w(i,j ). (11)

A comparison of the results for different orders of the DFA
allows one to estimate the type of the polynomial trends in the
surface data.

Step 4. Averaging over all segments to obtain the qth-order
fluctuation function,

Fq(s) =
(

1

Ms × Ns

Ms∑
ν=1

Ns∑
w=1

[
F 2

ν,w(s)
]q/2

)1/q

, (12)

where Fq(s) depends on scale s for different values of q. It is
easy to see that Fq(s) increases with increasing s. Notice that
Fq(s) depends on the order q. In principle, q can take any real
value except zero. For q = 0, Eq. (12) becomes

F0(s) = exp

[
1

2Ms × Ns

Ms∑
ν=1

Ns∑
w=1

ln F 2
ν,w(s)

]
. (13)

For q = 2 the standard DFA in two dimensions will be
retrieved.

Step 5. Finally, investigate the scaling behavior of the
fluctuation functions by analyzing log-log plots of Fq (s) versus
s for each value of q,

F (s) ∼ sh(q). (14)

The Hurst exponent is given by

H ≡ h(q = 2) − 1. (15)

Using standard multifractal formalism [50] we have

τ (q) = qh(q) − E. (16)

It has been shown that for very large scales, N/4 < s,
Fq(s) becomes statistically unreliable because the number of
segments Ns for the averaging procedure in step 4 becomes
very small [34]. Thus, scales N/4 < s should be excluded
from the fitting procedure of determining h(q). On the other
hand, one should be careful also about systematic deviations
from the scaling behavior in Eq. (12) that can occur for the
small scales s < 10.

The singularity spectrum, f (α), of a multifractal rough
surface is given by the Legendre transformation of τ (q) as

f (α) = qα − τ (q), (17)

where α = ∂τ (q)
∂q

. It is well known that for a multifractal
surface, various parts of the feature are characterized by
different values of α, causing a set of Hölder exponents instead
of a single α. The interval of Hölder spectrum, α ∈ [αmin,αmax],
can be determined by [56,57]

αmin = lim
q→+∞

∂τ (q)

∂q
, (18)

αmax = lim
q→−∞

∂τ (q)

∂q
. (19)
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To evaluate the statistical errors due to numerical calcula-
tions we introduce posterior probability distribution function
in terms of likelihood analysis. To this end, suppose the
measurements and model parameters are assigned by {X} and
{�}, respectively. The conditional probability of the model
parameters for a given observation are as follows (posterior):

P (�|X) = L(X|�)P (�)∫
L(X|�)P (�)d�

. (20)

here L(X|�) and P (�) are called Likelihood and prior
distribution, respectively. The prior distribution containing all
initial constraints regarding model parameters. Based on the
central limit theorem, the likelihood function can be given by
a product of Gaussian functions as follows:

lnL(X|�) ∼ −χ2(�)

2
, (21)

where, e.g., for determining h(q) we have {X} : {Fq(s)} as
the observations and {�} : {h(q)} as the free parameter to be
determined. Also,

χ2(h(q)) =
∑

s

[Fobs(s) − Fthe(s; h(q))]2

σ 2
obs(s)

, (22)

where Fobs(s) is computed by Eqs. (12) and (13). Fthe(s; h(q))
is the fluctuation function given by Eq. (14). The observational
error is σobs(s). By using the Fisher matrix, one can evaluate the
value of the error bar at a 1σ confidence interval of h(q) [58]

F(q) ≡
〈
∂2 lnL
∂h(q)2

〉
(23)

and

σ (q) � 1√
F(q)

. (24)

