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Nonequilibrium fluctuations in a driven stochastic Lorentz gas
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We study the stationary state of a one-dimensional kinetic model where a probe particle is driven by an
external field E and collides, elastically or inelastically, with a bath of particles at temperature T . We focus on the
stationary distribution of the velocity of the particle, and of two estimates of the total entropy production �stot.
One is the entropy production of the medium �sm, which is equal to the energy exchanged with the scatterers,
divided by a parameter θ , coinciding with the particle temperature at E = 0. The other is the work W done by
the external field, again rescaled by θ . At small E , a good collapse of the two distributions is found: in this case,
the two quantities also verify the fluctuation relation (FR), indicating that both are good approximations of �stot.
Differently, for large values of E , the fluctuations of W violate the FR, while �sm still verifies it.
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I. INTRODUCTION

The program of statistical mechanics, which consists
of deriving macroscopic properties of a system from the
elementary interactions of its constituents, is far from being
fulfilled in out-of-equilibrium conditions. In particular, the
dissipation of energy in such cases prevents the use of general
equilibrium results, and forces one to rely on a case-by-case
model-dependent description.

One of the few general results for systems far from
equilibrium has been established in a series of works, starting
from the seminal papers by Evans and coworkers [1]. It
consists of a family of relations, generally referred to as
fluctuation relations (FR), which are very similar in form
but concern different quantities (e.g., phase space contraction
rate, entropy production, heat, work, etc.) and/or different
dynamical regimes (e.g., transients, stationary states, etc.),
as well as different kinds of nonequilibrium systems (either
deterministic or stochastic) (see [2] and references therein).

In the framework of stochastic dynamics, the microscopic
definition of the entropy production relies on the knowledge
of the path probabilities for the model [3–9]. The study of
the fluctuations of this quantity plays a central role in the
characterization of small systems [10,11]. The connection
with macroscopic quantities that are reasonably related to the
thermodynamic concept of “entropy produced by the system”
has to be carefully investigated in each specific model, as, for
instance, in [12–14]. In particular, the simple recipe, useful
near equilibrium, where the macroscopic entropy production
is expressed as the work done by external forces divided by
the temperature [15], is hardly of use far from equilibrium,
often because it is not clear which parameter plays the role of
temperature [16]. For instance, in granular gases, due to the
dissipative character of interactions, the kinetic temperature
Tg of the microscopic constituents does not always have a
thermodynamic role [17].

In order to address such issues, we investigate the dynamics
of a stochastic Lorentz-like model where a particle is inter-
acting with random scatterers and is subjected to an external
force. Stochastic Lorentz models have been previously studied,

focusing on transport properties, e.g., on normal or anomalous
diffusion, for instance, in [18–23]. Our model is based on the
following ingredients: (1) the presence of an external field E
accelerating the probe particle, (2) scatterers of finite mass
which are randomly and uniformly distributed in space and
move with random velocities as extracted from a thermal
bath at temperature T (it is therefore more reasonable to
call them “bath particles”), (3) collisions which can also be
inelastic (the system always reaches a stationary state), and
(4) a uniform collision probability, which is inspired from the
so-called Maxwell-molecules models [24] and which helps in
simplifying analytical calculations. Such ingredients provide
a system in a nonequilibrium stationary state (NESS) due to
the presence of a finite stationary current of particles. We
do not consider any time-dependent experimental protocol or
any transformation between different NESSs, that is, we study
the system at a fixed value of the external parameter (the
external field). For each value of the external field, we start
our measurements when the system has already reached the
corresponding NESS. Therefore, in our case, there is not excess
heat due to transient dynamics between different NESSs, and
the total heat exchanged equals the power dissipated to sustain
the NESS.

We show that in this model, the microscopic entropy
production is well approximated, at large times, by the energy
exchanged with the bath, divided by a “temperature” θ which
is that measured for zero field, E = 0. Such a temperature turns
out to be different from the temperature of scatterers T , unless
the collisions are elastic, and coincides with the one of the
probe particle in the unperturbed process, in agreement with
what was recently found in [25]; at small values of the field,
a macroscopically accessible quantity well approximates the
entropy production, and that is the work done by the external
field, divided by the same temperature θ .

