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Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator
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I formulate a quantum stochastic thermodynamics for the quantum trajectories of a continuously monitored
forced harmonic oscillator coupled to a thermal reservoir. Consistent trajectory-dependent definitions are
introduced for work, heat, and entropy, through engineering the thermal reservoir from a sequence of two-level
systems. Within this formalism the connection between irreversibility and entropy production is analyzed and
confirmed by proving a detailed fluctuation theorem for quantum trajectories. Finally, possible experimental
verifications are discussed.
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I. INTRODUCTION

Thermal fluctuations cause the motion of a small classical
system, like a colloidal particle immersed in a viscous fluid,
to be random and erratic. Such systems are clearly not within
the scope of macroscopic thermodynamics [1]. Nevertheless,
thermodynamic quantities, such as work, heat, and entropy, can
be defined consistently along individual stochastic trajectories
within the theoretical framework of stochastic thermodynam-
ics [2–7]. Its two primary components are a first-law-like
energy balance equation, introduced by Sekimoto in the
context of stochastic energetics [8–10], and a definition of
entropy along single fluctuating trajectories. The predictions
of stochastic thermodynamics, which have been verified
experimentally [11–13], have been important in categorizing
the fluctuation theorems (reviewed in Refs. [6,14–17]) and
in sharpening our understanding of thermodynamics at the
nanoscale, especially with respect to the second law of
thermodynamics [6,17].

Despite its significance, stochastic thermodynamics has yet
to be extended to quantum mechanical systems. Like its classi-
cal counterpart, a quantum stochastic thermodynamics would
be beneficial for analyzing the fluctuations of thermodynamic
quantities. In particular, a quantum stochastic thermodynamics
could provide insight into quantum extensions of the work
fluctuation relations [18,19]: a collection of predictions re-
garding the fluctuations in the work performed on a system
driven away from equilibrium [15,17,20–27]. Derivations of
quantum work fluctuation relations begin with a definition of
work and a method to measure its fluctuations. For closed
quantum systems – systems that do not exchange energy
with their surroundings1 – the work performed by a quantum
system during a thermodynamic process is determined by
measuring the system’s initial energy U and final energy U ′;
The difference is identified as the work W = �U = U ′ − U

[18,28–34]. Studies of various models have confirmed this
quantum work fluctuation relation for closed quantum systems
[35–39] and have pointed to its limitations [40]. However,

1This terminology differs from that commonly used in thermody-
namics, for example, in Ref. [18], where a closed system exchanges
energy with its environment, but not matter. The definition of closed
(and open) systems used in the present article conforms to the standard
usage in quantum optics [58].

these predictions have never been verified experimentally, and
only two experiments have been proposed [19,41]. When the
quantum system is open, i.e., exchanges energy with a thermal
reservoir, there are a number of proposals for the definition
of work. A common procedure is to measure the energy of
the thermal reservoir at the beginning ε and at the end ε′ of a
thermodynamic process in addition to measuring the system’s
initial and final energies [18,19,42–44]. The change in the
energy of the thermal reservoir is identified as minus the heat
absorbed by the system, Q = −�ε = −(ε′ − ε), and the work
is inferred from the relation W = �U − Q. However, the
possibility of experimentally realizing a measurement of the
energy of an infinite thermal reservoir is still an open question
[19,45]. Esposito and Mukamel derived a quantum work
fluctuation relation for an open quantum system defining the
work along trajectories constructed from formal solutions of a
quantum master equation [46], though the connection between
the work defined in Ref. [46] and a measurable physical
quantity remains unclear. In the high-friction limit, Deffner
and Lutz investigated the work performed by an open quantum
system [47–49]. However, in this limit the equations of motion
are effectively classical, as there are no quantum coherences
(yet quantum fluctuations remain in addition to the thermal
fluctuations). A quantum work fluctuation theorem has also
been predicted by De Roeck and Maes for a path-dependent
work defined along unitary quantum evolutions interrupted by
projective measurements [50]. Yet, another approach was put
forward recently by Hu and Subişi using a decoherent histories
analysis of a non-Markovian quantum Brownian motion [51].
Despite the many studies of work relations in open quantum
systems, there are still unresolved questions regarding the
possibility of experimentally measuring the work in a coherent
quantum system, such questions that could be resolved by
constructing a quantum stochastic thermodynamics.

In this article, I take a first step in formulating a quantum
stochastic thermodynamics using the quantum trajectory for-
malism, originally developed in the field of quantum optics in
response to experiments on continuously monitored individual
quantum systems [52–58]. Within this formalism quantum tra-
jectories are the stochastic evolution of a quantum system con-
ditioned on the outcomes of a sequence of weak measurements
[53]. For concreteness, I analyze a specific model inspired
by current experiments in cavity quantum electrodynamics
[59–61]: a forced quantum harmonic oscillator weakly coupled
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to a thermal reservoir. However, instead of considering an
infinite thermal reservoir, the thermal reservoir is engineered
by coupling the harmonic oscillator with a rapid succession
of two-level systems, one at a time [62,63]. By measuring
the state of each two-level system after its interaction with
the harmonic oscillator, we are able to continuously monitor
the evolution of the harmonic oscillator and measure the
amount of energy transferred to the thermal reservoir, a
strategy originally proposed by Crooks [42,64]. Dereziński,
De Roeck, and Maes have also proposed the use of quantum
trajectories in the study of quantum fluctuation theorems for
currents but did not comment on their experimental realiz-
ability [50,65]. By studying a concrete model, I am able to
devise experimentally verifiable definitions of thermodynamic
quantities along individual quantum trajectories.

We will see that because the forced quantum harmonic
oscillator’s evolution is perturbed by its interaction with
the sequence of two-level systems, its effective equation of
motion is a stochastic Schrödinger equation. The derivation
presented in this article will follow the approach developed
in Refs. [62,63,66,67], though adapted for a time-dependent
Hamiltonian. This approach to open quantum systems, uti-
lizing repeated interactions, has been studied rigorously by
Attal and Pautrat [68] and Attal and Joye [69] employing the
quantum stochastic calculus devised by Parsatharathy [70].
While the present analysis does not utilize Parsatharathy’s
quantum stochastic calculus, Pellegrini [71] and later Attal and
Pellegrini [72] demonstrated that the stochastic Schrödinger
equation considered here can be naturally incorporated into
this framework. Stochastic Schrödinger equations have also
appeared in dynamic reduction models, where they are
postulated as a means to dynamically localize a state vector
in Hilbert space [73]. The novelty of the present endeavor
is to consider explicitly time-dependent Hamiltonians. By
applying the secular approximation to the full time-dependent
Hamiltonian (without utilizing Floquet theory as in Ref. [58]),
I derive a stochastic Schrödinger equation and a quantum
master equation valid even for nonadiabatic driving, a result
that is necessary, as we are interested in far-from-equilibrium
quantum thermodynamics.

The construction of a quantum stochastic thermodynamics
begins in Sec. II by specifying the model and introducing the
stochastic Schrödinger equation. Then in Sec. III I formulate
a quantum stochastic thermodynamics by defining heat, work,
and entropy along individual quantum trajectories. Work
fluctuation relations are analyzed in Sec. IV, where a detailed
fluctuation relation for quantum trajectories is derived. Finally,
I conclude in Sec. V with a discussion of possible experimental
verifications of quantum stochastic thermodynamics in cavity
quantum electrodynamics experiments [59–61].

II. FORCED QUANTUM HARMONIC OSCILLATOR
COUPLED TO A THERMAL RESERVOIR

In this section I specify the details of the model and fix
notation. The model is a one-dimensional forced harmonic
oscillator weakly coupled to a thermal reservoir. Since a
common experimental realization of the quantum harmonic
oscillator is a single mode of an electromagentic field in a
superconducting microwave cavity [59–61], the terminology
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FIG. 1. Depiction of the energy levels En(ft ) for the instanta-
neous eigenstates |nft

〉 of a forced quantum harmonic oscillator
of frequency ω with forcing protocol ft . The oscillator interacts
resonantly with a sequence of two-level systems with ground states
|0〉 and excited states |1〉 in order to simulate a thermal reservoir at
inverse temperature β.

and techniques of quantum optics will prove helpful in
developing and explaining the model. The thermal reservoir is
engineered by weakly coupling the harmonic oscillator with
a succession of two-level systems. By continually measuring
their outgoing states, we are able to continuously monitor
the evolution of the oscillator. The effective equation of
motion governing the dynamics of the continuously monitored
oscillator is a stochastic Schrödinger equation [Eq. (12)],
which is presented in this section. Its derivation, though a
basic extension of the techniques utilized in Refs. [62,63,67],
is technical and is therefore reserved for Appendix A.

