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Validity of nonequilibrium work relations for the rapidly expanding quantum piston
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Recent work by Teifel and Mahler [Eur. Phys. J. B 75, 275 (2010)] raises legitimate concerns regarding
the validity of quantum nonequilibrium work relations in processes involving moving hard walls. We study
this issue in the context of the rapidly expanding one-dimensional quantum piston. Utilizing exact solutions of
the time-dependent Schrödinger equation, we find that the evolution of the wave function can be decomposed
into static and dynamic components, which have simple semiclassical interpretations in terms of particle-piston
collisions. We show that nonequilibrium work relations remain valid at any finite piston speed, provided both
components are included, and we study explicitly the work distribution for this model system.
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I. INTRODUCTION

In the past two decades, much attention has been devoted
to theoretical predictions and experimental investigations
regarding the fluctuations of small systems away from thermal
equilibrium. These predictions include the nonequilibrium
work relation [1,2]

〈e−βW 〉 = e−β�F (1)

and the corresponding fluctuation theorem derived by Crooks
[3–5],

ρF (+W )

ρR(−W )
= eβ(W−�F ), (2)

which pertain to the work (W ) performed on a system driven
out of equilibrium. (See Ref. [6] for details and a recent review
of these and related results.) Most of the research in this area
has concerned systems evolving under classical deterministic
or stochastic dynamics. However, the past few years have seen
an increased focus on the fluctuations of quantum systems
driven away from equilibrium [7].

While the derivation of Eq. (1) for an isolated quantum
system is straightforward and rests on familiar properties of
unitary evolution [8–11], Teifel and Mahler (TM) [12] have
recently presented a calculation suggesting that Eq. (1) [and, by
extension, Eq. (2)] might be violated for the one-dimensional
expanding quantum piston. In this familiar model system, the
wave function describing a particle inside a box evolves in
time as the length of the box is increased (Fig. 1) or decreased.
Although TM focus specifically on this simple model, their
analysis has broader implications, raising the possibility that
Eqs. (1) and (2) might generically be violated for processes
involving the motion of hard walls. In such situations, the
system’s Hilbert space changes with time, and questions of
unitarity must be handled with care. This feature has a classical
counterpart [13]: the phase space accessible to a classical
particle confined by hard walls changes with time as those
walls move.

In the classical setting, processes involving moving bound-
aries have proven to be instructive [13–17], deepening our un-

derstanding of nonequilibrium work relations by highlighting
apparent paradoxes and counterintuitive features. In this paper,
we use exact solutions of the time-dependent Schrödinger
equation [18] to investigate the validity of Eq. (1) for an
expanding quantum piston. We note that a related but not
identical process involves the expansion of a single-particle
gas into a vacuum, after the sudden removal of a partition
[12,13,19]. In the present paper, however, we restrict our
attention to processes involving expansion (or compression)
against a moving piston.

In what follows, we first sketch the usual derivation of
Eq. (1) for an isolated quantum system [Eqs. (3)–(8)], as well
as an apparent counterargument that suggests that Eq. (1) is
violated for the quantum piston [Eqs. (9)–(11)]. We then apply
the exact results of Ref. [18] to the case in which the piston
moves outward at speed v. We find that Eq. (1) is valid for any
finite pulling speed, which seems to contradict the analysis in
Eqs. (9)–(11). We then consider the limit v → ∞, and we find
that the apparent discrepancy has an appealing semiclassical
interpretation that parallels the purely classical analyses of
Refs. [13–16].