II. THE MODEL

We consider an ensemble of probe particles of mass m

endowed with scalar velocity v. Each probe particle only
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interacts with particles of mass M and velocity V extracted
from an equilibrium bath at temperature T : such scatterers
are distributed randomly and uniformly in space and can
hit the particle only once. The last condition is important
to guarantee unbounded motion and molecular chaos even
in one dimension, and can be thought of as the effect of
bath particles moving in two (or more) dimensions, while
the probe particle can only move along a one-dimensional
track. Inspired by Maxwell-molecules models [24] and their
inelastic generalization [26–28], we assume that the scattering
probability does not depend on the relative velocity of
colliders. The velocity of the particle changes from v to v′
at each collision, according to the rule

v′ = γ v + (1 − γ )V, (1)

where

γ = ζ − α

1 + ζ
, (2)

with ζ = m/M , and α is the coefficient of restitution determin-
ing if the collision is elastic, α = 1, or inelastic, α ∈ [0,1). The
velocity V of the bath particles is a random variable generated
from a Gaussian distribution with zero mean and variance
T/M:

PS(V ) =
√

M

2πT
exp

(
− M

2T
V 2

)
. (3)

In addition, the probe particle is accelerated by a uniform
force field mE . The resulting system can be assimilated to a
Lorentz gas model, where free flights in the external field are
interrupted by random collisions with scatterers.

The model is summarized by the linear Boltzmann equation
for the evolution of the velocity distribution of the probe
particle,

τc∂tP (v,t) + τcE∂vP (v,t)

= −P (v,t) + 1

1 − γ

∫
duP (u,t)PS

(
v − γ u

1 − γ

)
, (4)

where τc is the mean collision time. In the following, we shall
compare analytical predictions with numerical simulations of
Eq. (4). This equation, restricted to the particular case of α = 1
and m = M (that is, γ = 0), has been recently studied in [29].

III. ENTROPY PRODUCTION

One of the most interesting features peculiar to out-of-
equilibrium stationary dynamics is that a finite rate of entropy
production can be measured in the system. Microscopically,
such a quantity is related to the violation of detailed balance
and gives a measure of how the probability of observing a
forward trajectory differs from the probability of observing
the time-reversed one [3,4]. From the macroscopic point of
view, the entropy production is related to the presence of
currents going through the system due to spatial gradients or
due to the action of external driving forces [15,30]. In simple
examples [4,31], a bridge between the two points of view can
be verified, where the microscopic entropy production turns
out to be proportional to the product of a flux by a force.
The constant prefactor, in driven systems in contact with a

reservoir, is often found to be the bath temperature. However,
this cannot be the general situation: for instance, for arbitrarily
strong external fields, the temperature of the system (e.g., the
kinetic one) may be far from that of the bath, or, in extreme
cases, cannot even be defined.

The stochastic process considered here consists of two
parts: a deterministic evolution due to the action of the external
field, plus a random contribution due to the collisions with the
scatterers. Here, the deterministic process does not contribute
to the entropy production in the system, since the probability
of a free fall for the particles is symmetric under time reversal.
It is then convenient to rewrite Eq. (4) as a master equation
where the transition rates describing the stochastic collisions
between particles explicitly appear,

τc∂tP (v,t) + τcE∂vP (v,t)

=
∫ ∞

−∞
dv′w(v|v′)P (v′,t) −

∫ ∞

−∞
dv′w(v′|v)P (v,t), (5)

with

w(v′|v) = 1

1 − γ

1√
2πT/M

exp

{
− M

2T

[
v′ + γ v

1 − γ

]2}
. (6)

To obtain this result, we have put in Eq. (4) the form (3) for
the distribution of the scattering particles (see Ref. [32] for the
general case, with different interaction kernels and arbitrary
dimension).

