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A continuous phase transition occurs in the topography of toppling surfaces of stochastic and rotational
sandpile models when they are flooded with liquid, say water. The toppling surfaces are extracted from the
sandpile avalanches that appear due to sudden burst of toppling activity in the steady state of these sandpile
models. Though a wide distribution of critical flooding heights exists, a critical point is defined by merging the
flooding thresholds of all the toppling surfaces. The criticality of the transition is characterized by power-law
distribution of island area in the critical regime. A finite size scaling theory is developed and verified by calculating
several new critical exponents. The flooding transition is found to be an interesting phase transition and does not
belong to the percolation universality class. The universality class of this transition is found to depend on the
degree of self-affinity of the toppling surfaces characterized by the Hurst exponent H and the fractal dimension
Df of critical spanning islands. The toppling surfaces of different stochastic sandpile models are found to have
a single Hurst exponent, whereas those of different rotational sandpile models have another Hurst exponent. As
a consequence, the universality class of different sandpile models remains preserved within the same symmetry
of the models.
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I. INTRODUCTION

Self-affine fractal surfaces often appear in nature as well
as in many physiochemical processes [1]. For example: the
Earth’s relief, mountains [2], clouds [3], etc. in nature, the
crack fronts in materials [4], fractured surfaces [5], crumpled
paper [6], etc. appeared in different physiochemical processes
are found to be self-affine lines or surfaces. The study of per-
colation process in the topography of synthetically generated
self-affine surfaces [7–11] revealed a new type of continuous
phase transition with no sharply defined critical point. The
technique has recently been applied to characterize fluid flow
and conduction in rough surfaces [12], x-ray tomography [13],
metal oxide surfaces [14], etc.

Sandpiles are prototypical models for understanding self-
organized criticality (SOC) [15], a phenomenon of nonexis-
tence of any characteristic size or time in the nonequilibrium
steady state of a class of slowly driven system. During time
evolution of these slowly driven systems, if the height of a sand
column attains a predefined critical height, a burst of toppling
activities occur in the steady state which lead to an avalanche.
Once an avalanche is over, a toppling surface corresponding
to the avalanche can be defined by the toppling numbers of the
lattice sites. Toppling number si of a lattice site is the number
of times a site is toppled during an avalanche. In continuum,
the toppling surface of a sandpile avalanche is possible to
describe by a self-affine function of toppling numbers as

s(x) ≈ λ−H s(λx), (1)

where λ is a parameter and H is the Hurst exponent of the
surface. Recently, the toppling surfaces associated with the
avalanches in stochastic (SSM) [16] and rotational (RSM) [17]
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sandpile models were found to be rough, wrinkled, and self-
affine with H < 0.5, whereas that of the deterministic Bak,
Tang, and Wiesenfeld (BTW) sandpile model [18] was found
to be a smooth correlated surface with H > 0.5 [19]. This was
an added information from the study of toppling surface to the
existing results of sandpile models such as BTW, SSM, and
RSM belong to different universality classes [17], the SSM and
RSM follow finite size scaling (FSS), whereas BTW follows
a complicated multiscaling [20], etc. In terms of interface,
the toppling dynamics of the Oslo sandpile model was first
mapped into growing interface by Paczuski and Boettcher [21],
where the height profile of the interface is the accumulated
number of toppling. In the context of absorbing state phase
transition [22], sandpile models are also described as a growing
interface defined by the toppling numbers up to certain time t

in a disordered medium [23–25]. The toppling surface defined
in Eq. (1) may correspond to one of the final configuration of
these growing interfaces in the absorbed state.

In search of further in-depth information hidden in a
sandpile avalanche, the toppling surface can be flooded with
liquid, say water, and a flooding transition can be studied in
the topography of toppling surfaces. During flooding, at each
level of water the surface points whose heights are greater
than the water level form islands. If the water level is high,
there will be a few small islands, whereas if the water level
is low, there will be a few small lakes. It is then expected
that there exists a critical height at which for the first time
water will be able to flood the landscape from one side to the
other creating a large number of islands. This is called flooding
transition. Interestingly, the study of flooding transition unveils
a continuous phase transition at a critical flooding height in
the toppling surface topography of stochastic and rotational
sandpile models. This is an interesting phenomenon in the
literature of sandpile as well as self-organized criticality (SOC)
[15]. However, such a transition is not possible in the smooth
toppling surface of the BTW sandpile model where at every

031111-11539-3755/2012/85(3)/031111(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.031111


J. A. AHMED AND S. B. SANTRA PHYSICAL REVIEW E 85, 031111 (2012)

level of flooding only one island can be extracted. It is then
intriguing to characterize the flooding transition in the toppling
surface topography of the SSM and the RSM. Since the SSM
toppling rule is completely stochastic and the RSM toppling
rule is having a rotational symmetry, the toppling surfaces of
the SSM and the RSM are entirely different and characterized
by different Hurst exponents. The criticality of the flooding
transition is found to be determined by the fractal dimension
of the critical spanning islands and the degree of self-affinity
of the toppling surfaces.