II. RAPIDLY EXPANDING QUANTUM PISTON AND
NONEQUILIBRIUM WORK RELATIONS

Consider a quantum system whose parameter-dependent
Hamiltonian Ĥ λ has a discrete energy spectrum:

Ĥ λ |mλ〉 = Eλ
m |mλ〉, (3)

with m = 0,1,2, . . . . We use superscripts to indicate the value
of the externally controlled parameter, λ, which for the case
of the quantum piston is the position of the piston itself,
equivalently the length of the box. Now imagine that this
system is subjected to the following process. (i) With the
parameter fixed at λ = A, the system is equilibrated with a
reservoir at temperature β−1; the reservoir is then disconnected
and the energy of the system is measured. At this point,
the system is in a pure state |mA〉, set by the outcome of
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FIG. 1. (Color online) Schematic depiction of a quantum piston.
A quantum particle is confined by hard walls, one of which acts as
an externally controlled piston. We focus on the case in which the
piston is pulled outward at a speed that is much greater than the initial
thermal speed of the particle.

the energy measurement. (ii) The system now evolves under
Schrödinger’s equation, from time t = 0 to t = τ , as the
parameter is varied from A to B according to a schedule, or
protocol, λt . The energy is then measured once more, resulting
in “collapse” into an eigenstate |nB〉 of Ĥ B . Following Refs.
[8–11], we identify the work performed on the system with the
net change in its energy:

W ≡ EB
n − EA

m. (4)

By repeating this process, we generate an ensemble of
realizations, each defined by an initial state |mA〉 and a final
state |nB〉. The initial states are distributed according to

P eq,A
m = 1

ZA

e−βEA
m , (5)

where ZA = ∑
m e−βEA

m = e−βFA is the partition function, and
the final states are distributed according to the conditional
distribution

P (nB |mA) = |〈nB |Û |mA〉|2, (6)

where Û is the time-evolution operator that describes evolution
under Schrödinger’s equation from t = 0 to τ . Combining
Eqs. (4)–(6), the left-hand side of Eq. (1) can now be evaluated:

〈e−βW 〉 =
∑
m

P eq,A
m

∑
n

P (nB |mA) e−βW

= 1

ZA

∑
n

e−βEB
n sn, (7)

where

sn ≡
∑
m

P (nB |mA) =
∑
m

〈nB |Û |mA〉 〈mA|Û †|nB〉. (8)

At this point, one normally argues that the sum
∑

m |mA〉 〈mA|
is the identity operator, hence sn = 1 and the right-hand side
of Eq. (7) becomes ZB/ZA = e−β�F , completing the proof.

Teifel and Mahler [12] correctly point out that this argument
requires care if the eigenstates of ĤA do not span the

Hilbert space of Ĥ B . For a quantum piston whose length
is increased from λ0 = A to λτ = B at speed v, the states
|mA〉 are restricted to the interval 0 < x < A, whereas the final
Hilbert space supports states extending over the wider interval
0 < x < B. If ψ(x) = 〈x|ψ〉 is a wave function belonging
to the Hilbert space of Ĥ B , then the operator

∑
m |mA〉 〈mA|

effectively “chops off” a portion of this wave function:∑
m

〈x|mA〉〈mA|ψ〉 = θ (A − x) ψ(x) , (9)

where θ (·) is the unit step function. We conclude that∑
m |mA〉 〈mA| is not the identity operator when it acts in

the Hilbert space spanned by eigenstates of Ĥ B . Hence the
derivation described in the preceding paragraph does not
automatically apply to the quantum piston, and this raises
concerns regarding the validity of Eq. (1) in that context.

As a limiting case, let us analyze the infinitely fast
expansion of the piston, v → ∞. The sudden approximation
[20] suggests that the wave function then remains in its initial
state,

lim
v→∞ Û |mA〉 = |mA〉. (10)

Combining Eqs. (8)–(10) leads to

lim
v→∞ sn

?=
∞∑

m=1

〈nB |mA〉 〈mA|nB〉 =
∫ A

0
dx |φn(x; B)|2

= 1

r
− sin(2πn/r)

2πn
< 1, (11)

where r ≡ B/A and the wave function

φn(x; λ) =
√

2

λ
sin

(nπx

λ

)
(12)

describes the nth eigenstate of Ĥ λ. [The notation
?= indicates

that we question the validity of the first step in Eq. (11).]
Substitution of Eq. (11) (sn < 1) into Eq. (7) implies a
violation of Eq. (1). In the opposite limit, namely adiabatic
expansion, v → 0, TM find that Eq. (1) is satisfied. These
considerations suggest that for the expansion of a quantum
piston at finite speed v, Eq. (1) is only approximately valid,
but the approximation becomes exact in the adiabatic limit,
v → 0.