I have in mind a forced quantum harmonic oscillator of
mass m and frequency ω, with position x and momentum
p, coupled to a thermal reservoir at inverse temperature β, as
depicted in Fig. 1. The Hamiltonian of the harmonic oscillator,

H (f ) = p2

2m
+ 1

2
mω2x2 − mω2f x

= p2

2m
+ 1

2
mω2(x − f )2 − 1

2
mω2f 2, (1)

is parameterized by an externally controlled force, or param-
eter, f , which is varied with time in order to do work on the
oscillator. Here and throughout the following h̄ = 1. For an
electromagnetic field, the forcing can be induced by deter-
ministically varying with time a collection of macroscopic
classical sources [74]. As can be inferred from Eq. (1), a
harmonic oscillator in the presence of an external force is
equivalent to a harmonic oscillator that has been translated
horizontally a distance f , and whose energy has been lowered
by (1/2)mω2f 2. This observation motivates the definition of
lowering and raising operators parameterized by f ,

af =
√

mω

2

(
x − f + ip

mω

)
,

(2)

a
†
f =

√
mω

2

(
x − f − ip

mω

)
,
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which when substituted into the Hamiltonian [Eq. (1)] lead to
the simplified expression

H (f ) = ω
(
a
†
f af + 1

2

) − 1
2mω2f 2. (3)

For each f , the eigenstates |nf 〉 of the number operator
Nf = a

†
f af , with eigenvalues n, are also eigenstates of the

Hamiltonian H (f ) with energies

En(f ) = ω
(
n + 1

2

) − 1
2mω2f 2. (4)

From time t = 0 to τ , we drive the oscillator by varying
the force f using the linear protocol F = {ft }τt=0, where
ft = √

2/(mω)νt and ν is the rate at which the force varies.
For notational simplicity, I will denote the lowering and raising
operators [Eq. (2)] at time t when the force has the value ft as
at = aft

and a
†
t = a

†
ft

. These operators, at and a
†
t , correspond

to the lowering and raising operators for the eigenbasis |nft
〉

that at each t diagonalizes the Hamiltonian: H (ft )|nft
〉 =

En(ft )|nft
〉. These states |nft

〉, which are not solutions of the
Schrödinger equation, I will call the instantaneous eigenstates
of H (ft ), though sometimes they are referred to as the adiabatic
basis [29] due to their employment in the derivation of the
quantum adiabatic theorem.

As we drive the oscillator, it will continually exchange
energy with a thermal reservoir at inverse temperature β. How-
ever, I will not model the thermal reservoir as very large num-
ber of degrees of freedom. Instead, I follow Refs. [62,63,75]
and engineer the thermal reservoir by weakly coupling the
harmonic oscillator to a sequence of two-level systems,
which I will call atoms since this procedure was originally
proposed in the context of cavity quantum electrodynamics
[59–61]. A possible experimental realization in cavity quantum
electrodynamics is illustrated in Fig. 2. The Hamiltonian of
each atom is

HA = ωσ †σ, (5)

where σ = |0〉〈1| is the atomic lowering operator inducing
transitions from the atom’s excited state |1〉 to ground state |0〉.
Prior to interacting with the oscillator, each atom is prepared

A

C

D

FIG. 2. Illustration of a possible experimental setup realizing a
forced harmonic oscillator weakly coupled to a thermal reservoir. A
sequence of two-level atoms A pass through a cavity C, after which
their final state is measured by detector D.

in a definite known state: either its ground state |0〉 with
probability

r0 = 1

1 + e−βω
(6)

or its excited state |1〉 with probability

r1 = e−βω

1 + e−βω
. (7)

Then, one at a time, each atom interacts with the oscillator for a
short time δt , after which we make an instantaneous projective
measurement of the atom’s state in order to determine whether
it remained in its initial state or transitioned. By measuring the
states of the atoms after they interact with the oscillator, we are
able to track (or monitor) the oscillator’s evolution. Moreover,
knowledge of whether the atom transitioned or not allows us
to monitor how much energy is transferred to the atom during
its interaction with the oscillator, and consequently how much
energy has been exchanged with the thermal reservoir.

The coupling between each atom and the oscillator at time
t is mediated by the displaced raising and lowering operators,

ā
†
f = a

†
f + iν/ω,

(8)
āf = af − iν/ω,

through the interaction Hamiltonian

HI (ft ) = λ(ā†
t σ + ātσ

†), (9)

with weak coupling, λ � ω. In the absence of driving (ν =
0), this interaction Hamiltonian is the Jaynes-Cummings
Hamiltonian, known to quantitatively describe experimental
observations in microwave cavities [58,59]. However, in the
language of quantum optics, the lowering and raising operators
of the harmonic oscillator are displaced by iν/ω due to the
presence of the classical field induced by the motion of the
classical sources. In addition, at and a

†
t are evaluated at t ,

inducing transitions between the instantaneous eigenstates of
H (ft ), which is vital for interpreting the sequence of atoms
as a thermal reservoir constantly exchanging energy with
the oscillator. A rigorous justification for the form of HI in
Eq. (9) is presented in Appendix B. There a two-time-scale
perturbation analysis is applied to the Schrödinger equation for
the oscillator coupled to an atom in the dipole approximation.
The analysis indicates that the dynamics are well approximated
by HI (ft ) [Eq. (9)] on times λδt = O(1) when the coupling is
weak, λ � ω.

Having introduced the model, I now present the stochastic
Schrödinger equation governing the evolution of the har-
monic oscillator conditioned on the measurement outcomes
[53,55–58]. The stochastic Schrödinger equation [Eq. (12)]
is an effective equation of motion for the evolution of the
harmonic oscillator state vector |ψt 〉 at time t conditioned on
all the measurements made on the atoms prior to time t . In
its derivation, I have assumed that (1) each atom interacts for
the same amount of time δt , (2) during each δt only one atom
interacts with the oscillator, (3) the interaction time is short,
λδt � 1, (4) the interaction is weak, λ � ω, (5) the mean
number of excitations in the oscillator n̄t at each time t is small,
λδtn̄t � 1, and (6) the driving is not too fast, λδt(ν/ω) � 1.
While this last requirement restricts the rate of the driving ν,
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it does not necessitate the adiabatic approximation (ν � ω):
Assumption 6 can still be satisfied with ν ∼ ω.

Consider the evolution of the harmonic oscillator during a
small time interval dt large compared to δt . During dt many
atoms interact with the oscillator. Prior to interacting with
the oscillator, each atom is prepared in a known state, either
|0〉 or |1〉. As I demonstrate in Appendix A, the probability
during dt to measure an outgoing state different from an initial
state, that is, to observe a transition or jump, is small. In
particular, the probability to observe a jump from |0〉 to |1〉
during dt is p01 = gr0〈ā†

t āt 〉t dt , where g = λ2δt is the jump
rate and 〈·〉t = 〈ψt | · |ψt 〉 denotes the quantum mechanical
expectation with respect to the conditioned oscillator state
vector at t ; the probability to jump from |1〉 to |0〉 during dt

is p10 = gr1〈āt ā
†
t 〉t dt ; and the probability of observing no

transitions is 1 − p01 − p10. Since the probability to observe
a jump is of order dt , the stochastic sequence of jumps is a
Poisson process. Mathematically I introduce two stochastic
Poisson increments corresponding to an atom jumping up (the
system jumping down), dN+

t , and an atom jumping down (the
system jumping up), dN−

t . These Poisson increments are a
sequence of random numbers that are either 0 or 1,

(dN+
t )2 = dN+

t and (dN−
t )2 = dN−

t , (10)

whose ensemble expectation value at t is

E[dN+
t ] = gr0〈ā†

t āt 〉t dt,
(11)

E[dN−
t ] = gr1〈āt ā

†
t 〉t dt.

The Poisson increments allow us to compactly write the
stochastic Schrödinger equation for the stochastic differential
of the conditional state vector during the time interval [t,t +
dt), d|ψt 〉 = |ψt+dt 〉 − |ψt 〉, as the Itō stochastic differential
equation

d|ψt 〉 = dt

(
− iH (ft ) − gr0

2
ā
†
t āt − gr1

2
āt ā

†
t

+ gr0

2
〈ā†

t āt 〉t + gr1

2
〈āt ā

†
t 〉t

)
|ψt 〉

+ dN−
t

⎛
⎝ ā

†
t |ψt 〉√
〈āt ā

†
t 〉t

− |ψt 〉
⎞
⎠

+ dN+
t

⎛
⎝ āt |ψt 〉√

〈ā†
t āt 〉t

− |ψt 〉
⎞
⎠ . (12)

Most of the time the stochastic increments dN
j
t , j = +,−, in

Eq. (12) are zero, and |ψt 〉 evolves deterministically under the
action of the term proportional to dt in Eq. (12). Occasionally a
jump is detected, signaling an abrupt change in the oscillator’s
state vector. When an atom jumps up, dN+

t equals one, and the
oscillator’s state vector experiences a discontinuous change
mediated by āt . Similarly, when dN−

t is one, the oscillator
changes abruptly under the action of ā

†
t .