II. FLOODING TRANSITION
IN THE TOPPLING SURFACE

The flooding transition is studied in the topography of
toppling surfaces of sandpile models of two different classes,
SSM [16] and RSM [17]. The toppling rules and extraction of
toppling surfaces are described briefly prior to the demonstra-
tion of flooding transition in these surfaces. Sandpile models
are slowly driven from outside by adding sand grains one at a
time and they spontaneously evolve to nonequilibrium steady
states without fine tuning of any parameter of the system.
During time evolution, if the height of a sand column attains a
predefined critical height, a burst of a toppling activity occurs
at that column. Due to this intermittent burst, the sand column
topples and the sand grains of that column are distributed to its
nearest neighbors (NN) following certain toppling rules. As a
result, the NN sites may become upper critical and lead to burst
of further toppling activities. Consequently, these toppling
activities will lead to an avalanche. Toppling surfaces can be
generated from these avalanches. During an avalanche the sand
columns at different lattice sites topple different number of
times. The number of times a site i topples during an avalanche
is called the toppling number si of that site, a microscopic
parameter of the avalanche. The toppling number si of each
lattice site in an avalanche constitutes a toppling surface of
that avalanche. Toppling surfaces are extracted from the large
spanning (touching the opposite sides of the lattice) avalanche
clusters at the steady states of the RSM and the SSM.

The toppling rules of the RSM and the SSM are now briefly
described here on a two dimensional (2D) square lattice of
size L × L. Each lattice site i is associated with a nonnegative
integer variable hi , height of the “sand column” at the site
i. The system is driven by adding sand grains, one at a
time, to randomly chosen lattice sites. As the height hi of
the sand column of a site becomes greater than or equal
to hc, a predefined threshold value, the site become active
and bursts into a toppling activity. In a toppling activity,
the sand grains of the active site are distributed to its NN
sites. For both the RSM and the SSM the critical height is
hc = 2. The SSM evolves following a stochastic toppling
rule given by hi → hi − 2, hj → hj + 1, and j = j1,j2,
where {j1,j2} are two randomly selected sites out of four
NN sites of the active site i on a square lattice. Thus, the
stochasticity in the SSM is imposed by the toppling rules
itself. On the other hand, the toppling rules of the RSM are
quasideterministic. In this model, two sand grains are given
away to two randomly selected NN sites of the active site only
on the first toppling. Successive toppling in the RSM occur
following a rotational toppling rule given by hi → hi − 2,

hj → hj + 1, and j = di,di + 1, where di is the direction
from which the last grain was received. If the index j becomes
greater than 4 it is taken to be 1. Due to the rotational toppling
rule, one sand grain flows in the forward direction, the direction
from which the last grain was received, and the other flows in
a clockwise rotational direction with respect to the forward
direction. Though the rotational toppling rule is deterministic,
the direction of the last grain received may change in this
model if the toppling sequence is changed and it introduces
internal stochasticity into the model. During an avalanche no
sand grain is added and the propagation of an avalanche stops
if all sites of the lattice become under-critical. The dynamics of
both the models are performed with open boundary condition.
During an avalanche, the toppling number of a site is stored in
an array. The toppling number of a site represents the height
of the toppling surface at that point.

Typical toppling surfaces obtained in the RSM and the
SSM at their respective steady states are shown in Fig. 1.
These surfaces are generated on a 128 × 128 square lattice.
Light brown (light gray) color represents a higher toppling
number, whereas dark brown (dark gray) color represents a
lower toppling number and the intensity is varied continuously.
It can be seen that the toppling surfaces are rough and
wrinkled. Entirely different toppling surfaces are obtained
due to rotational and stochastic toppling dynamics in the
RSM and the SSM, respectively. The SSM toppling surface
is highly fluctuating with several large toppling numbers
appear randomly here and there. On the other hand, the RSM
toppling surface is not totally random as the SSM. The RSM
toppling surface is less fluctuating than that of the SSM but
consists of several concentric zones of lower toppling numbers
centered at large toppling numbers. It can be noted that a BTW
toppling surface consists of a single pyramid-like structure
where a concentric zone of lower and lower toppling numbers
are present around the maximum toppling number without
intersection [19]. The RSM toppling surface seems to be
consisting of several BTW-type structures around different
maximal toppling zones. Due to the internal stochasticity in
the RSM, the local correlation in rotational constraint is not
able to produce long range correlation generating BTW-like
correlated structure.

It should be emphasized here that the toppling surface
defined by the toppling number of each lattice site is very
different from the surface defined by the height of the sand
columns [26,27]. Toppling number si keeps more dynamical
information than the height hi of the sand column after the
avalanche.

