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Jammed spheres: Minkowski tensors reveal onset of local crystallinity
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The local structure of disordered jammed packings of monodisperse spheres without friction, generated by
the Lubachevsky-Stillinger algorithm, is studied for packing fractions above and below 64%. The structural
similarity of the particle environments to fcc or hcp crystalline packings (local crystallinity) is quantified by
order metrics based on rank-four Minkowski tensors. We find a critical packing fraction φc ≈ 0.649, distinctly
higher than previously reported values for the contested random close packing limit. At φc, the probability of
finding local crystalline configurations first becomes finite and, for larger packing fractions, increases by several
orders of magnitude. This provides quantitative evidence of an abrupt onset of local crystallinity at φc. We
demonstrate that the identification of local crystallinity by the frequently used local bond-orientational order
metric q6 produces false positives and thus conceals the abrupt onset of local crystallinity. Since the critical
packing fraction is significantly above results from mean-field analysis of the mechanical contacts for frictionless
spheres, it is suggested that dynamic arrest due to isostaticity and the alleged geometric phase transition in the
Edwards framework may be disconnected phenomena.

DOI: 10.1103/PhysRevE.85.030301 PACS number(s): 45.70.−n, 05.20.−y, 61.20.−p

Now classic experiments showed that disordered sphere
packings can only be prepared up to a maximum packing frac-
tion of φRCP ≈ 0.64 [1,2]. This packing fraction, referred to as
random close packing (RCP), is substantially lower than the
packing fraction φfcc ≈ 0.74 of the densest crystalline sphere
packing. Maximal packing fractions close to φRCP have been
shown for several experimental protocols [3]; protocols induc-
ing local crystallization are able to reach higher packing frac-
tions [4]. Numerical protocols to generate static sphere pack-
ings both below and above 0.64 are the Lubachevsky-Stillinger
(LS) algorithm [5] and the Jodrey-Tory algorithm [6].

The nature and the existence of a transition near φRCP

are disputed. As sphere configurations with packing fractions
between φRCP and φfcc evidently exist [7], an alleged structural
transition must be due to either a vanishing configuration space
density of these states or to the inability to reach these within
the considered ensemble or by the given dynamics. Within
the framework of equilibrium (thermal) hard spheres, the
concept of RCP has been related to the terminus of the branch
of metastable states avoiding crystallization; divergence of
pressure is reported to occur at φ = 0.640 ± 0.006 [8] and
φ ≈ 0.65 [9]. By contrast, in an athermal statistical ensemble
where the role of energy is played by volume [10], a mean-field
study based on mechanical contact numbers has reported
φRCP ≈ 0.634 [11]. An order/disorder transition in an athermal
ensemble has been demonstrated for a lattice model [12].
Support for the phase transition scenario is deduced from the
fact that the volume fraction of polytetrahedra increases with
packing fraction up to φ ≈ 0.646 and then decreases, as these
structures transform into crystalline order [13,14].
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In addition to these phase transition scenarios, where
φRCP is interpreted as the density of the disordered phase at
coexistence, the notion of the maximally random jammed state
(MRJ; [15]) has been proposed (as the maximally disordered
state among all jammed packings); with respect to a number
of common measures of order, the MRJ packing fraction has
been estimated as φMRJ ≈ 0.63 [7].

The resolution of the RCP problem relies on suitably
defined order metrics to quantify packing structure. A common
approach to local structure characterization is by analysis of
nearest neighborhoods [16,17]. Often, the bond-orientational
order metrics ql defined by Steinhardt et al. [16] are ap-
plied to sphere packings [7,18]. However, these and other
neighborhood-based order metrics [19] have shortcomings.
First, they suffer from the ambiguous definition of the nearest
neighborhood [20]. Second, in their common use as single
scalar order metrics [7,18], they are insufficient to conclusively
distinguish order and disorder [21]. A nonnegligible fraction of
noncrystalline environments is often incorrectly identified as
crystalline (false positives), since their q6 are close or identical
to the reference q6 values in crystals.

Alternatively, the structure of monodisperse sphere pack-
ings can be characterized by analysis of the Voronoi cells
of the particle centers; see Fig. 1. Suitable morphological
descriptors, such as Minkowski tensors [22,23], can then be
used to quantify the cell shape and hence the local structure.
Here, we show that crystalline order metrics can be constructed
from rank-four Minkowski tensors of the Voronoi cells that
give stringent criteria for fcc or hcp crystalline order. For
jammed sphere packings generated by the LS algorithm, these
order metrics reveal an abrupt onset of crystallinity at a critical
packing fraction φc ≈ 0.649.