For the process described by Eq. (5), we can explicitly
write the probability density P [{v(t)}|v0] of observing the
trajectory {v(s)}ts=t0

in the interval [t0,t], with initial and final
values v(t0) = v0 and v(t) = vt , respectively. The total entropy
production associated with each trajectory is defined as

�stot(t) = ln
P [{v(t)}|v0]P (v0)

P [{ṽ(t)}|ṽ0]P (ṽ0)
= �sm(t) + ln

P (v0)

P (−vt )
,

(7)

with {ṽ(s) = −v(t − s)}ts=t0
as the time-reversed path, P (v) as

the stationary distribution, and �sm as the entropy production
of the medium [33], where as medium we refer to the ensemble
of scatterers. Notice that in the reversed protocol, the electric
field does not change the sign, Ẽ = E . Along a trajectory where
Nc collisions occur at times tj (with j ∈ [1,Nc]) and velocities
change from vj = v(t−j ) to v′

j = v(t+j ), one has

P [{v(t)}|v0]

P [{ṽ(t)}|ṽ0]
=

∏Nc

j=1 Pnc(�tj )w(v′
j |vj )∏Nc

j=1 Pnc(�tj )w(−vj |−v′
j )

, (8)

where Pnc(�tj ) is the probability that no collision occurs
in the time interval �tj = tj − tj−1. Since in the Maxwell
model the collision probability is independent of the particle
velocity, the time intervals �tj between successive colli-
sions are distributed according to a Poissonian process, with
Pnc(�tj ) ∼ exp(−�tj/τc). In the ratio between probabilities
appearing in Eq. (8), the contributions due to free flights in
the backward trajectory exactly cancel those coming from
the forward trajectory. It is interesting to mention that such
cancellation is not a specific feature of the chosen uniform
collision probability: it can be verified also for other kinds of
interactions, e.g., for hard spheres.
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The stochastic entropy production of the medium is then
expressed in terms of single event contributions, δsm(v′,v),
where the particle changes its velocity from v, before the
collision, to v′, after the collision,

�sm(t) =
Nc(t)∑
j=1

δsm(v′
j ,vj ). (9)

Here, Nc(t) is the number of collisions that have occurred up
to time t , and, from Eq. (6),

δsm(v′
j ,vj ) = ln

w(v′
j |vj )

w(−vj |−v′
j )

= − M(1 + γ )

2T (1 − γ )

(
v′2

j − v2
j

)

= −δEcoll(v′
j ,vj )

θ
, (10)

where δEcoll(v′
j ,vj ) = m/2(v′2

j − v2
j ) is the energy received

from the scatterers in a collision, and

θ = T ζ
1 − γ

1 + γ
= T ζ

1 + α

1 + 2ζ − α
(11)

is the kinetic temperature of the probe particle in zero field, as
demonstrated below [see Eq. (24)].

For the average rate of entropy production in a stationary
state, we can write

〈ṡm(t)〉 = lim
t→∞

〈�sm(t)〉
t

= 1

τc

〈δsm(v′,v)〉

= − 1

τc

M(1 + γ )

2T (1 − γ )
(〈v′2〉post − 〈v2〉), (12)

where 〈·〉post denotes the average over the distribution of
post-collision velocities. In order to compute explicitly the
average quantities appearing in Eq. (12), we need to solve the
Boltzmann equation (4) in the stationary limit.

IV. STATIONARY SOLUTION

Defining the Fourier transform of the probability density
P̂ (k,t) = ∫ ∞

−∞ dveikvP (v,t) and similarly for P̂S(k), the in-
tegral equation (4) in Fourier space in the stationary limit
assumes the convenient form

−ikEτcP̂ (k) = −P̂ (k) + P̂ (γ k)P̂S((1 − γ )k). (13)

Let us start by considering the simplest case, γ = 0. This
corresponds to ζ = α and it has been considered in [29,34] for
elastic particles with m = M . Since P̂ (0) = 1, from Eq. (13)
we have

P̂ (k) = 1

1 − iEτck
P̂S(k) = 1

1 − iEτck
exp

(
− T

2M
k2

)
.