The state vector |ψt 〉 characterizes the subensemble of
systems conditioned on a particular sequence of measurement
outcomes. Because each measurement outcome is random, the
conditioned subensemble and its corresponding state vector

|ψt 〉 vary stochastically. Equation (12) is the equation of
motion describing this stochastic evolution of |ψt 〉 through
Hilbert space [58]. The goal in formulating a quantum
stochastic thermodynamics will be to associate with the
stochastic evolution of the state vector and its corresponding
ensemble notions of work, heat, and entropy.

The state vector |ψt 〉 describes the conditional (or selective)
evolution of the oscillator. When the measurement outcomes
are ignored (or averaged over), the unconditional evolution is
characterized by the density matrix obtained as the average
over all measurements [58],

ρt = E[|ψt 〉〈ψt |]. (13)

The equation of motion for the density matrix ρt , calculated by
differentiating Eq. (13) with the aid of Eq. (12), is the Lindblad
master equation [58],

∂tρt = −i[H (ft ),ρt ] + gr0D[āt ]ρt + gr1D[ā†
t ]ρt , (14)

where

D[c]ρ = cρc† − 1
2c†cρ − 1

2ρc†c. (15)

For fixed f (ν = 0), Eq. (14) is a master equation describing
the evolution of a harmonic oscillator in the presence of a
thermal reservoir at the inverse temperature β, whose value
can be inferred from the ratio of Eqs. (6) and (7) [58],

r1

r0
= e−βω. (16)

In particular, if we allow the system to evolve freely with f

fixed, in the long-time limit the system will relax to equilibrium
with a density matrix given by the Boltzmann density matrix

ρ
eq
f = e−βH (f )

Zf

, (17)

where Zf = Tr[exp{−βH (f )}] is the partition function. Thus,
the average evolution of the harmonic oscillator induced by its
interaction with a sequence of two-level atoms is equivalent
to the evolution caused by a thermal reservoir. In general,
when ν �= 0, Eq. (14) describes the nonequilibrium evolution
of the oscillator. Specifically, the solution to the master
equation [Eq. (14)] at t , ρt , may differ from the instantaneous
equilibrium density matrix ρ

eq
ft

.

III. QUANTUM STOCHASTIC THERMODYNAMICS

In this section I introduce a quantum stochastic thermody-
namics for the forced harmonic oscillator outlined in Sec. II.
Stochastic thermodynamics, like its classical counterpart, will
be formulated along thermodynamic processes, which are
introduced in Sec. III A. Then in Sec. III B, the change in
energy along a thermodynamic process is divided into two
contributions: the work and the heat. Entropy and entropy
production are identified in Sec. III C.

A. Thermodynamic processes

In classical macroscopic thermodynamics, work and heat
characterize the exchange of energy between a system and
its surroundings during a thermodynamic process. Such a
process is specified by a sequence of macroscopic actions
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(or events) executed to manipulate the evolution of the system.
Typical actions taken during a thermodynamic process include
preparing the system initially in thermodynamic equilibrium
at fixed temperature or modifying the volume or the pressure
using a specified protocol. Similarly, in order to construct a
quantum stochastic thermodynamics, I will first specify the
sequence of actions that define a thermodynamic process. Two
processes, introduced below, will prove useful: the forward
and reverse processes, which are related by time reversal.

A process will be composed of four parts: an initial
preparation of the system, an initial observable that is measured
at the beginning of the process, a protocol for varying the
external force with time, and a final observable measured upon
completion of the process. The measurements of observables
at the beginning and end of the process are macroscopic actions
unique to quantum processes. They are necessary in order to
guarantee that the forward and reverse processes begin in a pure
state and are required in the proof of the detailed fluctuation
theorem in Sec. IV.

We begin the forward process by preparing the initial
ensemble of quantum systems. We form this ensemble by
collecting a large number of quantum systems, each in a
known eigenstate |a〉 of an observable A with nondegenerate
eigenvalue a, such that the fraction of systems in eigenstate |a〉
is proportional to the probability Pa . The statistical properties
of this ensemble are characterized by the density matrix

ρ0 = ρA =
∑

a

Pa|a〉〈a|. (18)

We then randomly select a quantum system from the initial
ensemble ρA, which will be in state |a〉 with probability Pa .
To confirm this state, we make a projective measurement of
A. Then from time t = 0 to τ , the force is varied according to
the protocol F , while continuously monitoring the oscillator
through the sequence of interacting atoms. During this time
the oscillator state vector evolves stochastically according to
Eq. (12). In any realization, we will observe that the atoms
jump at a specific sequence of times. We record each jump time
tk and the type of jump mk = +,−, where + denotes an atom
jumping up and − denotes an atom jumping down. At time τ ,
we fix the external force at fτ = √

2/(mω)ντ , cease the flow of
atoms, and make a projective measurement of a new observable
B. The outcome is one of its nondegenerate eigenvalues b,
corresponding to the eigenstate |b〉, with probability Pb =
|〈b|ψτ−〉|2. Consequently, at time t = τ the state vector for
any realization will collapse into one of the eigenstates of
B, and the density matrix [Eq. (13)] will be diagonal in the
eigenbasis of B:

ρτ = ρB =
∑

b

Pb|b〉〈b|. (19)

Repeating this series of actions generates an ensemble of
realizations.

During each realization of the process, we make a measure-
ment of A with outcome a at the beginning of the process, a
measurement of B with outcome b at the end of the process,
and observe a series of jumps mk at times tk . I collect
this string of measurement outcomes into a vector, which I
call the measurement trajectory, γ = {a; m1,t1; m2,t2; . . . ; b}.
Furthermore, at each time t the system is characterized by the

state vector conditioned on all measurements up to t , |ψt (γ )〉,
which is the solution of Eq. (12). The quantum trajectory
is the sequence of state vectors traced out by the system
through Hilbert system during the time interval from t = 0
to τ , denoted by ψ(γ ) = {|ψt (γ )〉}τt=0 or simply ψ when γ is
clear from the context.

The reverse process is defined as the time-reversed forward
process in which each action of the forward process is
carried out in the reverse order. First, recall that time reversal
in quantum mechanics is implemented by the time-reversal
operator �, which is an antilinear –

�c = c∗�, (20)

for any complex number c, where ∗ denotes complex conju-
gation – involution,

�2 = I, (21)

where I is the identity operator [76].
In the reverse process, we prepare the initial ensemble by

collecting a number of quantum systems, each in an eigenstate
of the time-reversed observable of B, B̃ = �B�−1. The
ensemble is constructed so that each eigenstate |b̃〉 = �|b〉
of B̃ with eigenvalue b occurs with probability P̃b, which in
general differs from the probability to measure b at the end
of the forward process, Pb. Hence, the initial ensemble is
characterized by the density matrix

ρ̃0 = ρ̃B =
∑

b

P̃b|b̃〉〈b̃|. (22)

We then randomly select a quantum system from this ensemble
and make a projective measurement of B̃. After this we drive
the system from time t = 0 to τ using the time-reversed
protocol F̃ = {f̃t }τt=0, where f̃t = fτ−t = √

2/(mω)ν(τ − t).
During this time interval, the oscillator interacts with a se-
quence of atoms; we record the times at which the atoms jump
tk and the types of jumps mk , as in the forward process. Finally,
we measure the time-reversed operator Ã = �A�−1 obtaining
eigenvalue a corresponding to eigenvector |ã〉 = �|a〉 with
probability P̃a = |〈ã|ψτ−〉|2. At the time of measurement the
state vector collapse into an eigenvector of Ã, and the density
matrix becomes diagonal in the eigenbasis of Ã:

ρ̃τ = ρ̃A =
∑

a

P̃a|ã〉〈ã|. (23)

Every measurement trajectory of the forward pro-
cess during which M jumps are observed, γ =
{a; m1,t1; m2,t2; . . . ; mM,tM ; b}, is paired with a conjugate
reverse measurement trajectory of the reverse process γ̃ =
{b̃; m̃1,τ − tM ; . . . ; m̃M−1,τ − t2; m̃M,τ − t1; ã}, where m̃M−k

is + (−) when mk+1 is − (+), for k = 0, . . . M − 1: when
an atom jumps up along a forward trajectory, the atom will
jump down in the conjugate reverse trajectory. The quantum
trajectory traced out through Hilbert space by the oscillator’s
state vector corresponding to the measurement trajectory γ̃

will be denoted ψ̃(γ̃ ) = {|ψt (γ̃ )〉}τt=0, where |ψt (γ̃ )〉 is the
solution of Eq. (12) during the reverse process. Observe that
in general the sequence of state vectors traced out by the system
is not the time reversal of the quantum trajectory observed in
the forward process, |ψt (γ )〉 �= �|ψτ−t (γ̃ )〉.
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B. First Law of Stochastic Thermodynamics

In this section I formulate a energy balance equation
[Eq. (33)] relating the heat and work to the change in energy
along individual quantum trajectories. I proceed by first
identifying the heat as the energy transferred to the thermal
reservoir. The energy is then defined as the quantum mechan-
ical ensemble average of the Hamiltonian. Finally, the change
in the energy not accounted for by heat is identified as the work.

