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Phenomenology of aging in the Kardar-Parisi-Zhang equation
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We study aging during surface growth processes described by the one-dimensional Kardar-Parisi-Zhang
equation. Starting from a flat initial state, the systems undergo simple aging in both correlators and linear
responses, and its dynamical scaling is characterized by the aging exponents a = −1/3, b = −2/3, λC = λR = 1,
and z = 3/2. The form of the autoresponse scaling function is well described by the recently constructed
logarithmic extension of local scale invariance.
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The study of the motion of interfaces continues as a
widely interesting topic of statistical physics. One particularly
intensively studied case is nonequilibrium growth processes,
which are governed by local rules. Of these, the model
equation proposed by Kardar, Parisi, and Zhang (KPZ) [1]
continues to play a paradigmatic role in the investigation of
the dynamical scaling of such interfaces, with an extensive
range of applications, including Burgers turbulence, directed
polymers in a random medium, glasses and vortex lines, and
domain walls, and biophysics—see Refs. [2–9] for reviews.
Remarkably, in one dimension (1D) the height distribution
can be shown to converge for large times toward the Gaus-
sian Tracy-Widom distribution [10,11]. A particularly clean
experimental realization of this universality class has been
found recently in the growing interfaces of turbulent liquid
crystals [12].

Insight into the nonequilibrium properties of many-body
systems comes from an analysis of the aging properties, which
are realized if the system is rapidly brought out of equilibrium
by a change of one of its state variables [13,14]. By defini-
tion, an aging system (i) undergoes a slow, nonexponential
relaxation toward its stationary state(s), (ii) does not satisfy
time-translation invariance, and (iii) shows dynamical scaling.
Studies of aging require the analysis of both correlators C

and responses R to be complete and also go beyond the study
of dynamics in analyzing at least two-time observables. Let
s denote the waiting time and t > s the observation time.
For simple aging, one expects in the aging regime s � τmicro

and t − s � τmicro, where τmicro is a microscopic time scale, a
single relevant length scale L(t) ∼ t1/z such that

C(t,s) = 〈φ(t)φ(s)〉 − 〈φ(t)〉〈φ(s)〉 = s−bfC

(
t

s

)
,

(1)

R(t,s) = δ〈φ(t)〉
δj (s)

|j=0 = 〈φ(t)φ̃(s)〉 = s−1−afR

(
t

s

)
,

where j is the external field conjugate to φ. This defines the
aging exponents a,b and the scaling functions, from whose
asymptotic behavior fC,R(y) ∼ y−λC,R/z as y → ∞ one has
the autocorrelation and autoresponse exponents λC,R where
z is the dynamical exponent. In the context of Janssen–de

Dominicis theory, φ̃(t) is the response field conjugate to the
order parameter φ(t).

For example, simple aging is found in nondisordered,
unfrustrated magnets, quenched from an initial disordered state
to a temperature T � Tc at or below its critical temperature Tc

(see Ref. [14] and references therein) or else in microscopically
irreversible systems with a nonequilibrium stationary state
[15–18]. Generically, one finds λC = λR , but the values of a,b

depend more sensitively on the kind of aging investigated (for
reversible systems on the type of quench and for irreversible
ones on the specific type of dynamics).

Here, we shall study what kind of aging phenomena can
arise in the growth of interfaces. A typical system is formulated
in terms of a height variable h = hi(t) = h(t,ri), defined over
a substrate in d dimensions. A local, microscopic rule indicates
how single particles are added to the surface. One of the main
quantities studied is the surface roughness,

w2(t ; L) = 1

Ld

Ld∑
i=1

〈(hi(t) − h(t))2〉, (2)

on a lattice with Ld sites and average height h(t) =
L−d

∑
i hi(t). It obeys Family-Vicsek scaling [19]

w2(t ; L) = L2ζ f (tL−z), f (u) ∼
{

u2β, if u � 1,

const, if u � 1,
(3)

where β is the growth exponent and ζ = βz is the roughness
exponent. For an infinite system, the width grows for large
times as w2(t ; ∞) ∼ t2β .

The generic universality class for growth phenomena is
given by the KPZ equation [1]

∂h

∂t
= ν

∂2h

∂r2
+ μ

2

(
∂h

∂r

)2

+ η, (4)

where η(t,r) is a white noise with zero mean and vari-
ance 〈η(t,r)η(t ′,r′)〉 = 2νT δ(t − t ′)δ(r − r′) and μ,ν,T are
material-dependent constants. For comparison, we introduce
two more universality classes of surface growth: Elimination of
the nonlinear term in (4) by setting μ = 0 gives the Edwards-
Wilkinson (EW) universality class [20]. The Mullins-Herrings
(MH) universality class is given by ∂th = −ν∂4

r h + η [21].
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TABLE I. Some dynamical, aging, and growth exponents of
several universality classes in d = 1 dimension.