In what follows, we will argue that in fact sn = 1 for all
finite values of n and v, and therefore

lim
v→∞ sn = 1, (13)

in contradiction with Eq. (11). By Eq. (7), our conclusion
implies that Eq. (1) is valid for any finite piston speed.

For a quantum piston expanding at speed v from an initial
length λ0 = A, a set of independent solutions to the time-
dependent Schrödinger equation can be written as [18]

�l(x,t) = exp

[
i

h̄λt

(
1

2
Mvx2 − EA

l At

)]
φl(x; λt ),

(14)
l = 1,2, . . . ,

where M denotes the mass of the particle, and EA
l =

l2π2h̄2/2MA2 is the lth eigenenergy of the system at t = 0.
The wave functions �l(x,t) form a complete orthonormal set,
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〈�k|�l〉 = δkl , but are not eigenstates of Ĥ λt . [The φl’s defined
in Eq. (12) are the eigenstates.] A general solution of the
time-dependent Schrödinger equation takes the form

(x,t) =
∞∑
l=1

cl �l(x,t), (15)

where the time-independent coefficients cl are set by the initial
wave function:

cl =
∫ A

0
�∗

l (x,0)(x,0) dx. (16)

For initial conditions |(0)〉 = |mA〉, these coefficients are
(setting h̄ = M = 1)

cl(m) = 2

A

∫ A

0
e−ivx2/2A sin

(
lπx

A

)
sin

(mπx

A

)
dx,

(17a)

and the transition matrix element to the state |nB〉 at the final
time τ is

〈nB |Û |mA〉 = 〈nB |(τ )〉

=
∞∑
l=1

cl(m)
∫ B

0
φ∗

n(x; B) �l(x,τ ) dx. (17b)

Equations (6) and (17) give the transition probability
P (nB |mA) in terms of one-dimensional integrals that are easily
computed numerically. This transition probability satisfies
normalization:∑

n

P (nB |mA) =
∫ B

0
dx |〈x|Û |mA〉|2 = 1. (18)

Although we have considered the expansion of a quantum
piston, Eq. (14) is equally valid for compression [18]. By
reversing the roles of A and B and the roles of m and n and
by replacing v with −v [in Eq. (17)], we obtain the transition
probability P̄ (mA|nB) from the nth eigenstate of Ĥ B to the
mth eigenstate of ĤA, where the notation P̄ indicates the
compression process. This transition probability also satisfies
normalization:∑

m

P̄ (mA|nB) =
∫ A

0
dx |〈x|Û ′|nB〉|2 = 1, (19)

where Û ′ is the time-evolution operator for the compression
process.

In the Appendix, we provide explicit expressions for
P (nB |mA) and P̄ (mA|nB), and using these expressions we
directly verify the relation

P (nB |mA) = P̄ (mA|nB). (20)

It should be clear that this relation is precisely what we expect
from time-reversal invariance (Û ′ = Û †); see, e.g., Eq. (56) of
Ref. [7]. Using Eq. (20), we can now transform the sum over
initial states in Eq. (8) into a sum over final states:

sn ≡
∑
m

P (nB |mA) =
∑
m

P̄ (mA|nB) = 1 (21)

using Eq. (19) in the last step. Since this result is independent
of v, we conclude that Eq. (1) is valid at any finite speed of
expansion.

To obtain Eq. (2) by similar means, we follow Tasaki [9]
and write explicit expressions for the forward and reverse
work distributions (corresponding to piston expansion and
compression, respectively):

ρF (W ) = Z−1
A

∑
m

e−βEA
m

∑
n

P (nB |mA) δ
(
W − EB

n + EA
m

)
,

ρR(W ) = Z−1
B

∑
n

e−βEB
n

∑
m

P̄ (mA|nB) δ
(
W − EA

m + EB
n

)
.

(22)

For every realization mA → nB that gives a particular work
value during the forward process, there is a corresponding
realization nB → mA that gives the opposite work value during
the reverse process. Combining this observation with Eqs. (20)
and (22), we obtain Eq. (2) [9].