Finally, we report the best value of the scaling exponent
at a 1σ confidence interval according to h(q) ± σ (q). Using
the method mentioned in the previous section, we simulated
multifractal rough surfaces and checked their multifractality
nature by using the spectrum of h(q). Figure 4 shows the
generalized Hurst exponent and τ (q) as a function of q

for various values of measure sets reported in Table I. The
subindex (i ∈ [1,12]) of each Hi (Hurst exponent) throughout
this paper corresponds to a given set of p values reported
in Table I. In addition, the singularity spectrum of a typical
simulated multifractal rough surface has been shown in the
lower panel of Fig. 4. The q dependence of h(q) as well
as the extended range of singularity spectrum demonstrate
the multifractality nature of synthesis rough surfaces. The
theoretical predictions of τ (q), h(q), and f (α) shown by the
solid lines in the corresponding plots are given by Eqs. (6),
(16), and (17), respectively. There is a good consistency
between the theoretical predictions and the computational
values.

Before going further, it is worth mentioning that in the
cascade p model for various sets of p values that have the
same h(q = 2), in principle, there exist different h(q) spectrua.
To show this point, we fixed the value of τ (q = 2) in Eq. (6)
and by having, e.g., p1 and p2, one can compute the rest of
the p values according to the normalization of the p’s. In
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FIG. 4. (Color online) Diagrams of h(q) (upper panel) and τ (q)
(middle panel) for different surfaces. We have distinguished different
surfaces with their Hi = hi(q = 2) − 1 from Table I. The subindex
(i ∈ [1,12]) of each Hi (Hurst exponent) throughout this paper
corresponds to a given set of p values reported in Table I. The
lower panel corresponds to the singularity spectrum of a typical
multifractal rough surface with H4 = 0.608. In all diagrams, symbols
and solid lines correspond to results given by numerical calculation
and theoretical formulas, respectively.

Fig. 5 we show the MF-DFA results of various sets of p values
causing the same so-called h(q = 2) exponents. Subsequently,
it is expected that for characterizing the geometrical properties
of underlying surfaces, one must take into account the full
spectrum of generalized Hurst exponents.

It must be pointed out that the generated surfaces have
some discontinuities (see Fig. 2). To make them smooth, a
proper way is to use a fractionally integrated singular cascade
(FISC) method [10]. In this method, the multifractal measure
is transformed into a smoother multifractal rough surface by
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TABLE I. The p values used for construction of surfaces with
various Hurst exponents, Hi = hi(q = 2) − 1. The subindex (i ∈
[1,12]) of Hi represents the label of different sets of p values.

Hurst exponent p1 p2 p3 p4

H1 = 0.305 0.040 0.800 0.080 0.080
H2 = 0.404 0.100 0.740 0.080 0.080
H3 = 0.504 0.120 0.680 0.110 0.090
H4 = 0.608 0.190 0.610 0.130 0.070
H5 = 0.608 0.090 0.100 0.610 0.200
H6 = 0.608 0.600 0.100 0.237 0.063
H7 = 0.608 0.350 0.100 0.546 0.004
H8 = 0.706 0.210 0.550 0.130 0.110
H9 = 0.802 0.220 0.480 0.200 0.100
H10 = 0.697 0.120 0.180 0.560 0.140
H11 = 0.806 0.160 0.180 0.170 0.490
H12 = 0.906 0.410 0.200 0.210 0.180

filtering the singular multifractal measure [μ(r); Eq. (1)] in the
Fourier space as

H(r) = μ(r) ⊗ |r|−(1−H ∗), (25)

where ⊗ is the convolution operator and H ∗ ∈ (0,1) is the
order of smoothness (see the right panel of Fig. 2 and the
lower panel of Fig. 3). In this case, τf (q) reads as

τf (q) = τ (q) + qH ∗, (26)
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FIG. 5. (Color online) The multifractal spectrum of surfaces
produced by different sets of p values but with the same h(q = 2) up
to our numerical precision.

TABLE II. The most relevant exponents concerning stochastic
processes in one and two dimensions.

