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Interaction and coalescence of large bubbles rising in a thin gap
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We present accurate measurements of the relative motion and deformation of two large bubbles released
consecutively in a quiescent liquid confined in a thin-gap cell. Although the second injected bubble was smaller,
we observed that, in all cases, it accelerated and caught up with the leading bubble. This acceleration is related
to the wake of the leading bubble, which also induces significant changes in the width and curvature of the
trailing bubble. On the contrary, the velocity of the leading bubble is unaltered during the whole interaction and
coalescence process. Shape adaptation of the two bubbles is observed just prior to coalescence. After pinch-off,
the liquid film is drained at a constant velocity.
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When two bubbles are rising in a quiescent fluid, the paths
they follow are related to the perturbations they induce in the
liquid and to their capacity to undergo deformation. In the
tandem configuration (two bubbles rising along their lines
of centers), the wake of the leading bubble is a powerful
means to draw the bubbles together. This behavior is expected
to promote coalescence, although escaping behavior may
occur owing to the bubble’s ability to deform or to lateral
perturbations that may cause the bubbles to rotate and to
line up horizontally [1,2]. Coalescence of a leading bubble
with a trailing bubble is commonly observed in experimental
high-Reynolds-number bubbly flows [3] but is currently not
predicted by theoretical and numerical papers. Potential flow
theory predicts that two bubbles rising in tandem will repel
each other [4,5] with flow reversibility leading to the existence
of a stagnation point between the two bubbles. Moreover,
numerical simulations for nondeformable spherical bubbles
at moderate-to-large Reynolds numbers predict that bubbles
in line reach an equilibrium distance for which the repulsive
potential effect balances the attractive viscous effect related to
the vorticity produced at the bubble surface [1,6].

Presently, there is little quantitative information on the bub-
ble’s kinematics during their interaction and on its relationship
with the bubble’s deformation. The aim of this paper is to
obtain a simultaneous characterization of the kinematics and
deformation of two bubbles rising in tandem. For this purpose,
we consider the interaction of two large bubbles rising freely
in line in a vertical Hele-Shaw cell. The case of large bubbles
is particularly interesting since their shapes are preserved by
coalescence. The use of a Hele-Shaw cell has the advantage to
constrain the motion and the deformation of the bubbles to the
plane of the cell.

The motion of an isolated bubble rising in a quiescent
liquid in a confined geometry has been studied in detail in
Refs. [7–10]. Given the fixed width e of the cell, the equivalent
diameter of the bubble is defined from the area A of the bubble
in the plane of the cell d = √

4A/π . Three nondimensional
parameters governing the single-bubble problem may then be
introduced, the Archimedes number Ar = d

√
gd/ν, the Bond
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number Bo = ρgd2/σ , and the confinement ratio e/d � 1 (g
being the gravity acceleration, ν being the liquid kinematic
viscosity, ρ being the liquid density, and σ being the surface
tension), the density and dynamic viscosity of the bubble being
considered negligible relative to those of the liquid. For a
given set of parameters, the resulting mean vertical velocity
V∞ of the bubble is used to define the Reynolds number
Re = V∞d/ν. Furthermore, the dimensionless quantity R̃e =
Re(e/d)2 compares the in-plane inertial time scale V∞/d and
the time scale for viscous diffusion in the gap e2/ν. The
classical Hele-Shaw regime corresponds to R̃e � 1, whereas
inertial effects become predominant when R̃e � 1 [11]. In
the present Brief Report, all the bubbles satisfy 6000 <

Ar < 18 000, Re � 1, and R̃e � 1 and have the shape of a
circular segment. When these bubbles are rising alone, we
measure that their terminal velocities are given by the relation

Re =
√

π
2Cd

Ar � 0.42 Ar or V∞ � 0.42
√

gd , indicating that

their drag coefficients are, with a very good approximation,
independent of the bubble size (Cd � 3π ) in agreement
with Refs. [7,8]. Upstream of the bubble, the flow can be
conveniently predicted by potential flow theory, whereas, the
production of vorticity at the bubble surface results in the
existence of a stationary wake as can be seen in Fig. 1.
Moreover, the shear stresses at the walls impose a faster spatial
decrease of the open wake in a Hele-Shaw cell than in an
unbounded fluid, which is associated with the viscous length
scale lν = V∞e2/ν, namely, u/V∞ � exp [−10(y − yR)/lν],
where yR is the length of the recirculating wake measured
from the bubble center yR � 0.16lν [8]. At a distance of about
0.4lν (�4d for Ar � 7000), the liquid velocity in the open
wake is already 10% of V∞. Note that lν/d ∼ 1/

√
d so that as

Ar increases, the length of the recirculating wake decreases in
terms of the bubble diameter (yR � 1.6d for Ar � 7000 and
�1.3d for Ar � 13 500).