Up to this point, we have used the symmetry relation,
Eq. (20), to show that sn = 1 for any finite speed v, and
therefore that Eqs. (1) and (2) remain valid for the quantum
piston. However, this analysis does not yet explain why
Eq. (11) gives a contradictory result in the limit v → ∞.
To address this issue, in the following paragraphs we present
numerical evidence that the value of sn is naturally expressed
as the sum of a static and a dynamic contribution, reflected
in the two-peak structure seen in Figs. 2(a)–2(c). The sum of
these contributions is unity for any finite v [as per Eq. (21)],
but Eq. (11) accounts only for the static contribution, thus
giving s

Eq. (11)
n < 1. Here and in the following discussion, we

use the notation s
Eq. (11)
n to denote the value for sn predicted

(incorrectly) by Eq. (11), in the limit v → ∞. After presenting
the numerical results, we suggest a semiclassical interpretation
in terms of piston-particle collisions.

We have used Eq. (17) to evaluate P (nB |mA) numerically.
In Fig. 2, this quantity is plotted for fixed final state n = 3 as
a function of initial state m = 1,2, . . . , for piston expansion
from A = 1.0 to B = 2.0 at various speeds: v = 10, 100, and
500. The plot reveals a two-peak structure. The left peak, near
m = 2, remains approximately independent of v, whereas the
right peak is located near m = 2vA/π ; thus with increasing
v, the right peak shifts further rightward. (Note the change
of scale in the plots.) We will refer to the left and right
peaks as the static and dynamic components, respectively. We
can decompose the value of sn, with n = 3 in our case, into
contributions from these components:

sL
n =

∑
m�m∗

P (nB |mA), sR
n =

∑
m>m∗

P (nB |mA). (23)

Here m∗ is the value of m at which P (nB |mA) is minimized
in the region between the two peaks. Table I lists the values
of these contributions, obtained by numerical evaluation of
the integrals in Eq. (17), as well as their sum, sn. Note that
sn = 1.000 at all three speeds, in agreement with Eq. (21).

Let us now rewrite Eq. (11) as

lim
v→∞ sn

?=
∑
m

〈nB |mA〉 〈mA|nB〉

=
∑
m

∣∣∣∣
∫ A

0
dx φ∗

n(x; B)φm(x; A)

∣∣∣∣
2

≡
∑
m

O(nB |mA). (24)
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FIG. 2. (Color online) P (nB |mA) is plotted as a function of m at fixed n = 3 (open circles), revealing a two-peak structure, with the left
peak around m = 2 and the right peak near m = 2vA/π . We refer to these peaks as the static and dynamic components, respectively. Also
plotted is the quantity O(nB |mA) (red points), which displays only a single peak around m = 2. Note that for v = 100 and 500, the single peak
of O(nB |mA) is virtually identical to the static component of P (nB |mA).

We can interpret the overlap O(nB |mA) = |〈nB |mA〉|2 as
the probability to end in state |nB〉 after the measurement
of the final energy, when starting from state |mA〉, under
the assumption that the wave function remains unchanged
during the sudden expansion. This assumption amounts to
a literal interpretation of the sudden approximation, Eq. (10).
Using Eq. (12) to evaluate the integral, in Fig. 2 we have
also plotted O(nB |mA), which exhibits a single peak around
m = 2. We observe that the larger the value of v, the more
closely O(nB |mA) resembles the left peak of P (nB |mA);
indeed, at v = 100 and 500 they are virtually identical. These
empirical observations suggest that Eq. (11) captures only the
contribution to sn from the static component sL

n , while missing
the contribution from the dynamic component sR

n .
Quantitatively, s

Eq. (11)
n = 0.5 for A = 1.0, B = 2.0, and

n = 3, whereas the data in Table I suggest that the static
contribution sL

n approaches 0.5 as v → ∞. Moreover, Table II
lists these quantities for the case A = 1.0, B = 1.485, and

n = 3, with sL
n and sR

n again calculated using Eq. (17). Once
again we find that sL

n + sR
n = 1.000 at all speeds, and sL

n →
s

Eq. (11)
n ≈ 0.667 as v → ∞. These findings are consistent with

our hypothesis that Eq. (11) reflects only the static and not the
dynamic contribution to sn.