(14)

The inversion of the Fourier transform gives the sought
distribution under the form of a convolution,

P (v) = b

√
a

π

∫ ∞

0
du exp[−a(v − u)2] exp(−bu), (15)

with b = 1
τcE and a = M

2T
. The result of the convolution

is that the tails for large v are exponential and for negative
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FIG. 1. (Color online) Comparison between the theoretical pre-
diction of Eq. (15) (solid lines) and the numerical simulations
(symbols) for the stationary distribution in the case γ = 0, τc =
1, ζ = 0.5, T = 1 and for different values of the external field
E = 0.5,2,8.

v are Gaussian. In the limit of infinite mass of the scatterers,
M → ∞, the distribution becomes one sided and reads

P (v) = θ (v)
1

τcE
exp

(
− v

τcE

)
. (16)

In Fig. 1, the analytical prediction of Eq. (15) is compared with
the probability density function (PDF) obtained in numerical
simulations (see below).

For arbitrary values of γ , Eq. (13) can be easily solved in
the case of zero field E = 0, where one has

P̂0(k) = exp

(
− θ

2m
k2

)
, (17)

with a temperature θ . Notice that P0(v) is a Maxwellian, but
with a “temperature” θ which differs from T ; one has θ = T

only when α = 1. In the presence of a nonzero field, no analog
of the closed formula (15) can be written. However, in this
case, one has access to all of the moments of the distribution.
Indeed, assuming analyticity around k = 0, for small enough
k, one can write the expansion

P̂ (k) =
∞∑

n=0

(ik)n

n!
μn, (18)

where μn ≡ 〈vn〉. Upon substituting expression (18) in
Eq. (13), and equating equal powers of k, all of the moments
of the distribution can be obtained. In particular, using Eq. (3),
we have

μ1 = τcE
1 − γ

, (19)

μ2 = 2τcE
1 − γ 2

μ1 + (1 − γ )2

1 − γ 2
μ

(S)
2 . (20)

It is interesting to note that the conductibility 〈v〉/E = τc/

(1 − γ ) ≡ τc(1 + ζ )/(1 + α) increases when the system be-
comes more inelastic (α is reduced) or when the mass M of
the bath particles is reduced.

We are now ready to compute the average entropy produc-
tion. Indeed, substituting Eq. (20) in Eq. (12), and using the
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fact that the distribution of post-collisional velocities is by
definition P̂post(k) = P̂ (γ k)P̂S((1 − γ )k), we can write

〈ṡm(t)〉 = (1 + γ )

(1 − γ )2

M

T
τcE2 � 0. (21)

Expression (21) can be related to the macroscopic quantities
present in the system, namely, the external field E and the
current velocity 〈v〉. Indeed, using Eqs. (11) and (21) can be
rewritten as

〈ṡm(t)〉 = m

θ

τcE2

(1 − γ )
= mE〈v〉

θ
� 0. (22)

Now let us consider the average work done by the external field
along a trajectory that spans the time interval [0,t], W (t) =∫ t

0 Fv(s)ds, with F = mE :

lim
t→∞

1

θ

〈W (t)〉
t

= F 〈v〉
θ

= 〈ṡm(t)〉, (23)

i.e., the average macroscopic work of the field divided by the
temperature θ corresponds to the average entropy production.
Notice that in Eq. (23) the “right” temperature is neither the
bath temperature T , nor the kinetic temperature of the probe
particle in the presence of the field,

Tg ≡ m
(
μ2 − μ2

1

) = θ + m
(τcE)2

(1 − γ 2)
, (24)

but is that of the unperturbed, not accelerated, system. The
quantity θ represents an energy scale in the system, which
depends on the several parameters defining the model, namely,
temperature of the scatterers T , mass ratio ζ , and restitution
coefficient α. It is equal to the kinetic temperature of the
particle only in the absence of an external field. In this case, if
the interactions are elastic, it equals the bath temperature T , as
expected. In general, for a nonzero field, the relation between
θ and the mean square velocity of the particle is expressed
by Eq. (24).