To study the flooding transition, these surfaces are flooded
with liquid, say water. At each level of water, the surface
points whose heights are greater than the water level form
islands. Points belong to the same island are connected by
nearest neighbor bonds. At the bottom of the surfaces shown
in Fig. 1, the island morphologies at three different levels of
flooding are shown. It can be seen that if the water level is high,
there appears a few small islands, whereas if the water level
is low, a large island appears covering most of the space. At
an intermediate level of flooding, there exists a critical height
sc (25 for the RSM and 10 for the SSM) at which a maximum
number of islands appear. Below sc, water is confined locally,
whereas above sc, water is found to be connected from all sides
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FIG. 1. (Color online) Toppling surfaces generated on a 128 × 128 square lattice for the RSM and the SSM are shown on the top. Islands
are shown for three different levels of flooding: s = 2, 25, and 45 for the RSM and s = 2, 10, and 18 for the SSM. The black dots represent
the islands and water is represented by white. Flooding transition occurs at the intermediate level of flooding.

flooding the surface. It is then interesting to study the properties
of these islands at the critical transition and verify whether
there exits another continuous phase transition through the
toppling surface topography which are yields at the steady
state of certain dynamical processes. Moreover, it is intriguing
to see whether the flooding transition could shine light on the
origin of different universality classes of two different sandpile
models.

In order to study the flooding transition, extensive computer
simulations are performed on 2D square lattices of different
sizes L. The system size L varies from 128 to 2048 in multiple
of 2. The steady state of the sandpile models is defined as
the constant average height of the sand columns. In order to
evolve the systems to their respective steady states, first 106

avalanches were ignored. At the steady state, 10 configurations
were stored for each system size. For a given system, all
10 configurations were evolved further starting with different
random number seeds. For each configuration, another 105

avalanches were rejected before collecting data. A total of
103 toppling surfaces were generated collecting 100 spanning
(touching opposite sides of the lattice) avalanche clusters from
each starting configuration for each system size L. In order
to generate 103 spanning avalanche clusters more than 107

avalanches were required to generate. The toppling surfaces
are then flooded at every height of the surface. At each level of
flooding the number of islands appeared is counted and their ar-
eas (number of lattice points present in an island) are recorded.

III. FLOODING THRESHOLD

In case of percolation (or generally in continuous phase
transitions), the transition occurs at a sharply defined perco-
lation threshold pc at which the system percolates for the
first time if the occupation probability is increased from below
pc [28]. However, in the flooding transition, a wide distribution

of the critical height sc is observed at which the maximum
number of islands appear for both the RSM and the SSM. In
Fig. 2(a) distribution of the critical heights sc is plotted for
different lattice sizes for the toppling surface of the SSM. It
can be noticed that the width of the distribution is increasing
with the system size L in contrary to the observation in the
usual second order phase transition in which one expects a
sharper and sharper distribution with increasing system size.
As a consequence, in the L → ∞ limit, there will be critical
flooding at all possible heights.

The critical height for flooding is expected to be directly
related to the width W (L) of the toppling surface defined as

W 2(L) =
〈

1

L2

L2∑
i=1

(si − s̄)2

〉
, (2)

where s̄ = ∑L2

i=1 si/L
2 is the average height of the surface.

The width W (L) is expected to scale with the system size L as

W (L) ∼ Lα, (3)

where α is the roughness exponent, similar to that of the
saturated width of the growing interfaces in the absorbing state
phase transition [25]. The scaling of W (L) of the toppling
surfaces with L is shown in Fig. 2(b) and it can be seen
that the scaling given in Eq. (3) is satisfied. The exponent
α is found as α = 0.82 ± 0.03 for the RSM and 0.73 ± 0.03
for the SSM. It can be noted here that the value of α

obtained for the saturated width of the growing interfaces in
the absorbing state phase transition for the Manna model is
0.80(3) [23]. The roughness exponent α is known to be related
to the exponents describing macroscopic quantity-like toppling
size S = ∑L2

i=1 si . The toppling size distribution is given by
P (S,L) = S−τs fs(S/LDs ), where τs is a critical exponent and
Ds is the so-called capacity dimension. As in the case of
growing interfaces [21,25], a scaling relation Ds = 2 + α is
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FIG. 2. (Color online) (a) Plot of P (sc) against sc for the toppling surface of the SSM for system sizes L = 512 (©), 1024 (�), and 2048
(�). (b) W (L) is plotted against L for the RSM (©) and the SSM (�). (c) P (sc)Lα is plotted against sc/L

α for the SSM. In the inset, P (pc) is
plotted against the critical area fraction pc.

expected to be valid in the case of toppling surfaces. For the
RSM and the SSM the values of Ds were known to be 2.86 [17]
and 2.74 [29], respectively, and thus the above scaling relation
is satisfied for both the RSM and the SSM within the error bars.
It can be noted that Ds obtained from the roughness exponent
(α ≈ 0.8) measured in Ref. [23] is slightly higher than the
measured value for the Manna model.

It is then expected that the critical height sc should scale
with the system size as Lα . Since the probability of appearing
a critical height decreases with increasing system size, P (sc)
is assumed to scale with the system size as L−α . The scaled
distribution P (sc)Lα is then plotted against the scaled variable
sc/L

α for the SSM taking α = 0.73 in Fig. 2(c). A reasonable
collapse of data is obtained. A similar data collapse is also
obtained for the RSM with α = 0.82.