Exponent 1D-fGn 1D-fBm 2D-Cascade 2D-fBm

γ 2 − 2H −2H 1 − 2H −1 − 2H

β 2H − 1 2H + 1 2H 2H + 2

where τ (q) is given by Eq. (6). Using the correlation function,
C(|r|) ∼ |r|−γ , and its Fourier transform one can derive the
power spectrum scaling exponent β of the singular as well as
the smoothened synthetic multifractal surfaces. To this end,
we demand the scaling behavior for the power spectrum to be

S(k) ∼ |k|−β, (27)

where k = (kx,ky), kx = 2π
	×N

i, ky = 2π
	×N

j , and (i,j ) run
from 1 to N = L/	 (the pixel of system size). Subsequently,
the power spectrum scaling exponent is given by [10]

β = 1 + 2H ∗ − log2[p2 + (1 − p)2]. (28)

To make more sense, in Table II we collected the correlation
and power spectrum exponents of stochastic processes in one
and two dimensions.

Figure 6 indicates one-dimensional profiles obtained along
a typical horizontal cut in Fig. 2 for singular and smoothened
multifractal rough surfaces. The lower panels of Fig. 6
show the power spectrums of simulated rough surfaces. The
convolution does not change the multifractality nature of
singular measure (see Fig. 7). In this plot one can see that
the synthetic smoothened surface remains multifractal.
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FIG. 6. (Color online) Upper panel: Profile of singular (left)
and smoothened (right) multifractal rough surfaces along a typical
horizontal cut in Fig. 2. Lower panel: Spectral density of mentioned
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to a power-law fitting function and symbols are given by numerical
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FIG. 7. (Color online) Generalized Hurst exponent of singular
measure for H9 = 0.802 (square symbols) and that of convolved with
H ∗ = 0.700 (circle symbols). The solid lines are from the theory.

IV. GEOMETRICAL EXPONENTS OF CONTOUR LOOPS

For a given multifractal rough surface with the height
H(x), a level set H(x) = H0 for different values of H0

consists of many closed nonintersecting loops. These loops
are recognized as contour loops. The contour loop ensemble
corresponds to contour loops of various level sets. In Fig. 2
we have plotted a set of contour loops at some typical levels
for a singular multifractal rough surface and corresponding
convolved surface with H ∗ = 0.700. The loop length s can
be defined as the total number of unit cells constructing a
contour loop multiplied by lattice constant 	. The radius
of a typical loop is represented by R and it is the side of
the smallest box that completely enwraps the loop. For a
monofractal surface, these loops are usually fractal and their
size distribution is characterized by a few scaling functions and
scaling exponents. For example, the contour line properties
can be described by the loop correlation function G(r). The
loop correlation function measures the probability that the two
points separated by the distance r in the plane lie on the same
contour. Rotational invariance of the contour lines forces G(r)
to depend only on r = |r|. This function for the contours on
the lattice with grid size 	 and in the limit r � 	 has the
scaling behavior

G(r) ∼ r−2xl , (29)

where xl is the loop correlation exponent. It was shown
numerically [27,30,31] that for all the known monofractal

rough surfaces this exponent is superuniversal and equal to
1
2 . A key consequence of this result is that the contour loops
with perimeter s and radius R of such surfaces are self-similar.
When these lines are scale invariant, one can determine the
fractal dimension as the exponent in the perimeter-radius
relation. The relation between contour length s and its radius
of gyration R is

〈s〉(R) ∼ RDf , (30)

where Df is the fractal dimension and R is defined by
R2 = 1

N

∑N
i=1 [(xi − xc)2 + (yi − yc)2], with xc = 1

N

∑N
i=1 xi

and yc = 1
N

∑N
i=1 yi being the central mass coordinates. The

Df is the fractal dimension of one contour and for monofractal
rough surfaces is given by Df = 3−H

2 [31]. Depending on what
feature of the multifractal rough surface is under investigation
one can get various types of fractal dimensions. In this paper we
introduce the fractal dimension of an isoheight line, Df , and
the fractal dimension of all the level set, d. The generalized
form of fractal dimension can be expressed by means of a
partition function of the underlying feature, which is contours
in this context, as

D(q) = lim
l→0

1

q − 1

ln[Zq(l)]

ln(l)
, (31)

where l is the size of the cells that one uses to cover the
domain and its minimum value is equal to grid size, 	. Zq(l)
is the partition function defined in Eq. (4) but here it should
be constructed by using contour loops instead of a height
function and q can be any real number. It is easy to show that
D(q = 0) = Df and D(q = 1) corresponds to the so-called
entropy of underlying system [45].