TABLE I. Static (L) and dynamic (R) contributions to sn=3, as
well as the asymptotic value of sn predicted by Eq. (11), for piston
expansion from A = 1.0 to B = 2.0.

v = 10 v = 100 v = 500 v → ∞
sEq. (11)
n 0.500

sL
n 0.644 0.499 0.500

sR
n 0.356 0.501 0.500

sn = sL
n + sR

n 1.000 1.000 1.000
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TABLE II. Same as Table I, but for expansion from A = 1.0 to
B = 1.485.

v = 10 v = 100 v = 500 v → ∞
sEq. (11)
n 0.667

sL
n 0.638 0.667 0.667

sR
n 0.362 0.333 0.333

sn = sL
n + sR

n 1.000 1.000 1.000

We now build a semiclassical interpretation to reinforce
these conclusions. For A = 1.0, B = 2.0, and piston speed
v = 100, consider the value P (3B |64A), corresponding to the
right peak in Fig. 2(b). This gives the probability to end in
state |3B〉, starting from state |64A〉, during the expansion
process. Semiclassically, the initial state |�(0)〉 = |64A〉 can
be imagined as a particle moving with speed

|u| =
√

2EA
m=64 = mπ

A
≈ 200 (25)

between two hard walls. At t = 0, when the piston begins to
move rightward with speed v = 100, the particle is moving
either leftward (u ≈ −200) or rightward (u ≈ +200), with
equal likelihood. In the latter case, the particle will collide once
with the receding piston, losing approximately all of its kinetic
energy. The final state |�(τ )〉 will then contain a substantial
component of low-energy states (including |3B〉) reflecting
this one-collision scenario. In other words, P (3B |64A) is non-
negligible because a single collision with the piston scatters
the particle from the high-energy state |64A〉 to the low-energy
state |3B〉. The same argument explains, quantitatively, why
the right peak occurs at mA ≈ 320 in Fig. 2(c).

Alternatively, we can use Eq. (20) to rewrite P (3B |64A)
as P̄ (64A|3B), which is the probability to end in state |64A〉,
starting from state |3B〉 when compressing at piston speed v =
100. Here we imagine a particle initially moving with speed

|u| =
√

2EB
n=3 ≈ 5. (26)

As the piston moves from B = 2.0 to A = 1.0, the particle
might suffer a single collision with the piston, imparting a
leftward velocity �u ≈ −2v = −200 to the particle. Thus for
the initial state |�(0)〉 = |3B〉, we expect the final state |�(τ )〉
to be a superposition of low-energy states (corresponding to no
collisions) and high-energy states near |64A〉 (one collision).
This is indeed the spectrum seen in Fig. 2(b). This interpreta-
tion suggests that sR

n is equal to the probability that the particle
suffers a collision with the piston during the compression
process, and sL

n is the probability that it avoids a collision, when
starting from state |nB〉. Semiclassically and in the limit v →
∞, the probability to avoid a collision during compression is
just the probability to find the particle in the region 0 < x < A

at time t = 0 (when the piston is at location B), which leads to

lim
v→∞ sL,sc

n = A

B
= 1

r
. (27)

The superscript “sc” emphasizes that this is a semiclassical
approximation. Equation (27) agrees with the term 1/r

in the expression appearing in Eq. (11) (just before the

inequality); the oscillatory term there, sin(2πn/r)/2πn, is
quantum-mechanical in origin.

In either case—expansion or compression—the dynamic
component is associated semiclassically with a collision
between the particle and the piston. We conclude that Eq. (11)
underestimates sn because it neglects the contribution due to
a particle-piston collision.