Heat is the energy exchanged with a thermal reservoir. Since
the thermal reservoir in the present model is composed of a
sequence of two-level atoms, I identify the heat absorbed by
the oscillator as the energy released from the atoms. Energy
is only exchanged when an atom transitions or jumps between
its energy eigenstates. In particular, each time we observe a
jump from |0〉 to |1〉, the atom has absorbed ω energy from
the oscillator; similarly, when the atom has jumped from |1〉 to
|0〉, it has released ω energy. Therefore, for a given quantum
trajectory ψ(γ ), the increment in the heat absorbed by the
oscillator during the small time interval from t to t + dt may
be written as

dQt [ψ] = ω(dN−
t − dN+

t ). (24)

The heat absorbed by the oscillator during [0,t) is the stochastic
integral of Eq. (24),

Qt [ψ] =
∫ t

0
dQs[ψ] (25)

=
∫ t

0
ω(dN−

s − dN+
s ). (26)

Next, I define the (internal) energy at time t for the entire
ensemble characterized by the state vector |ψt (γ )〉 conditioned
on all the measurements up to t . The energy at t along
the quantum trajectory ψ(γ ) is the ensemble average of the
Hamiltonian,

Ut [ψ] = 〈ψt |H (ft )|ψt 〉. (27)

The energy varies with time due to the time dependence of
the Hamiltonian as well as the stochastic evolution of the state
vector. In particular, the change in the energy up to t is

�Ut [ψ] =
∫ t

0
dUs[ψ], (28)

where dUt [ψ] = Ut+dt [ψ] − Ut [ψ], is the stochastic differ-
ential of Ut during the small interval from t to t + dt :

dUt [ψ] = dtḟt 〈ψt |∂f H (ft )|ψt 〉

− dt gr0〈ψt |
[

1

2
{H (ft ),ā

†
t āt } − H (ft )〈ā†

t āt 〉t
]

|ψt 〉

− dt gr1〈ψt |
[

1

2
{H (ft ),āt ā

†
t } − H (ft )〈āt ā

†
t 〉t

]
|ψt 〉

+ dN−
t

[
〈ātH (ft )ā

†
t 〉t

〈āt ā
†
t 〉t

− 〈H (ft )〉t
]

+ dN+
t

[
〈ā†

t H (ft )āt 〉t
〈ā†

t āt 〉t
− 〈H (ft )〉t

]
, (29)

which can be deduced from the definition of Ut [Eq. (28)]
with the aid of Eq. (12). Here, for two operators O and O ′,

{O,O ′} = OO ′ + O ′O is the anticommutator. For a process
where the initial observable is the initial Hamiltonian, A =
H (f0), and at the end of the process the final Hamiltonian is
measured B = H (fτ ), this definition of the change in internal
energy in Eq. (29) agrees with that commonly encountered in
the derivation of quantum work relations [19]. However, its
statistics are different due to the interaction with the reservoir.

Finally, the work during the time interval from t to t + dt

is identified as the change in the energy not accounted for by
heat [6,10]:

dWt [ψ] = dUt [ψ] − dQt [ψ], (30)

which may be formulated, using the definitions of dUt

[Eq. (29)] and dQt [Eq. (24)], as

dWt [ψ] = dtḟt 〈ψt |∂f H (ft )|ψt 〉

− dt gr0〈ψt |
[
1

2
{H (ft ),ā

†
t āt } − H (ft )〈ā†

t āt 〉t
]
|ψt 〉

− dt gr1〈ψt |
[
1

2
{H (ft ),āt ā

†
t } − H (ft )〈āt ā

†
t 〉t

]
|ψt 〉

+ dN−
t

[
〈ātH (ft )ā

†
t 〉t

〈āt ā
†
t 〉t

− 〈H (ft )〉t − ω

]

+ dN+
t

[
〈ā†

t H (ft )āt 〉t
〈ā†

t āt 〉t
− 〈H (ft )〉t + ω

]
. (31)

The work along a quantum trajectory during the time interval
[0,t) is the stochastic integral of dWt ,

Wt [ψ] =
∫ t

0
dWs[ψ] (32)

= �Ut [ψ] − Qt [ψ]. (33)

Remarkably, the average of Eq. (32) over all realizations, after
substituting in Eqs. (11) and (31), has the simple form

E[Wt ] =
∫ t

0
dt ḟtE[〈ψt |∂f H (ft )|ψt 〉], (34)

reminiscent of the definition of work for classical systems.
Equation (34) resolves an ambiguity in a common definition
of the average work along nonequilibrium processes [77]. One
method for identifying the work is to differentiate the average
energy ut = Tr[H (ft )ρt ] with time,

∂tut = Tr[∂tH (ft )ρt ] + Tr[H (ft )∂tρt ], (35)

and then to identify the average work as wt = Tr[∂tH (ft )ρt ]
and the average heat as qt = Tr[H (ft )∂tρt ]. However, when
the trace is evaluated using a time-dependent basis, Eq. (35) is
no longer correct, and the separation of ∂tut into two parts is
not unique [46]. Equation (34) avoids this ambiguity, as it is
evaluated using state vectors instead of density matrices.

To illustrate the relationship between work, heat, and en-
ergy, I have numerically integrated the stochastic Schrödinger
equation [Eq. (12)] for a thermodynamic process where the
initial energy A = H (f0) and final energy B = H (fτ ) are
measured [58]. Plotted in Fig. 3 is the change in energy �Ut

[Eq. (28)], heat Qt [Eq. (25)], and work Wt [Eq. (32)] as a
function of time from t = 0 to τ = 80s along a representative
quantum trajectory beginning in energy eigenstate |2f0〉 and

031110-6



QUANTUM-TRAJECTORY APPROACH TO THE STOCHASTIC . . . PHYSICAL REVIEW E 85, 031110 (2012)

0.0 0.5 1.0 1.5 2.0

1

0

1

2

3

4

5

6

gt

U
t

0.0 0.5 1.0 1.5 2.0

1

0

1

2

3

4

5

6

gt

Q
t

0.0 0.5 1.0 1.5 2.0

1

0

1

2

3

4

5

6

gt

W
t

(a)

(b)

(c)

FIG. 3. Plots of (a) change in energy �Ut , (b) heat Qt , and
(c) work Wt as a function of time t from t = 0 to τ = 80 s
along a representative quantum trajectory with force protocol ft =√

2/(mω)νt initially in energy eigenstate |2f0 〉, whose final state is
measured to be |1fτ

〉. The additional work required to lower the energy
zero, wt = −ων2t2, has been neglected. The parameter values are
ω = ν = 10 Hz, λ = 0.5 Hz, δt = 0.1s, g = 0.025 Hz, r1/r0 = 0.75,
and m = 1 kg.

found at τ in state |1fτ
〉. The work to lower the energy zero,

wt = −(1/2)mω2
∫ t

0 ds ∂sf
2
s = −ων2t2, has been neglected

in Fig. 3 in order to highlight quantum effects. At two times,
gt ≈ 0.26, and 0.49, there is a discontinuous change in the
average energy in Fig. 3(a) when an atom jumps and exchanges
a quantum of heat with the reservoir, as depicted in Fig. 3(b).
In between the jumps, the average energy varies rapidly taking

on noninteger values, a signature that the oscillator’s state is in
a coherent superposition of instantaneous energy eigenstates.
This additional variation of the energy is accounted for by the
work in Fig. 3(c). Furthermore, when there are discontinuous
jumps the change in the energy is not completely due to the
flow of heat. As can be seen in Fig. 3(c), the work Wt changes
discontinuously as well. These jumps are a consequence of
the oscillator being in a superposition of energy eigenstates.
However, the additional work accrued during these jumps is
not work due to the variation of the external parameter ft , as is
typical of classical systems. Its origin is the sudden change in
the state vector triggered by the measurement of the outgoing
atom, though how this energy is transferred to the oscillator
remains unclear. Nevertheless, this definition of work provides
a consistent framework to describe the flow of energy between
the oscillator and its environment.

C. Second Law of Stochastic Thermodynamics

The second component of a quantum stochastic thermody-
namics is a definition of entropy and entropy production along
individual quantum trajectories.