For a given self-similar loop ensemble, one can define the
probability distribution of contour lengths P̃ (s). This function
is a measure for the total loops with length s and follows the
power law

P̃ (s) ∼ s−η, (32)

where η is a scaling exponent. Another interesting quantity
with the scaling property is the cumulative distribution of the
number of contours with area greater than A which has the
following form:

P>(A) ∼ A− ξ

2 . (33)

For monofractal rough surfaces we have ξ = 2 − H . Using
the scaling property of the monofractal surfaces it was shown
that the three exponents Df , η, ξ , and xl satisfy the following
hyperscaling relations [30]:

Df = ξ

(η − 1)
, (34)

Df = 2xl − 2

η − 3
. (35)

Using the above relations it is easy to get the relation between
η and Hurst exponent H . Before closing this section, we
summarize all of the exponents introduced in this section in
Table III.

In the next section we will calculate all mentioned ex-
ponents by using different numerical methods for singular
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TABLE III. The relevant exponents introduced in this paper to
characterize synthetic multifractal rough surfaces.

Exponent Relation Description

xl G(r) ∼ r−2xl Loop correlation exponent
Df 〈s〉(R) ∼ RDf Fractal dimension of a contour loop
D(q) Eq. (31) Multifractal dimension
d N (l) ∼ l−d Fractal dimension of all contour set
η P̃ (s) ∼ s−η Length distribution exponent

ξ P>(A) ∼ A− ξ
2 Area cumulative exponent

as well as smoothened multifractal rough surfaces and we
will examine the validity of the hyperscaling relations in this
context.

V. NUMERICAL RESULTS

In order to examine the geometrical exponents of the
contour loops mentioned in Table III of synthetic multifractal
rough surfaces, we have generated multifractal rough surfaces
with different h(q = 2)’s using the typical measures reported
in Table I. We have generated 100 ensembles of each surface
with various sizes ranging from (2048 × 2048) to (4096 ×
4096). To extract the contour loops of the mock multifractal
rough surfaces at mean height, H0, we use two different
methods, the contouring algorithm and the Hoshen-Kopelman
algorithm [26]. According to our results, these two methods
give almost the same results for geometrical exponents. In the
next subsections we present our numerical results concerning
the exponents introduced in the preceding sections.

A. Loop correlation function exponent

The loop correlation function exponent xl is the most central
exponent in monofractal rough surfaces. It is independent of H

and is equal to 1
2 . This result has also been proven for H = 0

according to the exact solvable statistical mechanics model
for contours equivalent to the critical O(2) loop model on the
honeycomb lattice [31,59].

To find the correlation function from a given loop ensemble
for multifractal rough surfaces, we followed the algorithm
described in Ref. [31]. We calculated the loop correlation
function G(r) for our multifractal rough surfaces (with system
size 2048 × 2048 and averaging is done over 10 realizations).
The log-log diagram of G(r)r2xl versus r for different sets of
p values (Hi = hi(q = 2) − 1 for some i ∈ [1,12]) are shown
in Fig. 8. Each set corresponds to a synthetic multifractal
rough surface generated according to the algorithm presented
in Sec. II. Our results demonstrate that the xl exponent depends
not only on the value of the Hurst exponent but also on the
different sets of p values (see the upper panel of Fig. 8). In other
words, as reported in Table I as well as shown in upper panel of
Fig. 8, the sets i = 4, i = 5, and i = 6 of p values have equal
Hurst exponents; nevertheless, the corresponding correlation
exponents, xl , for these sets differ completely. On the other
hand, at the level of our numerical accuracy, as shown in the
lower panel of Fig. 8, the value for the smoothened multifractal
surfaces correlation exponents is the same as that reported for
the monofractal rough surfaces, namely xl = 1