The problem can also be studied in terms of area fraction
p, the ratio of the total island area to L2, as in percolation. It
is observed that the critical area fraction pc also has a wide
distribution P (pc) as shown in the inset of Fig. 2(c). Note
that the width of P (pc) is almost independent of L as it is
seen for the scaled distribution P (sc)Lα against the scaled
variable sc/L

α . The existence of finite variance in the threshold
distribution in the limit L → ∞ was also observed in the
contour cuts of self-affine wrinkled surfaces [8,9].

Since there is a wide distribution of critical heights for an
ensemble of toppling surfaces, the critical point or the flooding
threshold is defined for a given surface as �s = s − sc = 0 and
the critical points of all the surfaces are merged together. Data
are collected for the same value of �s of different surfaces and
averaging of a physical quantity is made corresponding to the
same �s value. In terms of area fraction, one may define the
critical point as �p = p − pc = 0. Though the distribution of
critical heights in the RSM and the SSM are different, the criti-
cal points of these models are defined identically at �s = 0 (or
�p = 0). The parameter �s can be considered as a change in
the external field in the system with respect to the critical field.

IV. ORDER PARAMETER

In order to identify the order parameter of the flooding
transition, one needs to define a spanning island connecting

opposite sides of a lattice as in percolation theory. In this
transition, such a spanning island appears only at the zero level
of flooding. However, there exists a critical flooding level sc

at which maximum number of islands appear. Therefore, a
concept of “critical spanning island” is defined as the largest
island amax(sc) present at the criticality for a given surface.
Since for the ensemble of surfaces, the critical point is define
by �s = 0, the area of the critical spanning island for the
ensemble of surfaces is taken as the 〈amax(sc)〉, where 〈· · · 〉
represents the ensemble average. The order parameter P∞ then
can be defined as the probability of finding a surface point in
an island of area a � 〈amax(sc)〉 at a given level of flooding. It
can be written as

P∞ = 1 − P (a), P (a) =
∑

a

′
ana, (4)

where na is the number of islands of area a per lattice site
at a given �s, primed sum denotes exclusion of the critical
spanning island. P∞ is calculated as a function of �s for
three different lattice sizes L = 512, 1024, and 2048 for both
models. Data for the RSM is plotted in Fig. 3(a). There are two
things to notice. First, all the curves are crossing at �s = 0
indicating �s = 0 as the critical point separating two phases,
no flooding and flooding. Second, the plot of P∞ becomes
flatter and flatter as L is increased rather than sharper and
sharper for higher L as expected in a second order phase
transition. A similar behavior is also observed for the SSM.
However, this is related to the fact that the critical flooding
height has wider distribution at a larger L than at a smaller L.

In order to verify the finite size dependence of P∞, a finite
size scaling (FSS) analysis has been performed. P∞ is assumed
as a generalized homogeneous function of �s and L as given
by

λP∞ = F [λa�s,λbL], (5)

where λ is a parameter. Taking λ = L−1/b, one has

P∞ = LAF [�s/LB], (6)

where A = 1/b and B = a/b. Since at L → ∞ limit P∞ is
expected to be L independent, the FSS function should have
a value (�s/LB)A/B in the same limit. Inserting the value of
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FIG. 3. (Color online) (a) Plot of P∞ against �s for the toppling
surfaces of the RSM for system sizes L = 512 (©), 1024 (�), and
2048 (�). (b) Plot of P∞ against the scaled variable �s/Lα . In the
inset, P∞ is plotted against �p = p − pc.

F (�s/LB) in Eq. (6), one has P∞ ≈ (�s)A/B . Since �s is like
an external field in the problem, a scaling form for P∞ with
�s is assumed as

P∞ ≈ (�s)1/δ, (7)

where δ = B/A. On the other hand, at �s = 0, P∞ ≈ LA

assuming F (0) is a constant. It is also expected that �s ∼ Lα

as W (L) scales with L. One then has

P∞ ≈ (�s)A/α, A/α = 1/δ. (8)

Since Aδ = α and B = Aδ, one has B = α. At the same time,
by definition P∞ = L(Df −d), where Df is the fractal dimension
of the critical spanning islands and d is the space dimension.
Thus, A = Df − d. Knowing A and B, the FSS form of P∞
is given by

P∞ = L(Df −d)F [�s/Lα]. (9)