These considerations relate to the ordering of limits.
Figure 2 suggests that

lim
v→∞ P (nB |mA) = O(nB |mA) (28)

for any fixed initial state |mA〉. Now, Eq. (11) implicitly
contains a double limit, namely,

lim
v→∞ sn = lim

v→∞ lim
K→∞

K∑
m=1

P (nB |mA). (29)

If we take the limit K → ∞ first (with v fixed), then both
the static and dynamic components sL

n and sR
n are included

in the sum, and the right-hand side of Eq. (29) sums to unity
[Eq. (21)]:

lim
v→∞ lim

K→∞

K∑
m=1

P (nB |mA) = 1. (30)

However, if we reverse the ordering of limits and first take
v → ∞ (with K fixed), then the dynamic component gets
pushed beyond the value of K , and only the static component
contributes:

lim
K→∞

lim
v→∞

K∑
m=1

P (nB |mA)

= lim
K→∞

K∑
m=1

O(nB |mA) = 1

r
− sin(2πn/r)

2πn
. (31)

The physical interpretation should be clear. For any fixed
piston speed v, the sudden approximation breaks down if
mAπ/A � v; for such initial states, the evolving wave function
catches up with the moving piston. Therefore, if we sum over
all initial states at fixed v, then this sum necessarily includes
states that violate the sudden approximation. Conversely, the
use of the sudden approximation in Eq. (11) is equivalent to
imposing a cutoff K on the sum over initial states: the effect
of this cutoff is to exclude those states that give rise to the
dynamic component, sR

n . This highlights the importance of the
ordering of limits for the validity of Eq. (1), an issue discussed
in detail by Pressé and Silbey [15].

While our arguments establish that Eq. (1) is valid for
any piston expansion speed v, they also imply that for
large v, transitions 〈nB |Û |mA〉 from high-lying initial energy
eigenstates make a large contribution to sn and ultimately to
〈e−βW 〉 [Eq. (7)]. When the energies of such high-lying states
are much greater than β−1, then the probability to sample these
states from the initial canonical distribution, P

eq,A
m ∝ e−βEA

m ,
becomes exceedingly small. In this case, even though Eq. (1) is
valid, the number of realizations required to confirm its validity
is prohibitively large. Figure 3 illustrates this point by display-
ing the product P

eq,A
m P (nB |mA), that is, the net probability to

generate a realization with initial and final states |mA〉 and |nB〉,
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FIG. 3. The probability to generate a realization from |mA〉 to |3B〉 is plotted, for the same parameters as in Fig. 2, and taking β = 0.01.

respectively, setting β = 0.01 and n = 3. Comparing Figs. 2
and 3, we see that although realizations that correspond to the
dynamic component represent an important contribution to
sn, the probability to observe these realizations is vanishingly
small. This conclusion is mirrored in the classical version of
this expanding piston [14,16], where a substantial contribution
to 〈e−βW 〉 arises from single-collision events, in which the
particle loses energy as it strikes the rapidly receding piston. If
Mv2 � β−1, then many realizations of the process are needed
in order to stand a decent chance of sampling initial conditions
in which the particle is moving sufficiently fast to collide
with the piston. By analogy with the classical calculations of
Refs. [14,16], we expect that the number of realizations needed
for the convergence of the exponential average in Eq. (1) scales
like exp(βMv2) for large v.

We note in passing that in Figs. 2(b) and 2(c), the right
peak itself exhibits a double-peak structure. This too has a
semiclassical interpretation, which is easiest to explain in terms
of the compression process. At t = 0 in the state |3B〉, the
particle is moving with speed |u| ≈ 5 [Eq. (26)]. Its speed
after a collision with the leftward-moving piston is greater

if the particle was moving toward the piston just before the
collision (u ≈ +5) than if it was moving away from the piston
(u ≈ −5). A back-of-the envelope calculation suggests that
this difference splits the right peak into two subcomponents
separated by �m = 2A|u|/π ≈ 3, in agreement with what we
see in Figs. 2(b) and 2(c).

