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Enhancing synchrony in chaotic oscillators by dynamic relaying
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In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost
identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner
oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s).
We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system
in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is
experimentally verified in the electronic circuit of Rössler oscillators.
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Chaotic trajectories in coupled nonlinear dynamical sys-
tems are known to synchronize when the strength of the
coupling exceeds a critical value [1–3]. Such complete
synchronization (CS) occurs only when the oscillators are
identical. When the oscillators are mismatched, CS becomes
unstable due to attractor bubbling or bursting instabilities [4],
but lag synchronization (LS) may arise at a lower value of
the critical coupling [5,6]. An unexpected consequence of this
lag synchrony is that it can promote complete synchrony in
a chain of diffusively coupled chaotic oscillators when there
are isolated impurities, namely, mismatched oscillators. The
simplest case arises when there are three oscillators coupled,
as shown in Fig. 1(a), with oscillators 1 and 3 being identical
to each other but mismatched with oscillator 2. The central
oscillator with either positive or negative mismatch induces a
common time lag or lead with the outer oscillators, leading to a
LS scenario at a lower critical coupling. An examination of the
master stability function (MSF) [7] in Fig. 1(b) for two outer
oscillators in a set of three chaotic Lorenz oscillators shows
that CS occurs at a lower critical coupling for mismatch in
some regions of the parameter space of the central oscillator.
This enhancing effect is seen at the right side of the black (red)
hill where the coupled dynamics is chaotic. On the left side,
the coupled dynamics is periodic, where a diminishing effect
is observed instead. The MSF is calculated between the (1, 3)
pair of identical oscillators, which are not directly coupled but
interact through the exchange of signals mediated by oscillator
2. The effect is found to occur both in instantaneous and delay
coupled systems.

In the presence of long conduction delays, zero-lag
synchronization (ZLS) was reported [8,9] in two distantly
located populations of neurons in cerebral cortical areas when
mediated by a third population. The ZLS was verified in
laboratory experiments on a laser [10] and electronic circuit
[11]. In these experiments, one common strategy was to detune
(positive or negative) the frequency of the central oscillator to
optimize the ZLS. The robustness of the ZLS to frequency
detuning in the central oscillator [12,13] and also to parameter
mismatch in the outer oscillators [13] was investigated. An
isochronal synchronization [14] was also reported in three

instantaneously coupled laser sources. The central oscillator
played a leader/laggard role [15,16] in the presence of long
coupling delay. However, the role of parameter mismatch
(or frequency detuning) on the critical coupling of ZLS has
not been investigated. In this Brief Report, we address a
natural question: does the parameter mismatch in the central
oscillator play any role on the ZLS or isochronal synchrony?
Investigating a chain of three delay coupled Mackey-Glass
systems with coupling delay, we find that two identical outer
oscillators evolve to a CS state at a lower critical coupling for
parameter mismatch in the central oscillator: this is defined as
the enhancing of synchrony in the outer oscillators.

The coupled Mackey-Glass system is given by

ẋi = −axi + mixi(t − τ0)

1 + x10
i (t − τ0)

+ ε[xi−1(t − τ1)

+ xi+1(t − τ1) − 2xi], i = 1,2,3, (1)
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FIG. 1. (Color online) MSF (λmax) as a function of coupling and
mismatch. Each circle in (a) denotes a Lorenz system: ẋi = σ (yi −
xi), ẏi = rixi − yi − xizi , żi = −bzi + xiyi (i = 1,2,3) : b = 8/3, σ

= 10, r1 = r3 = 28, r2 = 28 + δr, δr is a mismatch, and the coupling
strength is ε. Arrows denote mutual coupling via the y variable.
λmax plot (b) has two CS regions [gray (green-white)] delineated
by a critical coupling boundary on both sides of a black (red) hill
when λmax crosses a positive [black (red)] to a negative value [gray
(green-white)]. The slope of the critical coupling boundary is negative
at right, while positive at left.

027201-11539-3755/2012/85(2)/027201(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.027201


BRIEF REPORTS PHYSICAL REVIEW E 85, 027201 (2012)

 0.5

 1

 0.4

 (a)  (b)

 0.6  0.8

ρ x
1x

3

ε

FIG. 2. (Color online) Mackey-Glass system: ρx1x3 plot of the
(x1, x3) pair of time series in the ε − δm plane (a); CS in black
region. Critical coupling boundary delineated by black and gray (blue)
regions shows a negative slope. ρx1x3 of the (x1, x3) pair in (b) with
ε for δm = 0 [black (red)], 0.2 [gray (blue)], and 0.35 (dotted lines).
a = 1, m1 = m3 = 3, τ0 = 2.

with zero flux [x0(t − τ1) = x2(t),x4(t − τ − 1) = x3(t)].
Here, ai,mi are constants and τ0 is the intrinsic time delay of
the system. A mismatch, δm(m2 = m1,3 ± δm), is introduced
in the central oscillator. We consider a large coupling delay
τ1 = 4 with a coupling strength ε to enact the long range
ZLS [8–11]. Numerically computed cross-correlation ρx1x3