Since the islands here are almost compact, one has Df =
d = 2 and consequently it is expected that P∞ ≈ F [�s/Lα].
In Fig. 3(b) P∞ is plotted against the scaled variable �s/Lα

taking α = 0.82 as for the RSM. A collapse of data is obtained
as expected. It not only confirms the scaling theory for P∞
but also verifies the scaling form of �s with L. A similar
scaling behavior is also obtained for the SSM. In the inset
of Fig. 3(b), P∞ is plotted against �p = p − pc. It can be

seen that data for all three L collapse onto a single curve and
no rescaling is required. As per percolation theory, the finite
size scaling of P∞ in terms of area fraction is given by P∞ =
L−β/νG[�pL1/ν], where β is an order parameter exponent, ν

is a correlation length exponent, and β = ν(d − Df ) [28].
Since the argument �pL1/ν of the scaling function G is
found L independent, it seems that the correlation length
exponent ν → ∞. That is also one of the conclusions of
the study of synthetic self-affine surfaces [8,11]. As ν → ∞
and (d − Df ) → 0, then the exponent β = ν(d − Df ) must
be finite. One may also note that A = α/δ = (Df − d) → 0,
then δ → ∞. Hence, in the L → ∞ limit, as per Eq. (7),
the probability of an appearance of a critical spanning island
would be uniform at all possible levels of flooding [consistent
with Fig. 3(a)]. The order parameter then confirms �s = 0 (or
�p = 0) as a critical point at which no flooding to flooding
transition occurs in the topography of the sandpile toppling
surfaces.

V. ISLAND AREA DISTRIBUTION

In order to verify the criticality at �s = 0 (or �p = 0) the
probability P (a0) of appearing on an island of area a0 in an
ensemble of islands collected from all the surfaces at their
respective critical heights sc is determined for a system of size
L = 2048. In Fig. 4 the distribution P (a0) is plotted against a0

in double logarithmic scale for (a) the RSM and (b) the SSM.
It can be seen that P (a0) follows a power-law distribution for
both the RSM and the SSM. For a given lattice size L, the
island area distribution P (a0) then should be given by

P (a0) = a
−η0
0 f0(a0/L

Df ), (10)

where Df is the fractal dimension of the islands at �s = 0 (or
�p = 0). The best estimate of the exponent η0 is obtained as
1.81 ± 0.01 for the RSM and 1.90 ± 0.01 for the SSM. The
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FIG. 4. Plot of island area distribution P (a0) against a0 for (a) the
RSM and (b) the SSM at �s = 0 for the system size L = 2048. The
solid lines represent the best fitted lines. In the respective insets, η(�s)
is plotted against �s for the RSM and the SSM. The exponents are
found close to that of η0.
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error bars are the linear least-square-fit errors. It should be
noted that η0 is a new exponent. It is neither equal to the cluster
size distribution exponent of percolation 187/91 ≈ 2.05 [28]
nor it is equal to the avalanche area distribution exponent τa of
the respective sandpile models (τa = 1.334 for the RSM [17]
and τa = 1.373 for the SSM [17,30]). These exponents are
also different from those recently obtained for the island area
distribution at average height of the Kardar-Parisi-Zhang and
Edwards-Wilkinson interfaces by Saberi et al. [31]. Thus the
flooding transition is a continuous phase transition in the
topography of the toppling surfaces of stochastic and rotational
sandpile models and does not belong to the percolation
universality class. However, the flooding transition will be
equivalent to a classical percolation transition for uncorrelated
surfaces [8,9]. Though the flooding transition is able to
characterize the RSM and the SSM distinctly, such a transition
does not exist in the smooth toppling surface of the BTW
sandpile model [18] for which at every level of flooding a single
island will appear. Interestingly, the power-law distribution
of island area P (a) is not restricted to �s = 0 only rather
it is extended over a wide range of �s. The corresponding
exponents η(�s) are extracted and plotted against �s in the
respective insets of Fig. 4. The values of η(�s)s are found
close (within error bars) to that of η0 within �s = ±10. For
large values of �s (beyond ±10), the distributions are found
to deviate from the critical distribution with different critical
exponents. The power-law distribution is observed up to
�s = ±100 on a system of size L = 2048. It can be noted here
that the area fraction p is ≈0.25 corresponding to �s = 0 for
both the models. Criticality over a wide range of area fraction is
also observed in the synthetically generated self-affine surface
by Olami [9]. Though the power-law distribution occurs over
a wide range of �s (or �p), it is observed that the distribution
extends for a longest possible range of area in the case of
�s = 0. This again indicates that �s = 0 (or �p = 0) is the
critical point.

VI. SCALING RELATIONS IN TERMS
OF HURST EXPONENT

It is interesting to explore the relationship between the
criticality of flooding transition and the self-affinity of toppling
surface topography. The self-affinity of a surface is character-
ized by the Hurst exponent H . The Hurst exponent H of a
toppling surface can be determined by measuring directly the
correlation between toppling numbers of two sand columns
separated by a distance |r| as well as by obtaining the power
spectrum of the toppling number (or height-height) correlation
function. The power spectrum technique is applied here to
extract the Hurst exponent. The two point height correlation
function C(r) is given by

C(r) = 〈|s(x + r) − s(x)|2〉 ∼ |r|2H , (11)

where s(x) is the toppling number at a position x. The power
spectrum of the correlation function is given by

S(k) = 〈|s̃(k)|2〉 ∼ |k|−2(1+H ), (12)

where s̃(k) = ∫
s(x)e−ik·xdx is the Fourier transform of

toppling number s(x). The power spectrum S(k) calculated
on a system of size L = 2048 for both the RSM and the
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FIG. 5. Power spectral density S(k) against wave number k for
toppling surfaces of (a) the RSM and (b) the SSM for a system of
size L = 2048. Straight lines are the best fitted lines through the data
points.