III. WORK DISTRIBUTION FOR AN EXPANDING
QUANTUM PISTON

Finally, since this model provides a useful pedagogical
illustration of a quantum nonequilibrium process (see also
Refs. [21–24]), we briefly discuss the work distribution ρF (W )
for the expanding quantum piston [see Eq. (22)], plotted
in Fig. 4 for various piston speeds. In the limit v → 0,
the quantum adiabatic theorem gives us P (nB |mA) → δmn.
Thus the work distribution in Fig. 4(a) reflects the initial
thermal energy distribution: the largest peak corresponds to the
situation in which the system begins and ends in the ground
state, the next largest corresponds to the first excited state,
and so on. In the opposite limit of large v, ρF (W ) approaches
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FIG. 4. (Color online) Work distribution for the expanding quantum piston. Here A = 1, B = 2, β = 0.01, and the piston speed ranges
from v = 0.1 to 1000. The free-energy difference is �F = −β−1 ln(B/A) ≈ −30.10. The left tail of the distributions in the region W < −100
is not shown.

an asymptotic distribution, obtained by replacing P (nB |mA)
with its static component O(nB |mA) in Eq. (22). [However,
the dynamic component, which gets pushed off to infinity as
discussed earlier, remains essential for the validity of Eq. (1).]
There are two uniquely quantal features of the distributions
shown in Fig. 4. First, for v � 2 we can clearly see a nonzero
probability to obtain a positive value of work. This is forbidden
in the classical case, as the particle loses energy each time it
collides with the piston. Second, for the classical expanding
piston, the probability to obtain W = 0 approaches unity as
v → ∞, whereas for the quantum piston with A = 1.0 and
B = 2.0, this probability approaches 1/2, as illustrated by the
peak at W = 0 in Fig. 4(f). Finally, although it might not be
obvious from Fig. 4, the average work performed in the limit

v → ∞ is zero for the quantum piston [25], just as it is for the
classical piston.

IV. CONCLUSION

To conclude, we have used exact solutions of the time-
dependent Schrödinger equation to study the validity of
nonequilibrium work relations [Eqs. (1) and (2)] for the
quantum piston, focusing on the limit of a rapidly expanding
piston, v → ∞. Our investigation was motivated by Teifel
and Mahler’s study [12], which highlighted the subtleties
that arise when the system’s Hilbert space changes due to
the motion of hard boundaries. As in the classical case,
we found that both Eqs. (1) and (2) remain valid for any
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finite piston speed, but the convergence of 〈e−βW 〉 to e−β�F

requires a sum over all possible realizations. In particular,
when v � β−1/2, important contributions arise from those rare
realizations in which the particle begins with a sufficiently
high energy to collide with the piston. These realizations
show up as the dynamic component (the right peak) in
Fig. 2. Although we have considered only the one-dimensional
quantum piston, we speculate that similar conclusions will
apply to more complicated quantum systems involving moving
hard boundaries, for which exact solutions of the Schrödinger
equation are unavailable.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the National
Science Foundation (USA) under Grant No. DMR-0906601.
H.T.Q. thanks Professor Jaeyoung Sung for stimulating discus-
sions and Andy Ballard for help with computational matters.

APPENDIX

Equation (17) gives the following expression for the
transition probability from |mA〉 to |nB〉 during the expansion

process:

P (nB |mA) =
∣∣∣∣∣

∞∑
l=1

2

A

∫ A

0
e−ivx2/2A sin

(
lπx

A

)
sin

(mπx

A

)
dx

× exp

[
−i

π2l2(B − A)

2ABv

]
2

B

∫ B

0
eivx2/2B

× sin
(nπx

B

)
sin

(
lπx

B

)
dx

∣∣∣∣
2

. (A1)

For the contraction process, the transition probability from
|nB〉 to |mA〉 is obtained from this result by making the
replacements m ↔ n, A ↔ B, and v → −v:

P̄ (mA|nB) =
∣∣∣∣∣

∞∑
l=1

2

B

∫ B

0
eivx2/2B sin

(
lπx

B

)
sin

(nπx

B

)
dx

× exp

[
i
π2l2(A − B)

2BAv

]
2

A

∫ A

0
e−ivx2/2A

× sin
(mπx

A

)
sin

(
lπx

A

)
dx

∣∣∣∣
2

. (A2)

Comparing these expressions, it is straightforward to verify
that they are equal:

P (nB |mA) = P̄ (mA|nB). (A3)
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