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Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample
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We numerically investigate the structures of the near-plate temperature profiles close to the bottom and top
plates of turbulent Rayleigh-Bénard flow in a cylindrical sample at Rayleigh numbers Ra = 10% toRa = 2 x 10'?
and Prandtl numbers Pr = 6.4 and Pr = 0.7 with the dynamical frame method [Zhou and Xia, Phys. Rev. Lett. 104,
104301 (2010)], thus extending previous results for quasi-two-dimensional systems to three-dimensional systems.
The dynamical frame method shows that the measured temperature profiles in the spatially and temporally local
frame are much closer to the temperature profile of a laminar, zero-pressure gradient boundary layer (BL)
according to Pohlhausen than in the fixed reference frame. The deviation between the measured profiles in the
dynamical reference frame and the laminar profiles increases with decreasing Pr, where the thermal BL is more
exposed to the bulk fluctuations due to the thinner kinetic BL, and increasing Ra, where more plumes are passing

the measurement location.
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One of the classical systems in which to study heat transport
phenomena is turbulent Rayleigh-Bénard (RB) convection. In
this system, a layer of fluid is heated from below and cooled
from above [1,2]. The dynamics and the global features of the
system are strongly influenced by the properties of the flow in
the boundary layers (BLs). Almost all theories that describe
the heat transport in turbulent RB convection, from the early
marginal stability theory [3] to the Shraiman and Siggia (SS)
model [4,5] and to the Grossmann and Lohse (GL) theory [6],
are essentially BL theories. Therefore, it is a key issue to fully
understand BL profiles close to the horizontal plates.

The key question in RB convection is how do the heat
transport (expressed by the Nusselt number Nu) and the
turbulence intensity (expressed by the Reynolds number Re)
depend on the control parameters of the system? For a given
aspect ratio I' = D/L (D is the sample diameter and L is
its height) and given geometry, the control parameters are the
Rayleigh number Ra = BgAL?/(kv) and the Prandtl number
Pr=v/k. Here B is the thermal expansion coefficient, g is
the gravitational acceleration, A is the temperature difference
between the plates, and v and « are the kinematic viscosity and
thermal diffusivity, respectively. The GL theory has achieved
good success in predicting Nu (Ra,Pr) and Re (Ra,Pr) [1,7,8].

Recently, the GL theory was successfully extended to the
very large Ra number regime [9] (the so called ultimate
range) in order to explain the experimentally observed multiple
scaling regimes of the heat transfer [10], and to the rotating
case to predict the heat transfer enhancement due to rotation
[11]. As the GL theory builds heavily on the assumption that
the BL thickness of not yet turbulent BLs scales inversely
proportional to the square root of the Re number according
to Prandtl’s 1904 theory [12], the degree of validity of
Prandtl-Blasius BL [13] flow needs to be tested. Indeed,
recent experiments [14] have shown that in nonrotating RB,
the BLs scaling behaves as in laminar flows. In addition, a
comparison of the mean bulk temperature calculated using
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the Prandtl-Blasius theory with that measured in both liquid
and gaseous non-Oberbeck-Boussinesq RB convection shows
very good agreement [15-17]. Furthermore, the kinematic BL
thickness evaluated by solving the laminar Prandtl-Blasius
BL equations was found to agree well with that obtained
in the direct numerical simulation (DNS) [18]. However, a
comparison between experimental velocity [19] and numerical
temperature [20] profiles obtained in the fixed reference frame
(fixed with respect to the horizontal plates) with the respective
classical profiles shows significant deviations.