The apparatus consists of two glass panes spaced 1-mm
apart and filled with water. The cell has a width of 40 cm
and a height of 80 cm, allowing us to visualize the entire
process of interaction and coalescence, while making sure
the bubbles are not affected by end effects. Gas injection is
controlled manually by a combination of pressure reducing
valves, stopcock valves, and dispensing needles. The bubbles
are recorded using high-speed imaging, after which the
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FIG. 1. Liquid velocity around an isolated large bubble obtained
by particle image velocimetry (Ar = 7000, V∞ = 0.16 m/s, d =
1.5 cm). Left, in the laboratory frame; right, focus on the recirculating
wake in the bubble frame.

background is subtracted from the frames. The resulting
frames are binarized, revealing the contours of the bubbles.
From the contours, we obtain the kinematics and deformation
characteristics of the bubbles.

We vary the injected gas volume for both bubbles and
release them in rapid succession from a single capillary. We
investigated the case where the second bubble is smaller than
the first one. If the delay between the bubbles’ injection is not
too large, we observe that the trailing bubble catches up with
the leading bubble, resulting in coalescence. Figure 2 provides
an overview of this process. These experiments indicate that
the suction effect provided by the wake of the leading bubble
is sufficiently strong to accelerate the secondary bubble until
it joins the first bubble. Moreover, this occurs even when the
trailing bubble is smaller and has a smaller terminal velocity
than the leading bubble, since the terminal velocity of an
isolated bubble is proportional to A1/4. Figure 2 also reveals
that a strong deformation of the secondary bubble occurs
when it is sufficiently close to the leading bubble. We now
provide a detailed characterization of the whole interaction and
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FIG. 2. (Color online) Overview of the trajectories of two
coalescing bubbles (Ar1 = 16 700 and Ar2 = 8600). The trailing
bubble is entrained in the wake of the leading bubble (1–5); the
bubbles adapt their shapes (6) and coalesce forming a single bubble
(7, 8).
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FIG. 3. (Color online) Vertical velocity of the trailing bubble (top
lines) and of the leading bubble (bottom lines) normalized by the
terminal velocity of an isolated bubble of the same size as the leading
bubble. 〈 . 〉 denotes averaging over multiple experiments. (Darker
solid lines) Results averaged over 40 experiments and (darker dashed
lines) data from a single experiment (Ar1 = 15 450 and Ar2 = 8500).
The green (light gray) curves compare two sets of experiments, both
for 7500 < Ar2 � 9000 (〈Ar2〉 = 8437) and two different ranges of
Ar1, the dashed line for 11 010 < Ar1 < 12 800 (〈Ar1〉 = 11 806),
and the solid line for 15 950 < Ar1 < 17 520 (〈Ar1〉 = 16 685).

coalescence process, in particular, the wake-induced relative
motion of the two bubbles, their deformation when the bubbles
are close enough, and finally, the thin liquid film drainage
occurring after pinch-off of the two bubbles’ interfaces.