I first define the change in entropy of the thermal reservoir.
The role of the thermal reservoir is played by the sequence
of atoms; they act as a very large depository for energy with
inverse temperature β. Specifically, before each thermody-
namic process we prepare a large collection of atoms each
either in their ground or excited states with relative probability
given by the Boltzmann weight [Eq. (16)]. Over the course of
the process, each atom interacts with the harmonic oscillator,
but the fraction of atoms that jump is small. As a result, the
relative fraction of atoms in the ground and excited states
will not deviate appreciably from the Boltzmann distribution.
Consequently the change in entropy of the reservoir at time t

along a particular quantum trajectory ψ(γ ) is proportional to
the energy absorbed by the thermal reservoir as heat,

dsr
t [ψ] = −βdQt [ψ]. (36)

Integrating gives the total change in reservoir entropy along
the process

�sr [ψ] =
∫ τ

0
dsr

t [ψ] = −βQτ [ψ]. (37)

In classical stochastic thermodynamics, the entropy of the
system is associated with the Shannon entropy of the system’s
phase space density. The quantum version of the Shannon
entropy is the von Neumann entropy, which at time t reads

S(ρt ) = −Tr[ρt ln ρt ]. (38)

From the definition of the density matrix in Eq. (13), we
may rewrite the von Neumann entropy as a classical statistical
average over quantum trajectories ψ(γ ),

S(ρt ) = −E[〈ψt | ln ρt |ψt 〉], (39)

where here ρt is the density matrix for an ensemble of
realizations [Eq. (13)] and evolves deterministically according
to the master equation in Eq. (14). The form of S in Eq. (39)
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suggests defining the trajectory-dependent system entropy
as [78]

st [ψ] = −〈ψt | ln ρt |ψt 〉. (40)

Following Seifert [2], one may attempt to develop a stochastic
differential equation for st [as in Eq. (29) for dUt ]; however,
there is no obvious compact expression, since ρt in general
does not commute with its time derivative. Over the course of
a trajectory that begins in state |a〉 and ends in state |b〉 the
change in the system’s entropy is

�s[ψ] = −〈ψτ | ln ρτ |ψτ 〉 + 〈ψ0| ln ρ0|ψ0〉
= − ln Pb + ln Pa, (41)

where in the second line I used that the density matrix is
diagonal at the beginning [Eq. (18)] and the end [Eq. (19)] of
the process.

Adding Eqs. (37) and (41), we find that the total entropy
production during a thermodynamic process is

�stot[ψ] = �s[ψ] + �sr [ψ]

= − ln Pb + ln Pa − βQτ [ψ], (42)

consistent with the definition proposed by Monnai [79]. In
Sec. IV I show that the average total entropy production
�Stot = E[�stot] is a measure of the irreversibility of the
thermodynamic process and is non-negative in accordance
with the second law of thermodynamics. Furthermore, the
average total entropy production agrees with the definition
introduced and analyzed previously by Breuer [80].

IV. DETAILED FLUCTUATION THEOREM

In this section I address the detailed fluctuation theorem
[2,14,20,23,81–87] in the context of quantum trajectories. The
detailed fluctuation theorem relates the probabilities to observe
particular microscopic trajectories along two thermodynamic
processes related by time reversal. It has been derived for a
wide class of dynamics; in each case, the detailed fluctuation
theorem identifies the source of time-reversal symmetry break-
ing during a thermodynamic process with the total entropy
production [86,88,89]. The generality of this observation
suggests that we may use the detailed fluctuation theorem
as a tool for ascertaining the entropy production during a
nonequilibrium thermodynamic process in situations where its
definition may not be obvious. Through verifying the detailed
fluctuation theorem for quantum trajectories, we will see that
the source of time-reversal symmetry breaking is the same as
the total entropy production �stot [Eq. (42)]; thereby, providing
evidence that the definition of entropy production in Sec. III C
is consistent with its role as a measure of irreversibility.

The detailed fluctuation theorem for the quantum trajecto-
ries of our forced harmonic oscillator relates the probability
to observe a quantum trajectory ψ(γ ) in the forward process
P [ψ] to the probability to observe the conjugate trajectory
ψ̃(γ̃ ) in the reverse process P̃ [ψ̃] as

ln
P [ψ]

P̃ [ψ̃]
= �stot[ψ], (43)

derived below. In quantum systems, the detailed fluctuation
theorem has been demonstrated previously in numerous

situations [5,18,19,33,46,50,64,79]. The essential ingredients
are the time-reversal symmetry of the Hamiltonian, and that
projective measurements are made at the beginning and at the
end of the process. Moreover, any collection of measurements
may be performed during the process without invalidating
Eq. (43) [44]. In this respect Eq. (43) is not novel, since the
Hamiltonian in Eq. (1) is time-reversal invariant; a thermo-
dynamic process, by definition, begins with the measurement
of the observable A and is terminated by a measurement of
the observable B; and the conditional evolution of the state
vector |ψt 〉 embodied by the stochastic Schrödinger equation is
merely a sequence of weak measurements. Nevertheless, I will
sketch the derivation of Eq. (43), since alternative approaches
sharpen our understanding.

Before deriving Eq. (43), let me comment on one of its
consequences. In particular, notice that Eq. (43) immediately
implies that �Stot = E[�stot] equals the relative entropy
D(f ||g) = ∫

dxf (x) ln[f (x)/g(x)] of P and P̃ ,

�Stot = D(P ||P̃ ) � 0, (44)

which is always non-negative (D � 0) [90]. The relative
entropy D(P ||P̃ ) is a measure of the distinguishability of P

and P̃ . Therefore, �Stot is a measure of how distinguishable a
forward process is from its time reverse [91]; it measures the
thermodynamic irreversibility of a process [89]. In particular,
the equality in Eq. (44) is reached only for reversible processes
where the forward process is indistinguishable from the reverse
process, P [ψ] = P̃ [ψ̃]. Note that, unlike the entropy in
macroscopic thermodynamics, which enters into the second
law of thermodynamics and also encodes information about
the properties of equilibrium states such as specific heats,
the entropy defined here reflects only the irreversibility of
a nonequilibrium thermodynamic process, except when the
thermodynamic process begins and ends in equilibrium.

To verify the detailed fluctuation theorem [Eq. (43)], we
calculate P [ψ] and P̃ [ψ̃]. To determine P and P̃ , let me
first note that within the quantum trajectory formalism the
stochastic evolution of the state vector is the result of a
sequence of weak measurements. Each measurement outcome
can be represented by a measurement operator � [92], whose
effect on any pure state |ψ〉 leads to an unnormalized state
vector |�〉 = �|ψ〉 that encodes the probability for that
outcome in its norm p(�) = 〈�|�〉 = 〈ψ |�†�|ψ〉. Similarly,
for a sequence of measurements, the norm of the unnormalized
state vector obtained by applying a series of measurement
operators equals the probability to observe that sequence of
outcomes. Therefore, the probability to observe any solution
of the stochastic Schrödinger equation, P [ψ], can be found
by determining the norm of the unnormalized state vector
resulting from the action of a series of measurement operators
describing the effects of observing a series of jumps or no
jumps in the sequence of atoms. These measurement operators
can be obtained from the structure of Eq. (12) [52,53,56,58].
Below I simply report the results in order to keep the present
discussion concise.

In the forward process, the evolution of the unnormal-
ized state vector between jumps is realized by an effective
time-evolution operator Ueff(t,s), which is the solution of

∂tUeff(t,s) = −iHeff(ft )Ueff(t,s), (45)
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with non-Hermitian effective Hamiltonian

Heff(f ) = H (f ) − i
gr0

2
ā
†
f āf − i

gr1

2
āf ā

†
f (46)

with initial condition U (s,s) = I . This deterministic evolution
is punctuated by discontinuous changes when a measured atom
jumps, induced by the jump operators

j−(t) =
√

dt gr1ā
†
t ,

(47)
j+(t) =

√
dt gr0āt ,

which satisfy

j−(t) = j
†
+(t)eβω/2. (48)

Notably, Eq. (48), originally derived by Crooks [64] in a
more general setting assuming the thermal reservoir is in
equilibrium, may be viewed as an operator extension of
detailed balance to quantum trajectories, relating an atom’s
transition between energy eigenstates to the energy absorbed
by the thermal reservoir as heat. With this notation, the
unnormalized state vector at time τ conditioned on γ =
{a; m1,t1; m2,t2; . . . ; mM,tM ; b} is

|�τ (γ )〉 = |b〉〈b|Ueff(τ,tN )jmM
(tM ) . . . jm1 (t1)Ueff(t1,0)|a〉

≡ |b〉〈b|L(γ )|a〉, (49)

and the probability to observe γ given that the initial state is
|a〉 is the norm of |�τ (γ )〉,

P [ψ |a] = 〈�τ (γ )|�τ (γ )〉. (50)

In the reverse process, the force protocol is reversed,
implying that ˙̃f t = −ḟτ−t ∝ −ν and that each appearance of
ν in the forward process must be replaced by −ν in the reverse
process. Consequently the reverse effective Hamiltonian at
time t that generates the deterministic (but non-Hermitian)
evolution of Ũeff(t,s), is

H̃eff(f̃t ) = H (f̃t ) − i
r0g

2
ã
†
t ãt − i

r1g

2
ãt ã

†
t , (51)

where the reverse displaced raising and lowering operators are
obtained from Eq. (8) by the substitution ν ↔ −ν as

ã
†
t = a

†
τ−t − iν/ω,

(52)
ãt = aτ−t + iν/ω.