Model z a b λR = λC β ζ

KPZ 3/2 −1/3 −2/3 1 1/3 1/2
EW 2 −1/2 −1/2 1 1/4 1/2
MH 4 −3/4 −3/4 1 3/8 3/2

For both EW and MH classes, the aging scaling forms (1)
for C and R have been explicitly confirmed [22]. Values
of some growth and aging exponents in 1D are listed in
Table I. For the 1D KPZ class, the exponents z,β are exactly
known [1], whereas the relation b = −2ζ/z = −2β follows
from dynamical scaling [23,24]. Also, evidence for a growing
length L(t) ∼ t1/z [25,26] and estimates of λC [23,24] have
been reported [27]. However, to the best of our knowledge, no
systematic test of the aging scaling has been reported for the
space-time correlation function, and no information exists at
all for the response function R. These will be provided now.

Our numerical simulations in the 1D KPZ class either
use the discretized KPZ equation (4) in the strong coupling
limit [28] (we checked that our results do not depend on
the chosen discretization scheme) or else the Kim-Kosterlitz
(KK) model [29]. This model uses a height variable hi(t) ∈ Z
attached to the sites of a chain with L sites and subject to
the constraints |hi(t) − hi±1(t)| = 0,1, at all sites i. From a
flat initial condition, that is, hi(0) = 0, the dynamics of the
model is as follows: At each time step, select randomly a site
i and deposit a particle with probability p or else eliminate
a particle with probability 1 − p. L such deposition attempts
make up a Monte Carlo step. It is well known that this model
is in the KPZ universality class. The choice of the value of p

is a practical matter. In order to avoid metastable states, we
have chosen p = 0.98. In simulations, we have taken L = 217

and all the data have been averaged over 104 samples. For
the discretized KPZ equation we considered systems of size
L = 104 and averaged over typically 105 samples.

In studying the aging behavior, we shall consider the two-
time spatio-temporal correlator

C(t,s; r) = 〈(h(t,r + r0) − 〈h(t)〉)(h(s,r0) − 〈h(s)〉)〉
= 〈h(t,r + r0)h(s,r0)〉 − 〈h(t)〉〈h(s)〉
= s−bFC

(
t

s
,
|r|z
s

)
, (5)

along with the extended Family-Vicsek scaling in the L → ∞
limit and where the definition of the exponents is analogous to
the usual one for simple aging. The autocorrelation exponent
can be found from fC(y) = FC(y,0) ∼ y−λC/z as y → ∞. We
also have b = −2β, since the width w2(t ; ∞) = C(t,t ; 0) =
t−bFC(1,0). This is justified since the initial conditions in the
1D KPZ do not generate additional, independent renormaliza-
tions [30].

In Fig. 1, we show data for the autocorrelator C(t,s) =
C(t,s; 0) obtained from the KK model. A clear data collapse
is seen, and for large values of the scaling variable y = t/s,
an effective power-law behavior with an exponent λC/z ≈ 2

3 is
found. The data are fully compatible with a numerical solution
of the KPZ equation and directly test simple aging (1) in
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FIG. 1. (Color online) Scaling of the two-time autocorrelator
C(t,s) from the KK model and several values of s, and the discretized
KPZ equation, with s = 400, rescaled by a factor 2.79.

the 1D KPZ class. All this, completely analogous to the EW
and MH classes, confirms and strengthens earlier conclusions
[23–26,30].

In order to define a response, we appeal to the procedures
used in irreversible systems [15,17,18,31] where the external
field is related to a local change of rates. In the KK model, we
consider a space-dependent deposition rate pi = p0 + aiε/2
with ai = ±1 and ε = 0.005 a small parameter. Then consider,
with the same stochastic noise η, two realizations: System
A evolves, up to the waiting time s, with the site-dependent
deposition rate pi and, afterward, with the uniform deposition
rate p0. System B evolves always with the uniform deposition
rate pi = p0. Of course, the evaporation rate qi = 1 − pi .
Then, the time-integrated response function is

χ (t,s; r) =
∫ s

0
du R(t,u; r)

= 1

L

L∑
i=1

〈
h

(A)
i+r (t ; s) − h

(B)
i+r (t)

εai

〉

= s−aFχ

(
t

s
,
|r|z
s

)
, (6)

together with the expected scaling. The time-integrated autore-
sponse χ (t,s) = χ (t,s; 0) plays the same role as the thermore-
manent integrated response of magnetic systems [14]. The
autoresponse exponent is read off from fχ (y) = Fχ (y,0) ∼
y−λR/z for y → ∞. For the discretized KPZ equation we
realize the perturbation by adding a spatially random force,
of strength ±f0 = ±0.3, up to the waiting time s.