[17] of the (x1, x3) pair of time series of the outer oscillators
is plotted in the ε-δm plane in Fig. 2(a). In the case of
CS, ρx1x3 = 1. Figure 2(a) shows a negative slope of the
boundary line that separates the CS regime (black) from the
nonsynchronous regime [gray (blue)]. The negative slope of
the boundary confirms the enhancing effect. The boundary
is possibly fractal, and a further exploration of this feature
is presently underway. We reconfirm the enhancing effect by
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FIG. 3. (Color online) Mackey-Glass System: (x1, x3) pair of time
series shown in black (red) and gray (blue) lines for the identical case
(a), mismatch case (b), of the (x1, x2) pair shown in black (red) and
gray (blue) lines for the mismatch case (c). Corresponding ρx1x3 of
the (x1, x3) pair of time series in (d) and (e), of (x1, x2) in (f). ε =
0.53, a = 1.1, m1 = m3 = 3, δm = 0.3, τ 0 = 2.0, τ 1 = 4.0.
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FIG. 4. (Color online) MSF (λmax) of outer Rössler oscillators
with ε. In the chaotic regime, (a) ε = εc = 0.18 for CS in outer
oscillators for the identical case [black (red) line], εc = 0.13 for
the mismatch (δω = 0.1) in the central oscillator [gray (blue) line].
In the limit cycle case, (b) b = 0.2, c = 2.5 (other parameters same),
and the εc for CS in outer oscillators is larger for the mismatched case
[gray (blue) line] than the identical case [black (red) line].

plotting ρx1x3 with ε in Fig. 2(b) for two specific choices of
mismatch. The critical coupling decreases with mismatch in
the central oscillator. The (x1, x3) pair of time series in Fig. 3(a)
shows poor correlation (ρx1,x3 ≈ 0.70) in Fig. 3(d) at zero
lag (τ = 0) for ε = 0.53 when all oscillators are identical.
Figure 3(b) shows CS (ρx1x3 = 1) between the (x1, x3) pair of
time series for the same ε = 0.53 at zero lag in Fig. 3(e) when
a mismatch (δm = 0.3) is introduced in the central oscillator.
The outer oscillators maintain a time lag with the central
one as shown in Fig. 3(c). However, the lag (τ = 4.22) is
slightly larger than the coupling delay (τ1 = 4.0) as shown
in the maxima of ρx1x3 in Fig. 3(f). By taking coupling delay
τ1 = 0, we check that the additional lag appears due to the
parameter mismatch. This indicates that a LS scenario leads
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FIG. 5. (Color online) Module of three Rössler oscillators. Pair
of (x1, x3) times series shown in black (red) and gray (blue) lines for
ε = 0.13 in the identical case (a), the mismatch case (b), of (x1, x2)
time series shown in black (red) and gray (blue) lines in the LS state
(c). Plot of x1 vs x3(t) in the identical case (d), the mismatch case (e),
of x1 vs x2(t + τ ) in LS (f) when τ = 0.5.
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FIG. 6. (Color online) Rössler oscillator and coupling circuit.
Upper circuit is a single Rössler oscillator; attractor of an isolated
oscillator at right (oscilloscope picture). Lower circuit derives the
diffusive coupling scheme (square box) in three oscillators (circle).
R in oscillator (2) is varied to induce mismatch. Coupling strength
increases with RC as a proportional constant voltage.

to an enhancement of the CS in the outermost oscillators due
to a parameter mismatch in the central oscillator.

To further elucidate that the LS effect plays a key role in
lowering the critical coupling of CS, we consider a chain of
three instantaneously coupled Rössler oscillators,

ẋi = −ωiyi − zi + ε(xi+1 + xi−1−2xi),
(2)

ẏi = ωixi + ayi, żi = b + zi(xi − c), i = 1,2,3,

with zero flux (x0 = x1,x4 = x3). We choose a = 0.2, b = 0.4,
c = 7.5, ω1 = ω3 = 1, ω2 = ω1 + δω, and δω = 0.1 for a
chaotic regime.

Numerical results in Fig. 4(a) show that λmax crosses from
a positive to a negative value at a lower critical coupling [gray
(blue)] when a mismatch is introduced in the central oscillator.
The (1, 3) pair of oscillators is not in CS in Figs. 5(a) and 5(d)
for ε = 0.13 when three oscillators are identical. In fact, they
need a larger coupling (ε > εc = 0.18) to develop a CS state.
Instead, when a mismatch (δω = 0.1) is introduced in the
central oscillator, the (1, 3) pair of oscillators emerges into a
CS state for the lower critical coupling, εc = 0.13, as shown
in Figs. 5(b) and 5(e). The outer oscillators then emerge into a
LS state with the central oscillator, as confirmed by the (x1, x2)
pair of time series in Fig. 5(c). A lag (τ = 0.5) is created in the

FIG. 7. (Color online) Oscilloscope pictures. Left panels: pair of
time series of outer oscillators in almost CS in upper row, of the
central and one of the outer oscillators in LS in middle row, and of
outer oscillators in lower row when all are identical. Right panels:
phase portraits of similar state variables of two outer oscillators; each
right panel corresponds to its immediate left panel.