Eigenvalue ratios of rank-two Minkowski tensors quantify
anisotropy of the particle environments in jammed bead packs
[22]. The Voronoi cells of the fcc and hcp close packing
are isotropic, in the terminology of Ref. [22], while cells
found in disordered packings typically are not. However,
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FIG. 1. (Color online) Left: The Voronoi diagram of a packing
associates convex cells with the individual particles. Each Voronoi
cell K contains one particle k such that the distance of any point
p ∈ K to particle k is smaller than the distance of p to any other
particle. Right: For the evaluation of q6, we define the set of nearest
neighbors of particle k as those 12 other particles (6 in 2D) which are
closest to k.

rank-two tensors are insufficient to distinguish different types
of isotropic cells. These cell types can be classified using
the rank-four Minkowski tensor W

0,4
1 . The tensor W

0,4
1 of a

Voronoi cell is given as the sum of tensor products of the facet
normals, weighted by the facet areas,(

W
0,4
1

)
ijkl

:= 1

A

∑
f

a(f ) ninjnknl, (1)

where ni := [n(f )]i with i = 1,2,3 are the Cartesian compo-
nents of the facet normal, and a(f ) is the surface area of facet
f ; further, A := ∑

f a(f ) is the total surface area; all sums
run over the facets of the Voronoi cell K . In close analogy to
the stiffness tensor of continuum mechanics, symmetry under
permutations of indices allows the reduction of W

0,4
1 to a 6 × 6

symmetric matrix [24]. The six eigenvalues (ς1, . . . ,ς6) of this
matrix are dimensionless due to normalization by A−1 and are
rotational invariants [25]. A concise quantitative measure for
the similarity of a given Voronoi cell K to the Voronoi cell
Kfcc of a crystalline fcc packing is given by the fcc crystalline
order metric

�fcc(K) :=
[

6∑
i=1

(
ςi(K) − ςi(Kfcc)

)2

]1/2

. (2)

An analogous order metric �hcp is defined for hcp cells.1

Figure 2 supports our claim that �fcc and �hcp measure
deviations of a Voronoi cell’s shape from the ideal fcc or hcp
cell. The vertices of an ideal fcc or hcp lattice are displaced by
small random vectors. Figure 2 shows averages and standard
deviations (as error bars) of �fcc and �hcp as a function of the
root mean square displacement (RMSD) from the ideal lattice
points, demonstrating an approximately linear relationship
between deviations from the ideal crystalline shapes and
the crystalline order metrics �fcc and �hcp. The quantitative
agreement between the functions for hcp and fcc cells justifies
the use of the same threshold value for selecting both fcc- and
hcp-like cells from a packing.

1The tuples of eigenvalues for the ideal cells are, ς (Kfcc) =
(1/3,1/6,1/6,1/6,1/12,1/12) and ς (Khcp) = (1/3,1/6,5/36,5/36,

1/9,1/9).
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FIG. 2. (Color online) The relationship between root mean square
particle displacement from an ideal fcc (red solid line) and hcp (green
dashed) lattice and and the corresponding values of �fcc and �hcp,
respectively, is approximately linear. Error bars represent standard
deviations among cells due to the statistical displacement of the
particles. The dashed curves above and below the data are linear
functions with slope 1 and 0.1, respectively.

The crystalline order metrics �fcc, �hcp are used to identify
crystalline clusters in jammed sphere packings generated by
the Lubachevsky-Stillinger protocol [5]. Figure 3 shows, as a
key result of this Rapid Communication, that (a) crystalline
fcc and hcp order is absent for packing fractions below a
critical value φc ≈ 0.649, and that (b) above φc the fraction of
crystalline fcc or hcp in LS simulations is nonzero and rapidly
increases by several orders of magnitude. As expected for an
athermal system, no systematic difference between the number
of hcp and fcc cells is observed, in contrast to crystallization
dynamics in equilibrium [26].
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FIG. 3. (Color online) Fractions nfcc(φ) (red) and nhcp(φ) (green)
of fcc- and hcp-like cells as function of the packing fraction φ