2 .

r

G
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)r
2x

101 102 103

H4=0.608
H5=0.608
H6=0.608
H10=0.697
H11=0.806
H12=0.906

2xl
1.30 0.03
1.70 0.03
1.53 0.05
1.59 0.03
1.30 0.03
1.28 0.03

±
±
±
±
±

±

l

r

G
(r

)r
2x

101 102 103

H*=0.400
H*=0.500
H*=0.700

l

1.00 0.03
1.00 0.03
1.00 0.03

±
±
±

2xl

FIG. 8. (Color online) Log-log diagram of r2xl G(r) versus r for
different Hurst exponents. The upper panel corresponds to singular
measure with the sets of p values reported in Table I. The lower panel
indicates the loop correlation function for smoothened multifractal
surface for various H ∗’s. In these figures we shifted the y axis
vertically. The system size is 4096 × 4096.

B. Fractal dimension

To calculate the fractal dimension of a contour loop, we
have calculated the perimeter and radius of gyrations of
different contour loops. Figure 9 shows log-log plot of 〈s〉(R)
versus 〈R〉 values for synthetic multifractal rough surfaces
with typical value of Hurst exponent, H4 = 0.608. There are
two distinct regions with different slopes in the diagram; the
first region is related to a large number of small loops with
radius smaller than 1 (R < 1) with Df = 1.00 ± 0.01. This is
not a relevant phenomenon and it comes from the contouring
algorithm that produces lots of contour loops around very
small clusters (made usually from one cell). In the second
region (R > 1), the slope increases to 1.43 ± 0.02 and it
maintains the scaling behavior up to very large sizes. The
slopes for the different Hurst exponents follow the relation
Df = (3 − H )/2 for the monofractal case [31]. For various
values of the Hurst exponent our computation is shown in
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FIG. 9. (Color online) The log-log plot of 〈s〉(R) versus R for a
synthetic multifractal singular rough surface for H4 = 0.608.

the upper panel of Fig. 10 (see also Table IV). At the 1σ

confidence interval all slopes are the same. On the contrary, in
the case of the contour lines of the convolved rough surfaces
with arbitrary H ∗’s the fractal dimension of a contour line
follows the formula of a monofractal surface with H = H ∗,
namely Df = (3 − H ∗)/2. It is quite interesting that these
results are completely independent form the p values (lower
panel of Fig. 10). This simply means that the fractal dimension
of the contour loops of the singular rough surfaces does not
change with respect to the h(q = 2). In other words, in contrast
to the monofractal case, h(q = 2) alone cannot represent
the properties of the underlying singular multifractal rough
surface.

We also calculated the fractal dimension by using partition
function introduced in Eqs. (4) and (31). Figure 11 shows
D(q) as a function of q. The q dependence of these results
confirms that contour loops of synthetic singular and smooth
multifractal rough surfaces are multifractal. For q = 0 at a 68%
confidence interval D(q = 0) = 1.46 ± 0.05. This is also in
agreement with the value determined by calculating the scaling
behavior of the contour sizes. In addition, as we may expect,
this diagram demonstrates that the isoheight contour loops of

TABLE IV. Different geometrical exponents of the contour loops
extracted from surfaces with different sets of p values reported in
Table I. Theses values are completely dependent on the p values.