The discontinuous jumps are induced by reverse jump opera-
tors

j̃−(t) =
√

dt gr1ã
†
t ,

(53)
j̃+(t) =

√
dt gr0ãt ,

related to the forward jump operators by

j−(t) = �j̃
†
+(τ − t)�−1eβω/2. (54)

The probability to observe the conjugate quantum trajectory
ψ̃(γ̃ ) conditioned on initiating the trajectory in state |b̃〉 is

given by the norm of the unnormalized state vector

|�̃τ (γ̃ )〉 = |ã〉〈ã|Ũeff(τ,τ − t1) · · ·
j̃m̃1 (τ − tN )Ũeff(τ − tN ,0)|b̃〉

≡ |ã〉〈ã|L̃(γ̃ )|b̃〉, (55)

as

P̃ [ψ̃ |b̃] = 〈�̃τ (γ̃ )|�̃τ (γ̃ )〉. (56)

To complete the derivation of Eq. (43), we note that the time
reversal invariance of the Hamiltonian, H (f ) = �H (f )�−1,
implies the relationship between effective time-evolution
operators,

Ueff(t,s) = �Ũ
†
eff(τ − s,τ − t)�−1, (57)

Combined with Eq. (54) this leads to a time-reversal symmetry
between L [Eq. (49)] and L̃ [Eq. (55)]

L(γ ) = �L̃†(γ̃ )�−1e−βQτ [ψ(γ )]/2, (58)

which, when substituted into the definitions of P [Eq. (50)]
and P̃ [Eq. (56)], gives

ln
P [ψ |a]

P̃ [ψ̃ |b̃]
= −βQτ [ψ]. (59)

Recalling that in a thermodynamic process the probability for
a quantum trajectory to start in state |a〉 is Pa [Eq. (18)] and
the probability in the reverse process to begin in state |b̃〉 is
P̃b [Eq. (22)], we find that the log of the ratio of P [ψ] =
P [ψ |a]Pa and P̃ [ψ̃] = P̃ [ψ̃ |b̃]P̃b is

ln
P [ψ]

P̃ [ψ̃]
= − ln P̃b + ln Pa − βQτ [ψ]. (60)

Equation (60) is valid for any Pa and P̃b. However, as in
classical stochastic thermodynamics, there are two noteworthy
special cases [2]. First, when the initial density matrix of
the reverse process is the final density matrix of the forward
process, ρ̃0 = ρτ = ρB , we recover Eq. (43) equating the total
entropy production to the irreversibility of the process. A
second special case of Eq. (60) connects the work dissipated
to irreversibility. Consider a forward process where the initial
observable is the initial Hamiltonian, A = H (f0), the final
observable is the final Hamiltonian B = H (fτ ), and both
the forward and reverse processes are started in equilibrium:
ρ0 = ρ

eq
f0

and ρ̃0 = ρ
eq
fτ

, in which case, Eq. (60) reduces to

ln
P [ψ]

P̃ [ψ̃]
= β(Wτ [ψ] − �F ), (61)

where �F is the equilibrium free-energy difference between
the equilibrium ensembles with external parameter values f0

and fτ . Thus, the work dissipated, the work done in excess of
the free-energy difference, has a clear physical interpretation
as a measure of the irreversibility of a thermodynamic process
where the system is driven between two equilibrium states.

To conclude this section, I comment on the work fluctuation
relations. In particular, Eq. (61) immediately leads to a work
fluctuation relation relating the probability to observe W work
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in the forward process p(W ) to the probability to observe −W

work in the reverse process p̃(−W ) [93],

p(W )

p̃(−W )
= eβ(W−�F ), (62)

and its integral version, the nonequilibrium work fluctuation
theorem [21],

〈e−β(W−�F )〉 = 1, (63)

where here the angled brackets 〈·〉 denote an ensemble
average over work values. Similar considerations apply to a
detailed and integral fluctuation relation for the total entropy
production [2].

V. DISCUSSION AND PERSPECTIVES

In this article I have formulated a quantum stochastic
thermodynamics for quantum trajectories. As a concrete
example, I investigated a forced quantum harmonic oscillator.
The oscillator was coupled to a thermal reservoir composed
of sequence of two-level atoms, which allowed us to monitor
the energy transfer to the atoms and consequently the thermal
reservoir leading to a physically motivated definition of heat.
In essence, we are repeatedly measuring the environment
and not the system directly. However, since the environment
is broken up into individual quantum systems that interact
with the oscillator one at a time, we are able to avoid any
practical and conceptual difficulties with measuring an infinite
thermal reservoir. Following the definition of heat, I introduced
path-dependent definitions of work and entropy for individual
quantum trajectories in Sec. III. Their connection with irre-
versibility was made in Sec. IV through the development of a
detailed fluctuation theorem for quantum trajectories.

The present discussion focused on a particular model.
Nevertheless, the formulas presented in Sec. III for work,
heat, and entropy could be applied to other systems within the
quantum trajectory formalism. The central issue is whether
the measurement scheme can be given a consistent thermo-
dynamic interpretation, as in the present model where the
atoms played the dual role of quantum probe and thermal
reservoir. This opens the interesting question of what other
monitoring schemes (so-called unravelings of the master
equation), have consistent stochastic-thermodynamic interpre-
tations [52,56,57,63].

Within the quantum trajectory formalism, quantum trajec-
tories are the stochastic evolution of the system’s state vector
through Hilbert space. A seemingly alternative definition of a
trajectory is offered by the consistent (or decoherent) histories
[94] interpretation of quantum mechanics. However, Brun has
demonstrated that quantum trajectories can be consistently
represented within the consistent histories framework [95].
A distinct perspective is obtained by viewing these quantum
trajectories as a particular unitary dilation of the damped
harmonic oscillator [96]. A unitary dilation of a quantum
Markov semigroup is a representation of the irreversible
dynamics as a unitary evolution on a larger Hilbert space,
such that when projected onto the system’s Hilbert space we
recover the original irreversible evolution. Here the irreversible
dynamics of the harmonic oscillator is dilated onto the unitary

dynamics of the oscillator plus the sequence of atoms (see, for
example, Ref. [68]).

A principal motivation for the present study was to develop
trajectory-dependent definitions of work, heat, and entropy that
could be addressed experimentally. The quantum harmonic
oscillator can be experimentally realized as a single mode of
an electromagnetic field in a microwave cavity [59–61], and
the thermal bath can be engineered by passing a sequence
of two-level atoms through the cavity one at a time. In
particular, the work fluctuation relations can be verified
experimentally, since it is feasible to construct and measure
with a quantum nondemolition measurement the individual
energy eigenstates of the electromagnetic field [59]. The
greatest difficulty in verifying the predictions of quantum
stochastic thermodynamics is the efficient detection of the
atoms once they have interacted with the field. Quantum
stochastic thermodynamics requires a near perfect detection
efficiency, whereas, modern experimental setups only reach
40% [59]. Nevertheless, quantum stochastic thermodynamics
could be investigated in other quantum systems where the
quantum trajectory formalism has been applied, such as quan-
tum dots [97], nanomechanical resonators [98], or perhaps in
quantum cyclotrons, where thermal quantum jumps have been
observed [99].

Future research directions are manifold. Particularly in-
teresting is a thermodynamic analysis of effects with a
purely quantum origin, such as the work required to generate
entanglement or the entropy produced in a squeezed thermal
bath. The stochastic Schrödinger equation [Eq. (12)] for the
linearly forced harmonic oscillator may be of interest in its
own right. For example, in the thermodynamic adiabatic limit,
Eq. (12) could be used to analyze geometric phases in open
quantum systems.
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APPENDIX A: DERIVATION OF THE STOCHASTIC
SCHRÖDINGER EQUATION

In this appendix I derive the stochastic Schrödinger
equation [Eq. (12)] for the time evolution of the one-
dimensional forced harmonic oscillator conditioned on contin-
uously monitoring its interaction with a sequence of two-level
atoms, by adapting the method used in Refs. [62,67,100].
The stochastic Schrödinger equation is an effective equation
of motion that is valid for times long compared to the
oscillator-atom interaction time δt , given that only one atom
interacts with the harmonic oscillator at a time; each atom
interacts for the same amount of time, δt ; the interaction time
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is short, λδt � 1; the coupling is weak, λ � ω; and the mean
number n̄t = 〈ā†

t āt 〉t is small, λδtn̄t � 1.
The derivation of the stochastic Schrödinger equation

proceeds by evolving the oscillator-atom state vector |χt 〉 for
a short time from t0 to t0 + δt using the Schrödinger equation.
We then calculate the probabilities to measure the atom in
its ground and excited states in order to demonstrate that the
atom’s transitions are described by a Poisson process.