The data presented are the mean of 40 experiments, per-
formed over a range of Ar numbers (10 000 < Ar1 < 17 500
and 6000 < Ar2 < 10 000), where Ar2/Ar1 varies between
0.5 and 0.8 and where the indices 1 and 2 correspond to the
leading and trailing bubbles, respectively. Figure 3 presents the
instantaneous vertical velocities of the bubbles as a function
of the distance between the centers of gravity of the bubbles.
Both velocities are normalized with the terminal velocity of
an isolated bubble of the same size as the leading bubble. On
the abscissa, the distance between the centers of the bubbles is
normalized using the viscous length scale lν . Figure 3 shows
that the speed of the leading bubble is unaltered by the presence
of the second bubble. This has also been observed in Ref. [12]
for three-dimensional (3D) spherical caps, whereas, for small
spherical bubbles, the velocity of both bubbles increases prior
to coalescence [13]. Regarding the trailing bubble, Fig. 3
shows that it experiences a significant acceleration and then
deceleration as it approaches the leading bubble. Thanks to
the entrainment provided by the leading bubble’s wake, the
velocity of the trailing bubble is already 50% higher than
its isolated speed and 20% higher than the speed of the
leading bubble at �y � 0.5lν (about four diameters away from
the top bubble) and continues to increase while the trailing
bubble is approaching the leading one. This acceleration
phase was measured already in Ref. [12], but they carried
out no measurement beyond �y/d1 ≈ 2.5. When the distance
between the bubbles is �y/lν ≈ 0.2 (�y/d1 ≈ 2), the velocity
of the trailing bubble reaches a maximum, about two times
faster than the speed of the leading bubble. This corresponds
to frames 4 and 5 in Fig. 2. At that point, the trailing bubble is
entering the attached recirculating wake of the leading bubble,
and it starts to experience large deformations as described
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later. This velocity is kept until �y/lν ≈ 0.1 (�y/d1 ≈ 1).
For lower separation distances, the liquid between the two
bubbles is pushed out, the bubbles become wider, and the
trailing bubble slows down and adapts its velocity to the speed
of the leading bubble. For trailing bubbles with Ar2 ≈ 8440,
Fig. 3 also presents the evolution of their vertical velocity
when the leading bubbles move either at Ar1 ≈ 11 810 or
at Ar1 ≈ 16 690 [green curves (light gray top)]. We observe
that all the curves superpose satisfactorily. The same result is
obtained when fixing Ar1 and considering two different sets
of Ar2. This result indicates that, in the ranges of Ar1 and Ar2

investigated here, the evolution of the velocity of the trailing
bubble with the separation distance follows a unique master
curve, provided the velocity is normalized with the velocity
of the leading bubble and the separation distance with the
viscous length scale associated with the leading bubble. This
result fully reveals the crucial role of the wake of the leading
bubble in the interaction process. Note that, for comparison,
data from a single experiment is also presented. These data
are not as smooth as the averaged velocity due to the shape
oscillations of the body but also, in some cases, due to the
possible lack of alignment of the two bubbles and associated
slight horizontal motion.

During the entire process, the width and the curvature of the
bubbles evolve. Figure 4 shows the width w and the curvature
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FIG. 4. (Color online) (a) Evolution of the normalized width of
the bubbles during approach. Top and bottom lines correspond to
the leading and trailing bubbles, respectively. (b) Curvature of the
bubbles as a function of separation distance. Top, middle, and bottom
lines correspond to the normalized curvature at the top of the trailing
bubble, top of the leading bubble, and bottom of the leading bubble,
respectively. (Solid lines) Results averaged over 40 experiments and
(dashed lines) results from a single experiment (Ar1 = 15 450 and
Ar2 = 8500).

FIG. 5. Overview of different pairs of bubbles just prior to
coalescence showing how the bubbles adapt their shapes to each
other. Note that each pair of bubbles is shaped like a single big
bubble (Ar1 ≈ 11 000 and Ar2 ≈ 7000).

1/R of the bubbles, normalized by the leading bubble diameter
d1 as a function of the separation distance. During the approach
of the trailing bubble, from about four to two equivalent
diameters apart (e.g., frames 1–4 in Fig. 2), the top bubble does
not change its shape significantly. The constant velocity of the
first bubble, thus, is associated with a constant front curvature
as can be expected from potential flow theory [7]. The trailing
bubble, on the contrary, experiences a pronounced change in
shape. It first becomes narrower, which causes the curvature
to increase as can be seen in Fig. 4. At �y/lν ≈ 0.2, the width
of the trailing bubble starts to increase, while its curvature and
velocity start to decrease. As the bubble continues to approach
the leading bubble, it becomes wider and slows down. In
the final stage of the approach, the liquid between the two
bubbles is pushed out, no immediate coalescence occurs, and
the leading bubble adjusts itself in order to accommodate for
the trailing bubble by becoming slightly wider (Fig. 4). The
bubbles adapt the shape of their interface and match each
other’s curvature.