(cell types identified by W
0,4
1 ). Below φc ≈ 0.649, crystallinity

is negligible and was found, among 3000 simulations with φ ∈
[0.56,φc], with rates substantially smaller than the inverse system
size. Above φc, the probability of crystalline cells increases by
orders of magnitude. Each data point is computed from M ≈ 20
packings of 4 × 104 spheres each. Horizontal error bars correspond
to the variations in φ encountered for the same growth rate γ

of the LS algorithm [5]; vertical error bars represent the interval
([Nfcc]0.25,[Nfcc]0.75).
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FIG. 4. (Color online) The fcc crystalline order metrics �fcc of the
most fcc-like cells in each packing, quantified by the first percentile
[�fcc]x with x = 0.01 of the �fcc distribution in each individual
packing. (Each data point represents one packing.) The inset shows
variations of the estimate for φc obtained as the intersection
point of fitted straight lines, when x is varied. The black bars
indicate published estimates of φRCP: (a) Anikeenko and Medvedev’s
analysis of tetrahedral configurations [13,14], (b) Bernal’s analysis
of steel ball bearings [2], and (c) the contact number analysis by
Song et al. [11].

We measure the fraction of fcc cells as nfcc(φ) =
[Nfcc]0.5/N , where Nfcc is the number of cells with �fcc <

δ = 0.005, in a sample of N = 4 × 104 spheres. [Nfcc]0.5 is
the median of Nfcc over M ≈ 20 packings of similar φ; see
Fig. 3. (In general, for a random variable X with a probability
density f (X), the symbol [X]p denotes the p quantile, i.e.,
the value F−1(p) with the cumulative distribution function
F (X) = ∫ X

−∞ f (ξ )dξ .) The accuracy of our results is, for small
nfcc and nhcp, limited by the finite system size, preventing the
measurement of probabilities smaller than 1/N . (We further
note that the number of isotropic cells, in the terminology of
Ref. [22], vanishes below φc and becomes nonzero at φc.)

The values of nfcc and nhcp depend, of course, on the
choice of the threshold δ. The increase in local crystallinity
is, however, also evident in the lowest occurring values of
�fcc. Figure 4 shows the first percentile [�fcc]0.01 as a robust
estimate for the most crystal-like cell, i.e., the lowest occurring
value of �fcc. A sharp drop of [�fcc]0.01 is observed for φ � φc;
in packings below φc, the most fcc-like cells are substantially
different from fcc cells, while above φc the differences quickly
decay to close to zero. The value of φc(x) is estimated by the
intersection of two straight lines fitted to the data for [�fcc]x .
The insert of Fig. 4 shows the φc estimates extracted by this
approach, giving φc ∈ [0.6492,0.6499] for x ∈ [0.001,0.1].
These values of φc are larger than published values for the
RCP or the MRJ packing fraction. Importantly, the data of
Fig. 4 demonstrate that the drastic increase in nfcc in Fig. 3 is
a robust result that is not sensitive to the value of the threshold
δ. The value of δ is, within bounds, an irrelevant parameter.
We do not observe differences between packings of N = 104

and N = 4 × 104 particles besides improved statistics.
The observed abrupt appearance of crystalline cells at φc is

difficult to observe using the bond-orientational order metrics

ql and wl developed in seminal work by Steinhardt et al. [16].
Most frequently, q6 is considered, which is deemed particularly
sensitive to formation of fcc; it is defined by

q6(k) =
[

4π

13

6∑
m=−6

|〈Y6m(θjk,ϕjk)〉|2
]1/2

with the spherical harmonics Ylm, the polar angles θjk and ϕjk

of the bond vector between particles j and k, and 〈·〉 denoting
the average over the 12 closest neighbors j of k (Fig. 1).