V. NUMERICAL SIMULATIONS

In order to obtain numerically the stationary distribution
P (v) which solves Eq. (4), we simulate the dynamics of a
single particle subject to a constant acceleration E and to
inelastic collisions with the scatterers, and average over 104

realizations, for general γ . Time is discretized in intervals δt ,
for a total duration δtNt . The particle is accelerated for δt

under the influence of the constant field E and then a collision
with a scatterer is realized with probability pcoll = δt/τc.
The distinguishing feature of Maxwell molecules [24] is
that the probability of colliding is independent of the velocity
of the particle itself. Then, the particle is again uniformly
accelerated by the field E and the whole procedure is repeated.
This ensures an average collision time τc, which is set as a
parameter of the simulation. For each collision, the velocity
of the scatterers are extracted from a constant Gaussian
distribution, given by Eq. (3), and the collision with the probe
particle is realized with the inelastic rule, given by Eq. (1).

In the numerical simulations, we also studied the diffusive
properties of the system to find that the mean square dis-
placement with respect to the average motion, d2 = 〈[x(t) −
〈x(t)〉]2〉, displays a ballistic behavior, d2 ∼ t2, on short time

scales with a crossover to a diffusional dynamics, d2 ∼ t , at
large times. Such a ballistic-to-diffusive scenario, not intuitive
in the presence of an accelerating field [19,22], is consistent
with the autocorrelation of the particle’s velocity which, up to
numerical precision, decays as a single exponential.

VI. THE ROLE OF INELASTICITY

A peculiarity of this model is that the inelastic collision
rule can be always mapped onto an elastic one: indeed, we
can always set α = 1 and change the mass ratio ζ = m/M

in order to keep constant the parameter γ which enters the
collision rule. In practice, if m is also kept fixed, then we are
changing only M and thus the width of the distribution in
Eq. (3). Doing so, we find no relevant qualitative change in
the physics of the system. In particular, let us notice that the
entropy production in Eq. (21) depends only on γ and vanishes
with the field E , also with inelastic collisions.

The fact that, for the present model, the entropy production
is not affected by the inelasticity of collisions is in agreement
with the findings of [35], where the dynamics of a single
massive intruder in a diluted granular gas of inelastic particles
satisfying the molecular chaos hypothesis was studied. In that
case, the dynamics of the probe particle was well described
by a single linear Langevin equation, so that the entropy
production was zero by definition. Without passing through a
Langevin description, the Maxwell model presented here also
assumes the molecular chaos hypothesis for the surrounding
sea of scatterers. In both cases, each collision of the probe
particle is performed with a velocity extracted from a constant
distribution independent of the previous history of the system:
despite the inelasticity of collisions, reversibility is guaranteed
by the molecular chaos hypothesis for the medium. As it is
clear from Eq. (21), in our model all irreversible effects are
generated by the external field.

There is only one special case in which the entropy
production allows us to distinguish the inelastic from the
elastic interaction. This is the case of infinitely massive scat-
terers, namely, M → ∞, which implies ζ = 0 and γ = −α.
Keeping finite the width of the velocity distribution of
scatterers, T/M = μ

(S)
2 , the average entropy production then

reads

〈ṡm(t)〉 = 1 − α

1 + α

τcE2

μ
(S)
2

; (25)

i.e., it vanishes in the elastic case. This case is quite peculiar
because its stationary P (v) has finite 〈v〉 but infinite 〈v2〉 [29].
For any other parameters, the model has finite or zero current
and finite energy.

VII. FLUCTUATIONS OF ENTROPY
PRODUCTION AND WORK

By definition, the total entropy production (7) must satisfy
the FR for any value of t :

ln
p(�stot(t) = x)

p(�stot(t) = −x)
= x, (26)

where p(�stot(t) = x) denotes the probability that the entropy
produced by the system in a time interval [0,t] is x. At
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FIG. 2. (Color online) PDF of entropy production, work, and
rescaled work. Parameters: γ = 0, τc = 1, ζ = 0.5, T = 1, E = 0.5,
and t = 16τc. The continuous line shows the Gaussian fit
of p(�sm).

large times t , one usually neglects the term ln[P (v0)/P (−vt )],
which—in the definition of �stot(t)—gives a contribution of
the order O(1), and looks for the fulfillment of Eq. (26)
using �stot(t) ≈ �sm(t), which should be the leading part of
order O(t). Our numerical simulations suggest that this is
the case also in this model for any value of the field E . As
seen in Eqs. (9) and (10), �sm(t) coincides with the energy
that the probe particle loses when colliding with the bath
particles, divided by the kinetic temperature of the particle
itself measured at zero field. In Fig. 2, the distribution of
�sm(t) is plotted for a certain value of t : a remarkable deviation
from Gaussianity can be clearly seen from the superimposed
fit.