H η Df ξ 2xl

H1 = 0.305 2.67 ± 0.03 1.43 ± 0.04 2.44 ± 0.06 1.60 ± 0.10
H2 = 0.404 2.60 ± 0.03 1.41 ± 0.04 2.30 ± 0.06 1.49 ± 0.10
H3 = 0.504 2.50 ± 0.03 1.42 ± 0.04 2.16 ± 0.06 1.25 ± 0.05
H4 = 0.608 2.45 ± 0.02 1.42 ± 0.04 2.04 ± 0.06 1.30 ± 0.03
H5 = 0.608 2.74 ± 0.02 1.43 ± 0.04 2.50 ± 0.06 1.70 ± 0.03
H6 = 0.608 2.64 ± 0.02 1.42 ± 0.04 2.31 ± 0.06 1.53 ± 0.03
H8 = 0.706 2.35 ± 0.02 1.43 ± 0.04 1.90 ± 0.06 1.12 ± 0.03
H9 = 0.802 2.27 ± 0.02 1.44 ± 0.04 1.80 ± 0.06 1.02 ± 0.03

R
100 101 102

H1=0.305
H2=0.404
H3=0.504
H4=0.608
H8=0.706
H9=0.802

1.43 0.04
1.41 0.04
1.42 0.04
1.42 0.04
1.43 0.04
1.44 0.04

±
±
±
±
±
±

Df

Df

R
25 50 75 100

H*=0.400
H*=0.500
H*=0.600
H*=0.700

Df

1.30 0.01
1.25 0.01
1.21 0.02
1.17 0.02

±

±

±
±

Df = (3-H*)/2

〈s
〉

〈s
〉

FIG. 10. (Color online) Upper panel: log-log of 〈s〉(R) versus R

for singular multifractal rough surfaces for various sets of p values
reported in Table I. Lower panel: The same diagram for smoothened
synthetic multifractal rough surfaces. The sample size is 4096 ×
4096 and the ensemble average was done over 100 realizations. To
make more sense, we shifted the values of 〈s〉 vertically for different
multifractal rough surfaces.

underlying simulated multifractal rough surfaces behave as a
multifractal feature.

As mentioned, the fractal dimension of all the contours,
d, differs from the fractal dimension of a contour loop,
Df . The fractal dimension of a contour set for monofractal
rough surfaces is given by d = 2 − H . For the smoothened
multifractal rough surfaces introduced by Eq. (25), the fractal
dimension of the contour set is d = 2 − H ∗ [13]. We have
calculated the fractal dimension of the contour set by using the
box counting method. As previously, we used a least-squares
equation [Eq. (21)] to determine the slope in the log-log
diagram of the number of segments that will cover the
underlying feature N (l) versus length scale l for different
Hurst exponents. To obtain the best-fit value for the slope
corresponding to our data, as well as its error, we divided
the data into different ranges and determined the slope by
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FIG. 11. (Color online) Generalized fractal dimension versus
q for singular measure with H4 = 0.608 and for smoothened
multifractal surface which has been generated by convolution of
singular measure with H ∗ = 0.700. For singular and smoothened
surfaces Df = 1.46 ± 0.05 and Df = 1.19 ± 0.05, respectively.

least-squares method. To do so according to the likelihood
function [Eq. (21)], we define χ2 as

χ2(d) =
N∑

i=1

[N (li) − Ntheor(li ; d)]2

σ (li)2
, (36)

where N is the number of partitioning, namely N = L/lN ,
Ntheor(li ; d) ∼ l−d

i , and σ 2(li) is the variance of the data in the
corresponding range. Finally, we determined the minimum χ2

and the best slope for the data. Figure 12 corresponds to syn-
thetic smoothened multifractal rough surfaces. In addition, we
checked that whether the result associated to the smoothened
rough surfaces depends on the set of p values correspond to the

H*

d

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

FIG. 12. (Color online) Fractal dimension of all contours of the
smoothened multifractal surfaces as a function of H ∗. The solid line
corresponds to the linear fitting function.

same value of h(q = 2). Our findings confirm that d does not
depend on different sets of p values. However, for the singular
measure, d depends on the value of H and even p’s used for
the cascade algorithm. It has no regular behavior with respect
to h(q = 2). Moreover, for various sets of p values giving
the same value of h(q = 2), one finds different values for
fractal dimensions of all contour sets. This is quite surprising
because for the singular measure multifractal surface, we have
H ∗ = 0 and, therefore, if the formula 2 − H ∗ was correct
in this regime, we should have d = 2 for all the different
h(q = 2)’s. We are not aware of any theoretical argument that
can explain this phenomenon.