The oscillator-atom state vector at time t , |χt 〉, is the
solution to the Schrödinger equation

∂t |χt 〉 = −iH(ft )|χt 〉, (A1)

where the Hamiltonian

H(f ) = ω
(
a
†
f af + 1

2

) − 1
2mω2f 2 + ωσ †σ

+ λ(ā†
f σ + āf σ †) (A2)

is a sum of H (f ) [Eq. (3)], HA [Eq. (5)], and HI (f ) [Eq. (9)].
Since each atom is prepared independently from the oscillator,
the initial condition at t0 is a factorized state, |χt0〉 = |ψt0〉|φt0〉,
with harmonic oscillator state vector |ψt0〉 and atom state
vector |φt0〉.

The analysis is facilitated by first switching to the adiabatic-
interaction picture [101]. To this end, let me introduce the
translation operator

A(f ) = e−ipf , (A3)

whose action on the position operator x and lowering operator
āf is given by

A†(f )xA(f ) = x + f,
(A4)

A†(f )āf A(f ) = ā.

Using A, I introduce the adiabatic-picture state vector,

|χt 〉A = A†(ft )|χt 〉, (A5)

whose equation of motion is found by substituting Eq. (A1)
into the time derivative of |χt 〉A [Eq. (A5)] and exploiting the
properties of A in Eq. (A4),

∂t |χt 〉A = −iHA(ft )|χt 〉A, (A6)

where the adiabatic Hamiltonian is

HA(ft ) = A†(ft )H(ft )A(ft ) + iȦ†(ft )A(ft ) (A7)

= ω
(
a†a + 1

2

) − 1
2mω2f 2

t + ωσ †σ

−pḟt + λ(ā†σ + āσ †). (A8)

Next, we shift to the interaction picture using the operator
K(t,t0), defined as the solution to the differential equation

∂tK(t,t0) = −i
[
ω

(
a†a + 1

2

) − 1
2mω2f 2

t

+ωσ †σ − pḟt

]
K(t,t0) (A9)

with initial condition K(t0,t0) = I . The solution may be
obtained analytically [102]

K(t,t0) = exp

[
−iω

(
a†a + σ †σ + 1

2

)
(t − t0)

+ i

2
mω

∫ t

t0

dx f 2
x

]
eiβt,t0 D(αt,t0 ), (A10)

where, recalling that ft = √
2/(mω)νt ,

αt,t0 = −
√

mω

2

∫ t

t0

dxḟxe
iω(x−t0) (A11)

= i
ν

ω
(eiω(t−t0) − 1), (A12)

βt,t0 = −mω

2

∫ t

t0

dx

∫ x

t0

dy ḟyḟx sin[ω(y − x)] (A13)

= ν2

ω

{
t − t0 − 1

ω
sin[ω(t − t0)]

}
, (A14)

and

D(η) = exp(ηa† − η∗a) (A15)

is the displacement operator, whose effect on the lowering
operator a is

D†(η)aD(η) = a + η. (A16)

The adiabatic-interaction state vector is defined as

|χt 〉AI = K†(t,t0)|χt 〉A. (A17)

The equation of motion for |χt 〉AI is obtained by differentiating
with time Eq. (A17), and then substituting in Eqs. (A6), (A8),
(A10), and (A15), followed by (A16), to conclude that

∂t |χt 〉AI = −iHAI (ft )|χt 〉AI , (A18)

where the adiabatic-interaction Hamiltonian is

HAI (ft ) = K†(t,t0)HA(ft )K(t,t0) + iK̇†(t,t0)K(t,t0) (A19)

= λ(ā†σ + āσ †). (A20)

The next step is to solve Eq. (A18) perturbatively for
short times. To clearly identify the approximations involved, I
scale time s = λt , scale the adiabatic-interaction Hamiltonian
H̃AI = HAI/λ, and scale the force, ft = √

2/(mω)gνt , by
introducing the dimensionless function gνt = νt . In terms of
these scaled quantities, the formal solution of Eq. (A18), sup-
pressing the subscripts AI in order to simplify the notation, is

|χs〉 = |χs0〉 +
∞∑

k=1

(−i)k
∫ s

s0

ds1

· · ·
∫ sk−1

s0

dsk H̃ (gν̄s1 ) · · · H̃ (gν̄sk
)|χs0〉, (A21)

where ν̄ = ν/ω. Setting s = s0 + δs and expanding Eq. (A21)
to second order in δs = λδt � 1, we find

|χs0+δs〉 ∼ |χs0〉 − iδsH̃ (gν̄s0 )|χs0〉

− δs2

2
[H̃ (gν̄s0 )H̃ (gν̄s0 ) + i∂sH̃ (gν̄s0 )]|χs0〉, (A22)

∼ |χs0〉 − iδs(ā†σ + āσ †)|χs0〉

− δs2

2
(ā†σ + āσ †)2|χs0〉, (A23)

where in the second line I substituted in the definition of H̃AI

in Eq. (A20). The validity of the asymptotic expansion in
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Eq. (A22) [or Eq. (A23)] requires that each successive term is
smaller than the previous. In particular, we must demand that

δs
ν

ω
� 1. (A24)

Since δs � 1, ν/ω cannot be too large, restricting the rate at
which the force varies.

Now, let us consider the case when the atom is initially in
its ground state at s0. Substituting |φs0〉 = |0〉 into Eq. (A23)
leads to

|χs0+δs〉 ∼ |ψs0〉|0〉 − iδsā|ψs0〉|1〉 − δs2

2
ā†ā|ψs0〉|0〉. (A25)

We then measure the state of the atom. After the measurement,
the unnormalized state vector of the harmonic oscillator
conditioned on the outcome |0〉 is obtained by projecting
Eq. (A25) onto |0〉,

|ψ̃0(s0 + δs)〉 ∼ |ψs0〉 − δs2

2
ā†ā|ψs0〉 ≡ �0|ψs0〉. (A26)

Likewise, when the atom is found to be in the excited state,
the unnormalized state vector of the harmonic oscillator
conditioned on the outcome |1〉 is

|ψ̃1(s0 + δs)〉 ∼ −iδs ā|ψs0〉 ≡ �1|ψs0〉. (A27)

We are interested in time scales long compared to δs, during
which many atoms interact with oscillator. Therefore, let us
consider the time interval �s = Nδs, with N � 1, but the
probability for the atom to jump to the excited state remains
small Nδs2n̄s0 � 1. Thus, the probability that more than one
jump is observed during �s is negligible. The probability that
no jump occurs during �s is determined from the norm of the
unnormalized state vector conditioned on measuring each of a
sequence of N atoms in state |0〉, which according to Eq. (A26)
is

|ψ̃nj (�s)〉 = �N
0 |ψs0〉 (A28)

∼ (
1 − 1

2Nδs2 ā†ā
)|ψs0〉. (A29)

The probability that no jumps occur is then

Pnj (�s) = 〈ψ̃nj (�s)|ψ̃nj (�s)〉, (A30)

which simplifies to

Pnj (�s) ∼ 1 − Nδs2〈ā†ā〉s0 . (A31)

The probability that only one jump is observed at some point
during the interval �s is obtained from the unnormalized
oscillator state vector conditioned on measuring the mth atom
in the excited state∣∣ψ̃m

j (�s)
〉 = �N−m

0 �1�
m
0 |ψs0〉, (A32)

∼ −iδs ā|ψs0〉, (A33)

where in the second line I have substituted in Eq. (A27)
and retained terms only of order δs. Noticeably Eq. (A33)
is independent of m. With the aid of Eq. (A33), we find that

the probability that one jump occurs at some point during �s,

Pj (�s) =
N−1∑
m=0

〈
ψ̃m

j (�s)|ψ̃m
j (�s)

〉
(A34)

∼ Nδs2〈ā†ā〉s0 . (A35)

We now see from Eq. (A35) that the probability to observe
a transition during �s is of order �s = Nδs, which is an in-
dication that the series of jumps observed during the evolution
of the oscillator is described by a Poisson process. Moreover, a
majority of the time no jump will be observed, and the change
in the state vector according to Eq. (A29) will be small and of
order �s. With probability Pj [Eq. (A35)], though, the atom
will jump and the state vector will change dramatically under
the action of the lowering operator ā [Eq. (A33)]. We may
formulate this observation mathematically by introducing a
stochastic increment for the Poisson process, �N+

t , which is
typically zero in any small time interval �s = �t/λ, but with
probability Pj is one. Specifically, the Poisson increment is
defined by the relations