Considerable progress on this issue was recently achieved
by Zhou and Xia [21], who experimentally studied the velocity
BL for water (Pr = 4.3) with particle image velocimetry (PIV).
They argued that such deviations should be attributed to
intermittent emissions of thermal plumes from the BLs and the
corresponding temporal dynamics of the BLs [21,22]. This led
to the study of the BL structures in dynamical reference frames,
which fluctuate with the instantaneous BL thicknesses [21].
Zhou et al. [21] used PIV data to show that the velocity profiles
obtained in the dynamical reference frame are very close to the
laminar Prandtl-Blasius profile, and numerical data [23,24] to
show that a good agreement with the temperature profile of
a laminar, zero-pressure gradient boundary layer according
to Pohlhausen [23,24], which we will call the “Pohlhausen”
profile [25] in the remainder of this paper, is obtained. In
addition, they showed that most of the time the rescaled
instantaneous velocity and temperature profiles are also in
agreement with the theoretical prediction. A dynamical BL
rescaling method has thus been established, which extends
the time-independent Prandtl-Blasius-Pohlhausen BL theory
to the time-dependent case, in the sense that it holds locally
at every instant in the frame that fluctuates with the local
instantaneous BL thickness.

However, this dynamical rescaling method has up to now
only been applied to experimental and numerical data obtained
in (quasi-)two-dimensional (2D) RB convection, where the
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orientation of the large-scale circulation (LSC) is fixed. In
addition, the experimental result is limited to Ra = 3 x 10'!.
In this paper, we will apply the dynamical rescaling method to
previously obtained data from a fully 3D DNS performed in
a cylindrical sample. The questions we will address here are
as follows: Does the dynamical rescaling method also work
for this 3D geometry, where more complex flow structures
can form? Does the method work for the highest Ra number
simulations, i.e., Ra = 2 x 10'2, that we have available? Is a
similar agreement obtained also for lower Pr?

For the analysis presented here, we use data from our
previous simulations, i.e., the simulations of Stevens et al.
[26,27] for Pr = 0.7 in an aspect ratio I' = 1/2 sample for
Ra =2 x 10° to 2 x 10'2, and the simulations of Stevens
etal [28] forRa= 108, Pr=0.7,and Pr = 6.4,inT" = 1 and
1/2 samples. All these simulations have been performed with a
second-order finite-difference code; see Verzicco et al. [29-31]
for details. During the simulations mentioned above, we stored,
in addition to a limited number of full 3D snapshots, a large
number of vertical (and horizontal) snapshots over a period
of 30-150 dimensionless time units when time is scaled by
L//BgAL. The vertical snapshots can be used to analyze
the temperature profile in the BL at the center axis. This is a
favorable location as the LSC is always passing the center axis,
provided that the off-center (or sloshing) motion of the LSC is
not too strong near the plates [32,33]. In addition, restricting
the analysis to the temperature field offers the benefit that the
orientation of the LSC just above the plates does not have
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to be determined, because the temperature profile should be
independent of the azimuthal orientation of the LSC in the
region around the center axis. This means that no difficult (and
arbitrary) routines have to be used to determine the orientation
and presence of the LSC. However, a drawback of this method
is that we cannot determine whether the LSC is passing the
cell center at every time instance. As is shown by Zhou et al.
[21,23,24], the agreement between the dynamically rescaled
profile and the Prandtl-Blasius-Pohlhausen profile deteriorates
when one considers a position where the LSC does not pass.
Similar effects can influence our results, however preventing
this is very difficult as it would require an arbitrary criterion
to determine the presence of the LSC at a certain location.
We determined the mean temperature profile in the dynam-
ical reference frame by defining the instantaneous thermal BL.
thickness 8y, (#) as the intersection between the temperature
gradient at the plate and the temperature of the first extremum
value in the temperature profile [23,24]. Even then, we obtain
that the mean bulk temperature obtained far away from the
thermal BL is below 6*. As discussed by Zhou et al. [23,24],
we attribute this to the emissions of thermal plumes. They
propose to use the temperature at some position outside of the
thermal BL, such as z/Aw = 3 or zj;, = 3, as the asymptotic
value for the BL, where XAy is the slope BL thickness
obtained in the fixed reference frame and z}}, () = z/8w(?) is the
rescaled vertical distance from the plate. In Fig. 1, we show a
direct comparison between the various temperature profiles,
rescaled in the described way: the fixed reference frame
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FIG. 1. (Color online) Comparison between temperature profiles obtained at the cell center axis near the bottom and top plate: dynamical
0*(z*) (blue short dashed lines), fixed reference frame 6(z) (red solid lines), and the temperature profile of a laminar, zero-pressure gradient
boundary layer according to Pohlhausen (black long dashed lines) for (a) Pr = 6.4, Ra = 108, andT" = 1; (b) Pr = 6.4,Ra = 10%,and " = 1/2;
(©)Pr=0.7,Ra=10%, and T = 1/2;and (d) Pr=0.7,Ra=2 x 102, and T = 1/2.
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profiles 6(x,z)/0(x,z = 3Am), the dynamical local profiles
0*(z3,)/0* (25, = 3), where 8 indicates the temperature in the
dynamical reference frame defined as 6*(x,z;) = (0(x,z =
Z5,0m(x,1),1)) [21,23,24], and the Pohlhausen temperature
profile.