C. Cumulative distribution of areas

To calculate the exponent ξ we have calculated the
P>(A)Aξ/2 with respect to the area of the contour loops.
In Fig. 13 and Table IV we have shown the results for

A

P >
(A

)A

50 100 150 200

H2=0.404
H3=0.504
H4=0.608
H8=0.706

ξ
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ξ / 2=1.02 0.03
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±

±
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±
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)A

101 102 103
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H*=0.700

ξ
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ξ / 2 = 0.81 0.02
ξ / 2 = 0.70 0.02
ξ / 2 = 0.66 0.02

±

±
±

FIG. 13. (Color online) Upper panel: The cumulative distribu-
tions of the areas of the contour loops with respect to the area for
the singular multifractal rough surfaces. The corresponding set of p

values is given in Table I. Lower panel: The same distribution for the
smoothened multifractal surfaces. For clarity, we shifted the value of
the y axis vertically for both diagrams.
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FIG. 14. (Color online) Upper panel: The perimeter distribution
exponent for different sets of p values of the singular measure. Lower
panel: The same measure for the smoothened multifractal rough
surfaces. The values of the y axis are shifted vertically.

various values of the Hurst exponent reported in Table I
and averaging is done over 100 realizations. The results
differ markedly from what we expect for monofractal rough
surfaces. For monofractal rough surfaces we have ξ = 2 − H .
It must be pointed out that for synthetic singular multifractal
rough surfaces ξ decreases by increasing H , which is the
same as monofractal rough surfaces. In addition, ξ not only
depends on h(q = 2) but also is affected by other values of
h(q). This finding is due to the multifractality nature of the
singular measure rough surface. The same computation for
the smoothened multifractal rough surfaces is shown in the
lower panel of Fig. 13. These results confirm that the exponent
is controlled by H ∗, and ξ is given by the same equation as for
the monofractal rough surfaces.

D. Probability distribution of contour length

Final remarks concern the probability distribution of
contour length. To this end, we investigated the logarithmic

TABLE V. Verification of two basic hyperscaling relations for
synthetic singular measure multifractal rough surfaces.

H η − 1 ξ

Df
3Df + 2xl Df η + 2

H1 = 0.305 1.67 ± 0.03 1.71 ± 0.06 5.89 ± 0.16 5.82 ± 0.12
H2 = 0.404 1.60 ± 0.03 1.63 ± 0.06 5.72 ± 0.16 5.67 ± 0.12
H3 = 0.504 1.50 ± 0.03 1.52 ± 0.06 5.51 ± 0.13 5.55 ± 0.11
H4 = 0.608 1.45 ± 0.02 1.44 ± 0.06 5.56 ± 0.12 5.48 ± 0.10
H5 = 0.608 1.74 ± 0.02 1.75 ± 0.06 5.99 ± 0.12 5.92 ± 0.11
H6 = 0.608 1.64 ± 0.02 1.63 ± 0.06 5.79 ± 0.12 5.75 ± 0.11
H8 = 0.706 1.35 ± 0.02 1.33 ± 0.06 5.41 ± 0.12 5.36 ± 0.10
H9 = 0.802 1.27 ± 0.02 1.25 ± 0.05 5.34 ± 0.12 5.27 ± 0.10

diagram of P (s)sη−1 versus s. We have depicted the results
for the synthetic singular as well as smoothened multifractal
surfaces for various values of h(q = 2). For the smoothened
multifractal rough surfaces, again, the exponents follow the
behavior of the monofractal surfaces (see Fig. 14).