LS state, as shown in the x1 vs x2(t + τ ) plot in Fig. 5(f). The
onset of CS in the outer identical oscillators is thus enhanced
by the mismatched central oscillator via dynamic relaying. The
lag synchrony lowers the critical coupling [5,6] and eventually
enhances CS in the outer oscillators in the chaotic regimes of
the example systems. On the contrary, a diminishing effect is
seen in Fig. 4(b) when the Rössler oscillators are in the limit
cycle regime. This also holds in two-dimensional (2D) limit
cycle systems, in which the effect is yet to be fully understood.

We experimentally support the enhancing effect using
the electronic analog of Rössler oscillators (circle) coupled
diffusively (square box) as shown in a block diagram (Fig. 6).
A single Rössler oscillator circuit is only shown with details of
the coupling circuit. The resistance R of the outer oscillators
(1, 3) is selected as 100 k	 to make them closely identical,
while it is chosen as 91 k	 for the middle oscillator(2) to
introduce a mismatch. The resistance RC is then varied to find
a critical coupling (1.8 k	) when (1, 3) oscillators are almost
in CS, as seen in the upper panels of Fig. 7. This leads the outer
oscillators to a LS state with the central one (middle panels).

FIG. 8. 1D arrays of bidirectionally coupled N oscillator: iden-
tical (solid circle) and mismatched (dotted circle) oscillators. Upper
row: identical outer oscillators (1, 4) mediated by two identically mis-
matched oscillators. Lower row: four identical oscillators mediated
by a mismatched oscillator (3).
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FIG. 9. (Color online) MSF (λmax) of outer oscillators in a chain
of N Lorenz oscillators in Fig. 8, (a) N = 4, (b) N = 5. Critical
coupling of CS in outer oscillators is lower [gray (blue) line] for
mismatched central oscillator than all identical case [black (red) line]
for both (a) and (b). σ = 10, r = 28, b = 8/3, δr = 3.0.

Next, keeping RC unchanged, R in the central oscillator is
changed to 100 k	 for making the three oscillators almost
identical when they are all desynchronized (lower panels). A
larger coupling (RC = 2.5 k	) is found necessary to induce CS
in three identical oscillators. Experimental results are found in
good agreement with the numerical results in Fig. 5.

The enhancing effect is found in 1D arrays of N oscillators
(N > 3) (Fig. 8) as well. In an array of four oscillators, the two
outermost identical oscillators are mediated by two oscillators
identically mismatched. In a second array of five oscillators,
four mutually coupled identical oscillators are mediated by a
mismatched oscillator. The oscillators at symmetric positions
on both sides of the central oscillator emerge into CS at a lower
critical coupling. In both cases, λmax of the outer two oscillators
crosses to a negative value at a lower critical coupling for a
mismatch introduced in the intermediate oscillator(s) in Fig. 9.

Disorder enhanced synchrony was reported earlier [18] in
an array of coupled Josephson junctions, as is noise induced
enhancing of phase synchronization [19] or coherence reso-
nance [20]. However, the mechanism of enhancing synchrony
reported here is different.

To summarize, an enhancing of synchrony is reported here
in a chain of identical oscillators mediated by mismatched
oscillator(s). A common time lag is created between the
identical outer oscillators and the mismatched central oscil-
lator(s) leading to a LS scenario at a lower critical coupling.
This time lag played a role of dynamic relaying of the
outer oscillators to establish an indirect coupling between
them and thereby enhances CS in the outer oscillators. We
presented several example systems to verify the LS scenario
causing the enhancing effect both in the presence and in
the absence of coupling delay. We provided experimental
evidence using an electronic circuit of Rössler oscillators.
An enhancing of synchrony was reported earlier [21] in two
oscillators by an induced coupling delay when the coupled
system switches from a chaotic to a periodic state. In the
present instance, the coupled oscillators remain chaotic before
and after the coupling. This enhancing effect is found for a
negative mismatch too where the central oscillator leads the
outer ones instead of lagging. The effect is also found true for
unidirectional coupling when the central oscillator drives the
identical outer oscillators. A consequence of this observation
is that a mismatched central oscillator can drive many identical
oscillators in a starlike configuration into enhanced synchrony.
Further, in a ring of coupled oscillators, the enhancing is
seen in oscillators in symmetric positions to a mismatched
oscillator. The effect appears to be a general feature of
nonlinear dynamical systems since a parameter regime of a
LS scenario [6] can always be found in chaotic systems. We
are currently investigating details of the LS scenario in both
the limit cycle and chaotic regimes of coupled oscillators for
a further understanding of the enhancing effect.
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