Figures 1(a) and 1(b) show that for Ra = 10% and Pr = 6.4,
the mean dynamically rescaled profiles are very close to
the Pohlhausen temperature profile for both ' = 1 and 1/2
samples. In agreement with the results obtained by Zhou ef al.
[21,23,24], in (quasi)-2D RB convection, we find a significant
preference of the dynamical frame-based profiles: Around
the thermal BL thickness, the fixed reference frame-based
time-averaged local profiles 6(z)/6(z = 31y) are all much
lower than the Pohlhausen profile, while the dynamically
rescaled instantaneous local profiles 6*(z}})/6*(z}, = 3) are
much closer to the Pohlhausen profile. We emphasize that we
observe this good agreement even though we do not filter out
the moments in which the LSC is not passing the cell center. In
addition, one has to realize that buoyancy-driven instabilities
generate a wall normal flow and break down the stratified
structure of a laminar flow field in the BLs. Consequently,
heat is no longer mainly conducted but also a significant
fraction is convected throughout the BLs. This results in a
deviation of the mean temperature profiles from the laminar
BL predictions, as seen in the figure. Another feature worthy of
comment is that the results here show that the dynamic scaling
method works also for I' = 1/2 geometry, whereas all previous
studies [21,23,24] only considered a " = 1 geometry. That the
method still works in a I' = 1/2 sample is remarkable given
that the laminar BL theory has been developed for parallel
flow over an infinite flat plate, whereas here in the aspect ratio
I' = 1/2 sample, one can hardly find such regions of parallel
flows at the top and bottom plates.

In Fig. 1(c), we show the results for Pr = 0.7 and Ra = 108
in a ' =1/2 sample. A comparison with the results for
Pr = 6.4 at the same Ra reveals that for the lower Pr, the
dynamically rescaled profile differs more, but still less than
in the fixed reference frame, from the Pohlhausen temperature
profile. The larger deviation at lower Pr can be explained by the
fact that the viscous BL is thicker than the thermal BL for larger
Pr, and hence the thermal BL in this case is less influenced by
the bulk turbulent flow than at low Pr. Figure 1(d) shows that
the difference between the dynamically rescaled profile and the
Pohlhausen profile increases with increasing Ra. To quantify
the deviations from the Pohlhausen profiles, we determined
the shape factor of the temperature profiles in the BLs close to
the bottom and top plate, cf. [34],

H=3§/8", )]

where 6 and 8™ are the local displacement and momentum
thicknesses of the profiles, respectively, defined as

o0 Y(2)
8¢ = / [1 - —]d 2
0 [Y(Z)]max ¢ ( )

5'";/00 [1— Y@ H 1) ]dz. 3)
0 [Y(Z)]max [Y(Z)]max

Here, Y = 0* or 6 is the corresponding local temperature
profile in the dynamical or fixed reference frame, and all z