Figure 5 shows an overview of the bubbles just before they
coalesce. Most of the liquid between the bubbles has been
drained, and the shape of the two bubbles together closely
resembles a single large bubble. In this situation, the drag of
the pair is very close to the leading bubble drag (Cd � 3π and
comparable velocities), whereas the drag of the pair is larger
as long as the two bubbles have separated wakes. In addition,
note that the bubbles are not always vertically aligned, despite
being injected through the same nozzle, but in all cases, the
trailing bubble is captured by the leading one.

The final stage of coalescence is the merge of the interfaces;
the fluid between the two bubbles has thinned enough so that
nonhydrodynamical forces trigger the film rupture [14]. The
drainage has been observed to be in several forms, depending
on the geometry of the bubbles as can be seen in Fig. 6. Film
drainage can start at one end and then move across the entire

FIG. 6. Two sequences of film drainage. (Top three images) The
liquid ligament is retracting at a constant velocity. (Bottom images)
The film changes geometry halfway, and the fluid is collected in a
rim. The scales on the right equal 1 cm.
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bubble (see Fig. 6) or start in the middle upon which the
fluid is evacuated in two directions. It is still an open question
whether the fluid is drained partly in the films in between
the bubble and the glass or in the sole plane of the cell. A
thin liquid film exists between the moving bubbles and the
walls. The thickness of this liquid film can be estimated by
h/e ≈ Ca2/3/(1 + Ca2/3) [8,15], where Ca = ρνV∞/σ is the
capillary number. For the largest bubbles of our experiments,
this gives a film thickness of h = 25 μm. In the experiments,
we used demineralized water, and the scaling law giving the
velocity of the isolated bubble (Re = 0.42 Ar) suggests that
the liquid speed in the films is negligible, indicating that a
shear-free condition applies at the air-water interface of the
thin films [7,8]. When the film separating the two bubbles is
uniform (absence of a rim) as in the upper sequence of Fig. 6,
we found the speed of the moving interface in the frame of
reference of the bubble and along the curved film to be constant
and about vd � 1.65 m/s. This measure was obtained with a
time step of 0.5 ms over a length of the retracting film of 3
cm. Assuming that the drainage occurs in the plane of the cell
and that the motion in the thin film is of Darcy type, i.e., that it
results from a balance between pressure gradient and viscous
friction at the walls, the mean drainage velocity in the gap
(thickness e) is given by vd = e2

12ρν
∂P
∂s

, s being the curvilinear
abscissa along the film. The pressure gradient in the liquid film
∂P
∂s

can be related to the difference in curvature along the 3D
interface using Laplace’s law. Considering that, in the gap,
the bubble curvature is fixed everywhere by thickness e, the
pressure gradient at leading order is driven by the change
in the plane of the cell (over the length scale d) of the

bubble curvature due to the local merging. An order of
magnitude of ∂P

∂s
, thus, is 1

d
σ
w

, where the film thickness w

is smaller than the radius of curvature of the bubble at the
film exit (w � d, see Fig. 6). This leads to vd � σ

12ρν
e2

wd
,

which is O(1) m/s for w ≈ e. A specific investigation should
be carried out in the future to accurately measure the 3D
geometry of the film and to verify that inertial effects can be
neglected.

Accurate simultaneous measurements of the kinematics and
of the deformation of two large bubbles rising in line allowed us
to identify and to characterize the following different stages of
interaction of the bubbles: (i) the trailing bubble is accelerated
by the long-range wake of the primary bubble; (ii) the second
bubble enters the recirculating wake of the leading bubble,
undergoes horizontal contraction, and decelerates; (iii) the
bubbles adapt their shape to each other, in particular, their
curvatures are significantly modified; (iv) the shape of both
bubbles together resembles a single bubble, and the liquid
between the bubbles is squeezed out; and (v) the liquid
film breaks, and the bubbles merge. The quantitative results
presented here for each stage may provide a valuable test for
future theoretical and computational papers on the road to
predict bubbles’ attraction and coalescence.
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