(�N+
t )2 = �N+

t (A36)

and

E[�N+
t ] = g�t〈a†a〉t , (A37)

where I have replaced s = λt and introduced the jump
(or decay) rate g = λ2δt . Using �N+

t , we may combine
Eqs. (A29) and (A33) as

�|ψ̃t0〉 = − 1
2g�t ā†ā|ψt0〉 + �N+

t (ā|ψt0〉 − |ψt0〉), (A38)

which upon taking the infinitesimal limit �t → dt reads

d|ψ̃t0〉 = − 1
2gdt ā†ā|ψt0〉 + dN+

t (ā|ψt0〉 − |ψt0〉). (A39)

To complete the derivation, we recognize that repeating the
above sequence of steps with an atom initially in the excited
state leads to Eq. (A39) with the replacement ā† ↔ ā. The
stochastic Schrödigner equation then follows by combining
Eq. (A39) with ā† ↔ ā, each weighted by the likelihood that
an atom is initially in its ground state r0 or an atom is initially
in its excited state r1, respectively. Equation (12) is finally
recovered by leaving the adiabatic-interaction picture through
inverting Eqs. (A6) and (A17), and normalizing the state vector
over the small interval dt .

APPENDIX B: ROTATING WAVE APPROXIMATION
AND THE TIME-DEPENDENT JAYNES-CUMMINGS

INTERACTION HAMILTONIAN

In this appendix I argue that the interaction Hamiltonian
HI (ft ) in Eq. (9) is a physically relevant interaction. I
will demonstrate that HI (ft ) is the secular (or rotating
wave) approximation of a more general interaction and well
approximates the dynamics on relevant time scales.

An experimental realization of a quantum harmonic oscil-
lator is an electromagnetic field confined to a superconducting
microwave cavity [59–61]. In such experiments the force
driving the harmonic oscillator corresponds to time-dependent
classical macroscopic charges moving deterministically. The
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two-level systems correspond to atoms traversing the cavity.
Since the atoms are small compared to the wavelength of
the electromagnetic field, their interaction is well described
in the dipole approximation. Using the notation for the
harmonic oscillator, the atom-field interaction in the dipole
approximation in the presence of a classical external field
is [74]

V (ft ) = �

2
(x − ft )(σ

† + σ ), (B1)

where � is the coupling strength, which depends on the dipole
moment of the atom. Substituting in the definitions of at and
a
†
t [Eq. (2)], we find

V (ft ) = λ(a†
t + at )(σ

† + σ ), (B2)

where λ = �/
√

2mω.
By applying a perturbative analysis to the equation of

motion for the coupled oscillator and atom, I will verify that
when the coupling is weak,

ε = λ

ω
� 1, (B3)

we can ignore the terms in V [Eq. (B2)] that do not conserve
energy (atσ and a

†
t σ

†), and approximate the evolution by
HI (ft ), at the expense of replacing at and a

†
t by the displaced

operators āt and ā
†
t .

The dynamical evolution of the time-evolution operator
U (t) for the coupled oscillator-atom system in the dipole
approximation is generated by the sum of H (ft ) [Eq. (3)], HA

[Eq. (5)] and V (ft ) [Eq. (B1)] according to the Schrödinger
equation

∂tU (t) = −i[H (ft ) + HA + V (ft )]U (t), (B4)

with initial condition U (0) = I . For clarity, we switch to the
adiabatic-interaction picture [101]. To obtain the adiabatic-
interaction time-evolution operator, we apply the operators
K†(t,0) [Eq. (A10)] and A†(ft ) [Eq. (A3)] to U as

UAI (t) = K†(t,0)A†(ft )U (t). (B5)

A differential equation for UAI is obtained by differentiating
Eq. (B5) with time, substituting in the definitions of K

[Eq. (A10)] and A [Eq. (A3)], exploiting their properties in
Eqs. (A4) and (A16), and finally scaling time s = ωt to make
the ε dependence explicit:

∂sUAI (s) = −iεh(fs)UAI (s), (B6)

where

h(fs) = (a† + α∗
s,0)σ + (a + αs,0)σ †

+ (a + αs,0)σe−2is + (a† + α∗
s,0)σ †e2is , (B7)

and αs,0 = i(ν/ω)(eiωs − 1) [Eq. (A12)].
To solve Eq. (B6) perturbatively using a two-time-scale

analysis, I introduce a slow time τ = εs and develop an
asymptotic expansion for UAI in s and τ ,

UAI (s) ∼ u0(s,τ ) + εu1(s,τ ) + · · · . (B8)

Replacing ∂s → ∂s + ε∂τ in Eq. (B6) and substituting in
Eq. (B8) leads to the differential equation

(∂s + ε∂τ )[u0(s,τ ) + εu1(s,τ ) + · · ·]
= −iεh(fs)[u

0(s,τ ) + εu1(s,τ ) + · · ·], (B9)

which we solve order by order in ε in order to calculate the
terms in the asymptotic expansion of UAI in Eq. (B8).

Equating terms of order ε0 in Eq. (B9), we deduce the
differential equation for u0,

∂su
0(s,τ ) = 0, (B10)

whose solution is

u0(s,τ ) = F (τ ), (B11)

where F (τ ) is an unknown function of τ only, with initial value
F (0) = I chosen to satisfy the initial condition UAI (0) = I .
We fix F (τ ) by demanding that εu1 remain smaller than u0

on times s = O(ε−1) [λt = O(1)], maintaining the validity of
the asymptotic expansion in Eq. (B8) up to times s = O(ε−1).
To this end, we examine the term of order ε in Eq. (B9):

∂su
1(s,τ ) + ∂τu

0(s,τ ) = −ih(fs)u
0(s,τ ). (B12)

Its formal solution, after substituting in Eqs. (B7), (B11), and
(A12), is

u1(s,τ ) = G(τ ) − s[i(ā†σ + āσ †)F (τ ) + ∂τF (τ )]

− i
ν

ω
[(e−is − 1)σ + (eis − 1)σ †]F (τ )

− i

∫ s

0
dx[(a +αx,0)σe−2ix+ (a† + α∗

x,0)σ †e2ix]F (τ ),

(B13)

where G(τ ) is a function of τ alone with initial condition
G(0) = 0. Clearly, at times s = O(ε−1), εu1 will be the same
order of u0, unless we set the term growing linearly in s to
zero:

∂τF (τ ) = −i(ā†σ + āσ †)F (τ ). (B14)

This is a differential equation for F with initial condition
F (0) = I , whose solution is

F (τ ) = e−iτ (ā†σ+āσ †). (B15)

To lowest order in ε, the approximate solution for UAI is
obtained by substituting Eq. (B15) into Eq. (B8) and replacing
s = ωt ,

UAI (t) ∼ e−iλt(ā†σ+āσ †), (B16)

valid up to times

εs = λt = O(1). (B17)

An identical expression to Eq. (B16) for UAI would be obtained
starting from HI (ft ). Therefore, the full evolution of U can be
approximated up to times λt = O(1) using HI (ft ) as long as
λ/ω � 1.

031110-13



JORDAN M. HOROWITZ PHYSICAL REVIEW E 85, 031110 (2012)

[1] H. B. Callen, Thermodynamics and an Introduction to Thermo-
statistics, 2nd ed. (John Wiley and Sons, New York, 1985).

[2] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[3] T. Schmiedl, T. Speck, and U. Seifert, J. Stat. Phys. 128, 77

(2007).
[4] T. Schmiedl and U. Seifert, J. Chem. Phys. 126, 044101 (2007).
[5] M. Esposito, U. Harbola, and S. Mukamel, Phys. Rev. E 76,

031132 (2007).
[6] U. Seifert, Eur. Phys. J. B 64, 423 (2008).
[7] M. Esposito and C. Van den Broeck, Phys. Rev. Lett. 104, 090601

(2010).
[8] K. Sekimoto, Prog. Theor. Phys. Supp. 130, 17 (1998).
[9] K. Sekimoto, Phys. Rev. E 76, 060103(R) (2007).

[10] K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics,
Vol. 799 (Springer, Berlin, 2010).

[11] C. Tietz, S. Schuler, T. Speck, U. Seifert, and J. Wrachtrup,
Phys. Rev. Lett. 97, 050602 (2006).

[12] V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger,
Phys. Rev. Lett. 96, 070603 (2006).

[13] T. Speck, V. Blickle, C. Bechinger, and U. Seifert, Europhys.
Lett. 79, 30002 (2007).
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