and
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FIG. 2. (Color online) Comparison between temperature profiles
obtained at the cell center near the bottom and top plate in
the fixed reference frame (a) and the dynamical reference frame
(b) for Pr=0.7 in an aspect ratio I' = 1/2 sample at Ra = 10?
(red), Ra =2 x 10'° (blue), Ra =2 x 10'> (dark green), and the
temperature profile of a laminar, zero-pressure gradient boundary
layer with Pr = 0.7 according to Pohlhausen (dashed line). Note that
the difference between this theoretical profile and the numerical data
increases with increasing Ra as indicated by the direction of the
arrow. The insets in (a) and (b) compare the shape factor for the
temperature profile of a laminar, zero-pressure gradient boundary
layer with Pr = 0.7 according to Pohlhausen (horizontal dashed line)
with the shape factor of the temperature profiles obtained in the fixed
reference frame (a) and the dynamical reference frame (b). Note that
the shape factor in the dynamical reference frame is closer to the
theoretical prediction than in the fixed reference frame.

integrations are evaluated only over the range from z = 0 to
3 instead of toward co. Roughly speaking, the shape factor of
a profile in general describes how fast the profile approaches
its asymptotic value, i.e., the larger the shape factor is, the
faster the profile runs to its asymptotic level. The shape factor
of the Pohlhausen temperature profile is H"® &~ 2.59 for the
present Pr = 0.7. Figure 2 shows that the shape factor is closer
to the Pohlhausen value in the dynamical reference frame than
in the fixed reference frame, which confirms that the profiles
obtained in the dynamical reference frame are indeed closer
to the Pohlhausen profile. Here we emphasize that the peak in
the PDF of the shape factor is even closer to the shape factor
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expected from the BL theory, e.g., for Ra = 2 x 10'? the peak
in the PDF of the shape factor in the dynamical reference
frame is at H ~ 2.50, whereas the average shape factor in the
dynamical reference frame is H = 2.42. Similar numbers are
observed for the other Ra numbers. Furthermore, we see that
the shape factor decreases for increasing Ra, which confirms
that the difference between the dynamically rescaled profile
and the Pohlhausen profile indeed increases with increasing
Ra. We attribute this to the fact that the flow becomes more
turbulent at lower Pr and higher Ra, and a more turbulent flow
leads to the formation of a larger number of plumes that pass
the center axis. Because Zhou et al. [21,23,24] have shown that
passing plumes lead to a lower shape factor, it is not unexpected
that the difference between the dynamically rescaled profile
and the Pohlhausen prediction increases with Ra. In fact, both
for lower Pr and higher Ra, the velocity field becomes more
turbulent and advects the temperature differently from that
described by purely laminar theory, which can lead to the
larger deviations that are observed. We note that even for the
most turbulent case we considered here, i.e., Ra =2 x 10'?
and Pr = (.7, we cannot identify any characteristic signature
indicating that the BLs have become turbulent. In particular,
we do not observe logarithmic profiles, which would look
significantly different, i.e., very steep near the wall and much
flatter with extensions of order L away from the wall. We do
not observe either of these properties in the simulations. This is
in agreement with recent experimental [10] and theoretical [9]
results, which show that the BLs become turbulent around
1013 < Ra < 5 x 10™. However, we cannot exclude that the
observed deviations in the BL profiles with respect to the
laminar predictions are some preliminaries of what will come
for significantly lower Pr or higher Ra.

PHYSICAL REVIEW E 85, 027301 (2012)

To summarize, we generalized the dynamical rescaling
method of Zhou and Xia [21,23,24] to the data obtained
from a fully resolved 3D DNS of RB convection in a
cylinder. In agreement with the results obtained in 2D, we
find that the method clearly reveals the temperature profile of
a laminar, zero-pressure gradient BL according to Pohlhausen
in 3D flows. The method works best for relative low Ra
and high Pr, where a relatively strong LSC is formed. For
lower Pr and higher Ra, the velocity field becomes more
turbulent and advects the temperature differently from that
described by purely laminar theory. Therefore, the agreement
between the Pohlhausen profile and the dynamically rescaled
profile becomes less for lower Pr, which can be explained
by the fact that the viscous BL is thicker than the thermal
BL for high Pr and hence the thermal BL in this case
is less influenced by the bulk turbulent flow than at low
Pr. For high Ra, the effect of passing plumes leads to
larger deviations with respect to the Pohlhausen temperature
profile.
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