In Fig. 2, data for the integrated autoresponse χ (t,s)
coming from the KK model are shown. An excellent collapse
is found for a = − 1

3 . The effective power law, for y =
t/s large, reproduces well the expected λR/z ≈ 2

3 . Indeed,
from the exact fluctuation-dissipation theorem T R(t,s; r) =
−∂2

r C(t,s; r), valid in the 1D KPZ universality class (because
of time-reversal invariance) [32–35], we obtain the predictions
1 + a = b + 2/z and λC = λR , in agreement with our data.
The data are essentially identical to those obtained from the
KPZ equation, in agreement with universality. The aging
form (1) of the linear response is confirmed in a nonlinear
growth model. In contrast with the EW and MH classes, a
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FIG. 2. (Color online) Scaling of the two-time integrated autore-
sponse χ (t,s) from the KK model for several values of s, and from
the KPZ equation with s = 400, rescaled by a factor 7.25.

and b are different, a feature commonly seen in irreversible
systems [14,36].

Next, in Fig. 3, we illustrate the space-dependent scaling
of both the correlator and the integrated response. For several
values of the scaling variable y = t/s, the dependence on the
second argument in the scaling forms (5) and (6) is illustrated.
An excellent data collapse is found, which further confirms
the conclusions already drawn from the autocorrelator and the
autoresponse and also confirms the exactly known dynamical
exponent z = 3

2 in the 1D KPZ universality class. The shape
of the scaling functions changes notably when y is varied.

We now turn to an analysis of the form of the autoresponse
scaling function fχ (y). For aging simple magnets (i.e.,
nondisordered and unfrustrated), it has been proposed to
generalize dynamical scaling to a larger set of local scale
transformations [37], which includes the transformation t �→
t/(1 + γ t). This hypothesis of local scale invariance (LSI)
indeed reproduces precisely the universal shapes of responses
and correlators in a large variety of models, as reviewed
in detail in Ref. [14]. Analogous evidence exists in some
irreversible models [14,15,17,36]. Similarly, the responses
and correlators in the EW and MH classes, with the local
height variable h(t,r) − h(t) acting as a quasiprimary scaling
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FIG. 3. (Color online) Space-dependent scaling of the two-time
correlator C(t,s) (upper row) and the integrated response χ (t,s)
(lower row), for several values of s and the scaling variable y = t/s.

operator, are described by LSI [22,38]. Is LSI also realized
in the 1D KPZ class, with the local height as a quasiprimary
operator?

We concentrate on the autoresponse function and shall
restrict attention to the transformations in time. The transfor-
mation δφ = εXnφ of the quasiprimary operators under local
scale transformations is given by the infinitesimal generators
Xn, which read [39]

Xn = −tn+1∂t − (n + 1)
x

z
tn − n

2ξ

z
tn, n � 0, (7)

and satisfy the commutator [Xn,Xm] = (n − m)Xn+m. We
merely look at the finite-dimensional subalgebra spanned by
the dilatations X0 and the special transformations X1. Since
time translations (generated by X−1) are absent, we have two
distinct scaling dimensions x and ξ , which together give the
shape of the autoresponse function (see below). Now, consider
a possible extension to so-called logarithmic form, where a

primary operator φ is replaced by a doublet ( φ

ψ
). In analogy

with logarithmic conformal invariance [40,41], this extension
is formally carried out by replacing the scaling dimensions x,ξ

by matrices (restricted to the 2 × 2 case) [42]

x �→
(

x x ′

0 x

)
, ξ �→

(
ξ ξ ′

ξ ′′ ξ

)
, (8)

where the first scaling dimension is immediately taken in
a Jordan form. Consistency with the commutators then
leads to ξ ′′ = 0 [42]. Recalling (1), consider the following
quasiprimary two-point functions, with y = t/s

〈φ(t)φ̃(s)〉 = s−(x+x̃)/z F(y)f0,

〈φ(t)ψ̃(s)〉 = s−(x+x̃)/z F(y)(g12(y) + γ12 ln s),
(9)

〈ψ(t)φ̃(s)〉 = s−(x+x̃)/z F(y)(g21(y) + γ21 ln s),

〈ψ(t)ψ̃(s)〉 = s−(x+x̃)/z F(y)
2∑

j=0

hj (y) lnj s,

where F(y) = y(2̃ξ+x̃−x)/z(y − 1)−(x+x̃+2ξ+2̃ξ )/z and explicitly
known scaling functions [42]. In contrast to logarithmic
conformal invariance, logarithmic corrections to scaling are
absent if x ′ = x̃ ′ = 0 and there are no logarithmic factors
for y → ∞ if furthermore ξ ′ = 0. If we take R(t,s) =〈
ψ(t)ψ̃(s)