Figure 5 shows probability distributions of q6 values
observed in LS packings above φc that demonstrate the
principal deficiency of using only q6 as an order metric. The
frequency f (q6) of q6 values develops sharp peaks at the values
corresponding to fcc (q6 = 0.57452) and hcp (q6 = 0.48476)
for φ � φc, not present for samples with φ < φc. These peaks,
however, sit on top of a dominant background of noncrystalline
cells. The data clearly show that cells (false positives) exist
which are distinctly different from fcc but that are identified
as fcc by q6; i.e., |q6 − qfcc

6 | < 5 × 10−4. For example, the
cell displayed in (d) has eleven facets, several of which are
five-sided; analogous hcp examples exist. If cells that are
identified as either fcc or hcp by W

0,4
1 are excluded from

the q6 distribution, these peaks vanish; the residual smooth
distribution represents the noncrystalline background. Thus,
for reliable detection of crystallinity, more information is
required than contained in q6 alone. This can be achieved by
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FIG. 5. (Color online) Abundances of all cells with a specific q6

value (fall; red solid curve) and of the subset of cells that are very
clearly neither fcc nor hcp, i.e., with �fcc > 0.015 and �hcp > 0.015
(ffp; blue dotted curve). The values of the blue, dotted curve at q fcc

6 ,
q

hcp
6 are finite even though genuine fcc and hcp cells are excluded.

This clearly demonstrates that q6 produces false positives (fp), that
is, cells that are not crystalline but identified as such by q6. Only
the difference fcr := fall − ffp consists of truly crystalline cells. The
cells depicted represent (a) an ideal hcp cell, (b) an ideal fcc cell,
and cells identified by q6, but not by �fcc or �hcp, as (c) hcp and (d)
fcc. The data are averaged over ten configurations, each consisting
of N = 4 × 104 spherical particles, with packing fractions φ in the
interval [0.656,0.660], well above φc. See Fig. 1 for the definition of
particle neighborhood.
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using multiple ql metrics and their distributional properties
[21], or more specialized bond-orientational order metrics
such as θ fcc, θhcp [17]. Minkowski tensors, such as used in
the present study, represent a more general approach; it is not
necessary to choose a set of neighbors or bonds associated
with a particle in order to evaluate the Minkowski tensors, and
the Minkowski tensors are continuous functions of the particle
coordinates. At the same time, they contain the information
necessary to discriminate in a robust and specific way between
disordered structure and different types of crystallinity. It
can be shown that a relation exists linking the rotational
invariants of higher-rank Minkowski tensors to variants of
the bond-orientational order metrics ql , wl which have been
amended by weighting factors proportional to the Voronoi
facet areas [20].

In conclusion, we have demonstrated that local crystallinity
in Lubachevsky-Stillinger sphere packings sets in when the
packing is compactified beyond a critical packing fraction
φc ≈ 0.649. The packing fraction φc marks the density
below which LS configurations show no detectable degree of
local crystallinity. Compactified above this limit, the system
responds by the formation of local crystallinity.

The value φc ≈ 0.649 is higher than experimental estimates
for the RCP limit [1,2] and than the prediction based on
mechanical contact numbers [11], but also than the MRJ
packing fraction [15]. However, φc is close to the packing
fraction of ≈0.646 where polytetrahedral aggregates are most
prevalent (Fig. 3 in Ref. [13]); the crystalline order metrics
thus identify the conversion of polytetrahedral aggregates into
crystalline structure, detected indirectly by Refs. [13,14]. The
small but significant discrepancy between the critical packing
fractions �0.64 of Refs. [1,2,8,11] on the one hand and ≈0.65

of Refs. [13,14] and of the present work on the other raise the
caution that the mechanisms of dynamic arrest and isostaticity
may be distinct from the alleged geometric order-disorder
transition.

Given the nonequilibrium nature of jammed matter, one
might be tempted to attribute the observed difference in
packing fraction to details of the preparation protocol. The
critical packing fraction of ≈0.65 is, however, not specific to
the LS algorithm. For example, for packings generated using
the force-balancing “split algorithm,” the geometric (rather
than mechanical) contact number exhibits an anomaly close
to φ ≈ 0.65 (Fig. 14 of Ref. [27]). Data by Bargiel and Tory
for Jodrey-Tory packings can be successfully fitted with a
critical packing fraction of ≈0.6495 [17]. Recent results by
Klumov et al. for Jodrey-Tory and Lubachevsky-Stillinger
packings, in terms of quantiles of the w6 distribution, fix the
geometric transition around φ ≈ 0.65 [21], but do not exclude
crystallinity below φc.

Future work needs to focus on the precise nature of the
geometric transition occurring at φc. Is the first-order phase
transition scenario viable, and if so, what are the coexistence
densities? What is the signature of the transition in the �fcc

distribution? How does the local structure (quantified by
Minkowski tensors) relate to the observed “Kauzmann”
density (Fig. 8 of Ref. [14])?
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