In spite of the huge difference between the geometrical ex-
ponents of the contour loops of the monofractal rough surfaces
and singular multifractal rough surfaces, the hyperscaling
relations ξ

Df
= η − 1 and Df = 2xl−2

η−3 are valid up to numerical
accuracy (see Table IV and Table V). The important factors
in obtaining this hyperscaling relation concern power-law
relations for P̃ (s) and P>(A). The second hyperscaling relation
comes from the following equality:∫ R

0
G(r)d2r ∼

∫ ∞

0
min(s,RDf )P (s)ds. (37)

Both sides are proportional to the mean of the length of that
portion of the contour passing through origin that lies within
a radius R from the origin [30].

VI. CONCLUSION

In this paper we have studied the contour lines of
particular multifractal rough surfaces, namely the so-called
multiplicative hierarchical cascade p model. Utilizing a
stochastic cascade method [4,34], singular measure (original)
and smoothened (convolved) multifractal rough surfaces with
different Hurst exponents were generated. The h(q) spectrums
of these two-dimensional surfaces were determined by use
of the MF-DFA method [34]. Then, by us of two different
algorithms we generated the contour loops of the systems.
Many different geometrical exponents, such as the fractal
dimension of a contour loop, Df , the fractal dimension of
the contour set, d, the cumulative distributions of perimeters
and areas, and the correlation exponents, xl , were calculated
for the singular and smoothened multifractal surfaces by use
of different methods.

We summarize the most important results given in this
study as follows. Our results confirmed that the exponent
of the loop correlation function, xl , for multifractal singular
measures depends on p values. On the contrary, for multifractal
smoothened surfaces, this value behaves the same as that for
monofractal rough surfaces (see Fig. 8).

The scaling exponent of the size of the contours as a
function of the radius representing fractal dimension, Df , is
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TABLE VI. A summarization of results given in this paper
based on contouring analysis for synthetic singular and smoothened
multifractal rough surfaces.

Exponent Singular measure Smoothened multifractal

xl Depends on p values 1
2

Df Identical 3−H∗
2

D(q) Depends on q Depends on q

d Depends on p values 2 − H ∗

η − 1 Depends on p values 4−2H∗
3−H∗

ξ Depends on p values 2 − H ∗
ξ

Df
= η − 1 Yes Yes

Df = 2xl−2
η−3 Yes Yes

similar for various singular multifractal rough surfaces. But
the relation between Df and H ∗ for convolved multifractal
surfaces is similar to monofractal surfaces. Nevertheless the
contour loops have a multifractal nature (see Figs. 10 and 11).

The exponent of cumulative distribution of areas, ξ , for
singular measure has multifractal nature. But for a smoothened
surface, this quantity is controlled by H ∗ according to ξ =
2 − H ∗ and is completely independent of the p values (see
Fig. 13).

Consequently, in the case of singular measure surfaces,
all of the exponents show significant deviations from the
well-known formulas for the monofractal rough surfaces.

They depend on the generalized Hurst exponents, h(q),
whereas for convolved multifractal surfaces, all geometrical
exponents are controlled by H ∗ according to a monofractal
system. We emphasize that, interestingly, the hyperscaling
relations, namely ξ

Df
= η − 1 and Df = 2xl−2

η−3 at the 1σ

confidence interval, are valid for both singular and smoothened
multifractal rough surfaces (see Table IV and V). In this
system, which is labeled by H ∗, many relevant properties
are controlled by a few relations that have been presented
for monofractal cases. However, singular and smoothened
multifractal surfaces have a multifractal nature but, using a
geometrical analysis, they belong to a different class, which
is a nontrivial result. Table VI contains the most important
results given in this paper.

Finally, to make this study more complete, it would be
useful to extend this approach for various simulated rough
surfaces by use of different methods and examine their
hyperscaling relations. In addition, there are some methods
to distinguish various multiplicative cascade methods, such as
n-point statistics [60].
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