Inspired by the equality of the average value of the entropy
and of the work produced along a trajectory [see Eq. (23)],
we measured in numerical simulation also the fluctuations of
the work done by the external field on the particle, W (t). A
remarkable finding is that for small values of E , the PDF of the
work can be collapsed on the PDF of the entropy production
by exploiting the “unperturbed” temperature θ as a scaling
parameter. In such cases, the measure of work fluctuations
provides an alternative way to measure the temperature of
the unperturbed system: indeed, as also verified in Fig. 3,
when W (t)/θ satisfies the FR, one also has ln[p(W (t) =
x)/p(W (t) = −x)] = x/θ .

By increasing the value ofE while keeping fixed all the other
parameters of the simulation, we find the following differences
with the small E situation: (a) the stationary PDF of velocity
has a larger exponential tail and a very asymmetric shape;
(b) the PDF of �sm(t) also becomes very asymmetric and
close to 0 has a shape very different from a Gaussian one (see
inset of Fig. 4); (c) the PDF of W (t) cannot be collapsed on the
PDF of the entropy production with a simple rescaling; and
(d) �sm(t) still verifies the FR, while W (t)/θ does not.

The breaking of the FR symmetry by the fluctuations of
work at large values of E can be interpreted considering the
balance equations of the energy absorbed and lost by the probe
particle within a time window. In particular, we have that
W (t) + �Ecoll(t) = �E(t), with �E(t) = m

2 [v2(t) − v2(0)]
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FIG. 3. (Color online) The symmetry relation (26) obeyed by the
entropy production �sm(t) and by the rescaled work W (t)/θ obtained
in numerical simulations with parameters γ = 0, τc = 1, ζ = 0.5,
T = 1, E = 0.5, and t = 16τc. Inset: collapse of the rate functions of
the distribution of �sm(t) for large times t = 128τc (black circles),
t = 512τc (red squares), and t = 1024τc (green diamonds).

and �Ecoll(t) = ∑Nc(t)
j=1 δEcoll(v′

j ,vj ), and, therefore, exploit-
ing the relation (10), we can write

�sm(t) = 1

θ
[W (t) − �E(t)] , (27)

which gives evidence that discrepancies between the distri-
bution of �sm and W/θ are due to the “boundary term”
�E. Although �E(t) is of the order O(1), it is known to
be dangerous for FR, even at large times, when its distribution
has exponential (or larger) tails [36,37], as in our case (see
Fig. 4).

In summary, we have discussed a nonequilibrium kinetic
model, simple enough to let most of the calculations be
accessible, such as the entropy production or the moments
of the stationary distribution, but still displaying interesting
properties, for instance, strong non-Gaussian behavior and
nontrivial dependence on the external field. In particular, we
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FIG. 4. (Color online) PDF of the quantities �sm, W/θ , and
�E/θ measured in numerical simulations with parameters γ = 0,
τc = 1, ζ = 0.5, T = 1, E = 8, and t = 16τc. Inset: zoom of the
region around x = 0 for the probability distribution of �sm.
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have seen that the fluctuation relation is valid for the distribu-
tion of the energy, �Ecoll, lost in collisions with the bath, and
it also holds for the work done by the field, W (t), provided that
E is low enough. For the fulfillment of the FR, both quantities
have to be divided by a temperature θ which is different from
the bath and the particle ones, but coincides with the latter at
E = 0. We remark that such an observation is highly nontrivial:
it suggests that extreme care must be used when entropy
production is defined on phenomenological grounds, where
one is usually tempted to use more “reasonable” temperatures

(e.g., the bath or the system ones), forgetting the complexity
of far-from-equilibrium systems.
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