SSM are plotted against |k| in a double logarithmic scale in
Figs. 5(a) and 5(b), respectively. The slopes of the distributions
are obtained from linear least-square fit to the data points
in the linear region obtained in double logarithmic scale.
The Hurst exponents are obtained as: H (RSM) = 0.35 ± 0.01
and H (SSM) = 0.21 ± 0.01, consistent with the values of the
Hurst exponents obtained from the direct measurement of C(r)
as a function of r for a lower lattice size [19]. Since the values
of H is less than 0.5, these wrinkled rough toppling surfaces
are then self-affine, anticorrelated surfaces. The values of the
Hurst exponents then can distinctly characterize stochastic
and rotational sandpile models. It can be noted here that the
toppling surfaces obtained in the BTW model was found to be
a correlated surface with Hurst exponent ≈0.66 [19].

A scaling inequality can now be developed to obtain an
upper bound for the critical exponent η0 in terms of the Hurst
exponent H following [9]. The scaling inequality in the critical
exponents is developed based on the fact that the number of
islands N0 must be less than the total contour length of all
the islands at a given level of flooding. If N0 is the number of
islands at �s = 0, the total area of all the islands should be

N0

∫
a

−η0+1
0 f0(a0/L

Df )da0 ≈ N0L
Df (2−η0). (13)

At the same time, the total island area at �s = 0 flooding
should also be LDf , where Df is the fractal dimension of the
islands. The number of islands N0 then can be obtained as
N0 = LDf (η0−1). On the other hand, total contour length of
all the islands at the criticality should go as LD , where D =
2 − H is the Mandelbrot exponent [32]. Thus the inequality
in island numbers and the contour length can be written as

LDf (η0−1) � L2−H . (14)

The scaling inequality then can be obtained as

η0 � 2 − H/2 (15)
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assuming Df = 2 for the compact islands. Since 2 − H/2 is
equal to 1.82 ± 0.01 for the RSM and 1.89 ± 0.01 for the
SSM, the scaling relation holds as equality for a wide range
of �s (±10) within error bars. Such scaling equality is also
found to be valid for the autocorrelation function for the island
areas on self-affine surfaces [33]. The universality class of
the flooding transition is thus directly related to the roughness
of the toppling surfaces and the fractal dimension of critical
spanning islands.

It would now be interesting to obtain the critical exponents
describing the macroscopic avalanche properties such as
toppling size in terms of H . In order to obtain the macroscopic
exponents in terms of H , one needs to obtain the width W (L) of
the toppling surface in terms of the two point height correlation
function C(r) given in Eq. (11). The square of the width of the
toppling surface W 2(L) for a system of size L should be given
by

∫ L

0 C(r)dr . Since C(r) ∼ r2H ,

W 2(L) ∼ L1+2H . (16)

Hence, the roughness exponent α = 1/2 + H . Since the values
of H are 0.35 for the RSM and 0.21 for the SSM, one has
α = 0.85 and 0.71 for these models, respectively. It can be
noted that these values are close to the measured values 0.82
and 0.73, respectively, for the RSM and the SSM as given
in Sec. III. The capacity dimension then can be obtained as
Ds = 2 + α = 5/2 + H . The values of Ds obtained from the
Hurst exponent, Ds = 2.85 and 2.71 for the RSM and the
SSM, respectively, are very close to the measured values of Ds

(2.86 [17] and 2.74 [29]) of the respective models. However,
such scaling relations seem to be valid for self-affine surfaces
with Hurst exponent H � 0.5. For the toppling surfaces with
H > 0.5, such as the BTW toppling surface with H ≈ 0.66
[19], Ds would be greater than 3, the expected value [23]. The
two point correlation function C(r) for the BTW-type toppling
surfaces then should follow the anomalous scaling suggested
by Hansen and Mathiesen [34], in which the prefactor to C(r)
also has a self-affine character with a different Hurst exponent
than H . In this scaling theory, the global Hurst exponent Hg is
given by Hg = H − Hp, where Hp describes the self-affinity
of the prefactor.

VII. FSS ANALYSIS OF ISLAND AREA DISTRIBUTION

A FSS theory is developed by calculating the qth moment
〈aq

0 〉 of the island area as a function of system size L at �s = 0.
The qth moment of area distribution is defined as〈

a
q

0

〉 =
∫

a
−η0+q

0 f0(a0/L
Df )da0 ∼ Lσq , (17)

where σq = (q + 1 − η0)Df . For FSS to be valid, σq+1 −
σq = Df should be satisfied for any q. 〈aq

0 〉 are calculated
excluding the critical spanning islands up to q = 4. In Fig. 6
〈aq