〉 = s−1−afR(t/s), we find

fR(y) = y−λR/z(1 − y−1)−1−a′

× [
h0 − g0 ln(1 − y−1) − 1

2f0 ln2(1 − y−1)
]
, (10)

with the exponents 1 + a = (x + x̃)/z, a′ − a = 2
z
(ξ + ξ̃ ),

λR/z = x + ξ , and the normalization constants h0,g0,f0.
The integrated autoresponse χ (t,s) = s−afχ (t/s) is found

from (10) by using the specific value λR/z − a = 1 which
holds true for the 1D KPZ. We find

fχ (y) = y+1/3{A0[1 − (1 − y−1)−a′
]

+ (1 − y−1)−a′
[A1 ln(1 − y−1) + A2 ln2(1 − y−1)]},

(11)
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FIG. 4. (Color online) Comparison of the reduced scal-
ing function fred(y) = fχ (y)y−1/3(1 − (1 − 1/y)1/3)−1 of χ (t,s) =
s1/3fχ (t/s) with logarithmic local scale invariance. Nonlogarithmic
LSI gives the dashed-dotted curve labeled LSI and full logarithmic
LSI (11) gives the dashed curve labeled L2LSI. The inset shows the
ratio χ (t,s)/χL2LSI(t,s) over t/s − 1.

where A0,1,2 are normalizations related to f0,g0,h0. The
nonlogarithmic case is recovered if A1 = A2 = 0. Indeed, for
y � 1, one has fχ (y) ∼ y−2/3, as it should be.

In Fig. 4, which gives a more fine appreciation of the shape
of fχ (y) than Fig. 2, we compare data for the reduced scaling
function fred(y) = fχ (y)y−1/3[1 − (1 − y−1)1/3]−1 with the
predicted form (11). Data with s < 103 are not yet fully in the
scaling regime. If one tries to fit the data with a nonlogarithmic
LSI (then R = 〈φφ̃〉 or 〈ψφ̃〉), one obtains an agreement with
the data, with a numerical precision of about 5%. An attempt to
fit only with the first-order logarithmic terms (then R = 〈φψ̃〉)
with A2 = 0 assumed gives back the same result—see Table
II. Only if one uses the full structure of logarithmic LSI, an
excellent representation of the data is found, to an accuracy
better than 0.1% over the range of data available. In the inset the
ratio χ (t,s)/χL2LSI(t,s) is shown, and we see that at least down
to t/s ≈ 1.03, the data collapse indicating dynamical scaling
holds true, within the accuracy limits set by the stochastic
noise, within ≈0.5%. For the largest waiting time s = 4000,
this observation extends over the entire range of values of

TABLE II. Fitted parameters A0, A1, A2, and a′ used in Fig. 4.

Parameters

R a′ A0 A1 A2

〈φφ̃〉–LSI −0.500 0.662 0 0
〈φψ̃〉–L1LSI −0.500 0.663 −6 × 10−4 0
〈ψψ̃〉–L2LSI −0.8206 0.7187 0.2424 −0.090 87

t/s considered. This indicates that the local height h and its
response field h̃ of the 1D KPZ equation could be tentatively
identified with the logarithmic quasiprimary operators ψ ,ψ̃ ,
which slightly generalizes the findings for the EW and MH
classes, which obey nonlogarithmic LSI. It is an open question
whether the approach outlined here just generates the first two
terms of an infinite logarithmic series in R(t,s).

A systematic analysis of the invariance properties of the dy-
namical functionals studied, for instance, in Refs. [30,33,34],
or the alternate form derived in Ref. [43], would be of interest,
following the lines of study for the analysis of dynamical
symmetries in phase-ordering kinetics—see Ref. [14] and
references therein.

Summarizing, we tested the full scaling behavior of simple
aging, both for correlators and responses, of systems in the
1D KPZ universality class. This is an example of a growth
process described by a nonlinear equation which is shown to
satisfy simple aging scaling for space- and time-dependent
quantities. It is nontrivial that the values of the growth
and dynamical exponents, previously known from the study
of the stationary state, are confirmed far from stationarity.
It would be interesting to measure it also experimentally.
Performing a numerical experiment, we find the form of
the autoresponse scaling function to be very well described
by the recently constructed logarithmic extension of local
scale invariance, with a natural identification of the leading
quasiprimary operators. In view of important recent progress in
the exact solution of the 1D KPZ equation (see Refs. [7,10,11]),
one may expect that the question of a logarithmic dynam-
ical scaling can be addressed and its further consequences
explored.
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2011-0017982, funded by the Ministry of Education, Science,
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