0 〉 for q = 1 and 2 are plotted against L in double logarithmic
scale for both models. The values of the exponents are
estimated as σ1 = 0.35 ± 0.02 (�) and σ2 = 2.35 ± 0.03 (©)
for the RSM and σ1 = 0.21 ± 0.02 (�) and σ2 = 2.20 ± 0.03
(�) for the SSM by linear least-square fit to the data points.
There are a few important things to notice. First, σ2 − σ1 ≈ 2
for both models. It is also verified for another two higher
moments. Thus P (a0) follows FSS. Second, σ1 and σ2 are both

7 1
log2L

0

12

24

lo
g 2<a

0q >

q=2

q=1

FIG. 6. Plot of 〈aq

0 〉 against L for the RSM and the SSM for q = 1
and 2. Symbols used are: (�) and (©) for the RSM and (�) and (�)
for the SSM. The straight lines are the linear least-square-fit lines.

different for the RSM and the SSM and are then characteristic
exponents of these models. Third, the scaling relation σq =
(q + 1 − η0)Df is satisfied within error bars for both models
assuming Df = 2. Fourth, assuming equality in Eq. (15),
η0 = 2 − H/2 and Df = 2, one has σq = 2(q − 1 + H/2).
Hence, σ1 = H and σ2 = 2 + H . It is important to note that
the measured values of σ1 and σ2 are equal to H and 2 + H ,
respectively, for both models. Therefore, all the exponents
of flooding transition can be defined in terms of the Hurst
exponent H alone taking Df = 2 for the compact islands.

In a continuous phase transition, it is also expected that the
fluctuation in island area should diverge at the criticality. The
fluctuation in island area χ0(L) is defined as

χ0(L) =
〈
a2

0(L)
〉 − 〈a0(L)〉2

〈a0(L)〉2
(18)

and it is expected to vary with L as

χ0(L) ∼ L�σ , (19)

where �σ = σ2 − 2σ1 = 2 − H . χ0(L) is calculated at �s =
0 for different L and plotted in Fig. 7. It can be seen that χ0(L)
follows the scaling law for both the RSM and the SSM with
�σ = 1.65 ± 0.01 and �σ = 1.78 ± 0.01, respectively. The
values of �σ obtained are also satisfying the scaling relation
among σ2, σ1, and the Hurst exponent H within the error
bars.

FSS form of 〈a〉 as a function of L and �p is also verified
and it is expected to be

〈a(�p,L)〉 = LHgs(�pL1/ν), (20)

where ν is the correlation length exponent. 〈a〉 is now estimated
for different �p and L and is plotted in Fig. 8 for the RSM.
Interestingly, on one hand the value of 〈a〉 diverges at �p = 0
as expected in a continuous phase transition, on the other
hand, the distribution is becoming broader and broader with
increasing L in contradiction to a continuous phase transition.
In the inset, the scaled average area 〈a(�p,L)〉/LH is plotted
against �p. It can be seen that a good collapse of data
is obtained taking H = 0.35 for the RSM. Note that �p
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FIG. 7. Plot of χ0(L) against L for the RSM (©) and the SSM
(�). The straight lines are the linear least-square-fit lines having
slopes 1.65 ± 0.01 and 1.79 ± 0.01 for the RSM and the SSM,
respectively.

itself is the scaled variable since ν → ∞ in this case. A
similar collapse of data is also obtained for the SSM with
the corresponding values of H = 0.21. As per percolation
theory, H is also equal to γ /ν, where γ is the critical exponent
describing the singularity of 〈a〉 at �p = 0. Since the ratio of
γ to ν is finite and ν → ∞, the exponent γ must be very large.
It seems that most of the percolation exponents are infinitely
large. But the ratio of these exponents to the correlation length
exponent is found to be finite. Therefore, there exists a critical
point where the island related quantities will diverge in the
L → ∞ limit with appropriate FSS exponents. In that sense,
FSS is the most appropriate theory to study this type of phase
transition.
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FIG. 8. (Color online) Plot of 〈a(�p,L)〉 against �p for L =
512 (©), 1024 (�), and 2048 (�) for the RSM. In the inset,
〈a(�p,L)〉/LH is plotted against �p for the same set of L. Here
�p itself is a scaled variable as ν → ∞. A reasonable collapse is
observed for H = 0.35.

VIII. UNIVERSALITY AND SYMMETRIES
OF THE MODELS

In critical phenomena, the universality class of systems in
the same spatial dimension is independent of lattice structure or
type of interactions and it depends on the symmetry of the order
parameter and the number of components present in the order
parameter. Interestingly, it was observed that whenever there
is an external constraint applied on the equilibrium as well as
nonequilibrium lattice statistical models, the universality class
of the model has changed. For example, the equilibrium models
such as: self-avoiding walk (SAW) [35], directed SAW [36],
and spiral SAW [37] belong to different universality classes.
Percolation [28], directed percolation [38], spiral percolation
[39], and directed-spiral percolation [40] all belong to different
universality classes. Similarly for nonequilibrium models, the
BTW sandpile model, directed sandpile model [41], the SSM,
and the RSM all belong to different universality classes.
However, the universality classes of these models remain
unaffected even if the details of a model are changed within
the same class. For example, different versions of the BTW
models [18,42], different SSMs [16,43] or different RSMs
[17,44] preserve their own universality classes.

It is seen in the previous section that all the critical
exponents of flooding transition can be defined in terms of
the Hurst exponent H of the toppling surface and the fractal
dimension Df of islands at the critical flooding. Since the
islands are compact and Df ≈ 2 for all the models considered
here, in order to have the same universality class for all
stochastic models the value of H then should be the same for
different SSMs and similarly for different rotational models,
the Hurst exponent H should be the same for all RSMs. In
order to verify such uniqueness of the Hurst exponent of
toppling surfaces of sandpile models of the same symmetry,
another stochastic model and two other rotational models are
considered. The toppling surface of the original Manna model
(MSM) [43] is extracted here and the results are compared
with the Dhar model. In the original Manna model, all the
sand grains are distributed to the nearest neighbors at the time
of toppling of an active site, whereas in the Dhar model only
two sand grains are distributed randomly to the NNs. Though
the original Manna model (MSM) is a nonabelian stochastic
model, the Dhar model (SSM) is an abelian stochastic model
[16]. Two other rotational sandpile models, the RSM1 and
the RSM2 [44], are also considered besides the present RSM
considered here. As it is already mentioned in the model
section, in the original RSM, the direction of sand flow was
decided by the direction of the last sand grain received by
the active site. In the RSM1, the direction of sand flow is
decided by the direction of the sand grain received by the
site to become critical (h = hc) for the first time, whereas in
the RSM2, it is decided by the direction of the sand grain
received by the site at an arbitrary height on or above the
critical height h � hc [44]. All these rotational models with
broken mirror symmetry are nonabelian. The Hurst exponents
of these stochastic and rotational models are determined by
measuring the average island area as a function of the system
size L at their respective flooding transition point as well as
by direct estimation of the power spectrum of two point height
correlation function on the largest lattice L = 2048. Average
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FIG. 9. (a) Plot of 〈a0〉 against L for the RSM, the RSM1, and the RSM2. The solid line has slope 0.35. (b) Plot of 〈a0〉 against L for the
MSM and the SSM. The solid line has slope 0.21. In the insets of (a) and (b) S(k) is plotted against k for the RSM2 and the MSM, respectively,
for L = 2048. The solid lines in the insets are the best fitted lines with slopes 2.70 and 2.42 for the RSM2 and the MSM, respectively.

island area 〈a〉 at �s = 0 for all the rotational models are
plotted in Fig. 9(a) and that of the stochastic models (both
the SSM and the MSM) are plotted in Fig. 9(b). It can be
seen in Fig. 9(a) that all three rotational models are having
the same Hurst exponent H ≈ 0.35 and similarly in Fig. 9(b)
the stochastic models are also found to have the same Hurst
exponent as H ≈ 0.21. The values of H are also supported by
their respective power spectrum measurements. Plot of S(k)
against |k| for the RSM2 is given in the inset of Fig. 9(a) and
that of the MSM is given in the inset of Fig. 9(b). Thus, the
values of the Hurst exponents do not depend on the minute
details of the toppling dynamics within the same symmetry
of the models. Since all the critical exponents related to the
flooding transition depend on the Hurst exponent H of the
toppling surface and the fractal dimension Df (≈2) of critical
spanning islands, the universality class of flooding transition as
well as that of the sandpile models should remain unchanged
within the same symmetry of the model. The result is in
agreement with a recent conjecture made by Rossi et al. [45]
in the context of absorbing state phase transitions.

IX. SUMMARY AND CONCLUSION

A continuous phase transition, called flooding transition, is
found to occur in the toppling surface topography of stochastic
and rotational sandpile models. Such a transition is not possible
to occur in the smooth topography of deterministic BTW-type
sandpile toppling surfaces. Though there is a wide distribution
of flooding thresholds, a critical point is defined by merging
the flooding thresholds of all the toppling surfaces. The width

of critical height distribution for a given system size is found
to scale with the roughness exponent of the toppling surface.
The singularity of several island related quantities are explored
at the critical point. A number of important observations are
noted in the study of flooding transition. An order parameter
for the flooding transition is defined in terms of the probability
of finding a surface point in the critical spanning island.
Power-law distribution of island area is found to exist over
a wide range of area fraction. A set of critical exponents are
determined. A FSS theory for the island related quantities is
developed and verified. Most of the percolation type exponents
are found to be infinitely large though their ratios to the
correlation length exponent are found finite. The flooding
transition is found to be a continuous phase transition and does
not belong to the percolation universality class. Not only are
the critical exponents of flooding transition obtained in terms
of the Hurst exponent H of the toppling surfaces and the fractal
dimension Df of the critical islands, but also the exponents
describing the avalanche size distribution are also obtained.
The Hurst exponent H is found to be independent of the details
of toppling dynamics within the models of the same type of
symmetry. For the sandpile models of the same symmetry, the
universality class of flooding transition is then determined by
the degree of self-affinity of the toppling surfaces if the islands
are compact.
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