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Surface roughness and dry friction

J. B. Sokoloff
Department of Physics and Center for Interdisciplinary Research in Complex Systems, Northeastern University,

Boston, Massachusetts 02115, USA.
(Received 26 August 2011; revised manuscript received 6 February 2012; published 24 February 2012)

Persson’s multiscale contact mechanics theory combined with a multiscale Brillouin-Prandtl-Tomlinson model
is used to show that on the basis of these models “dry friction” [i.e., kinetic friction that remains at exceedingly
small velocities (but still above the creep range) close to its value at higher velocities] should almost always occur
for self-affine surfaces when the dominant interaction between two surfaces in contact is due to interatomic hard
core repulsion, except for extremely smooth surfaces (i.e., surfaces with a Hurst index very close to 1).
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I. INTRODUCTION

It is difficult to conceive of a model for “dry friction,” i.e.,
sliding friction that is nonzero in the limit of zero sliding
velocity, without postulating that even in that limit there is a
good deal of rapid motion taking place at the interface. The
possibility of explaining the occurrence of dry friction due
to Prandtl-Brillouin-Tomlinson model [1–3] instabilities was
discussed in some detail by Caroli and Noziere [4] and Tanguy
and Noziere [5]. It was pointed out in their work that since
asperities at an interface are generally short and fat, rather than
tall and thin [6], they are unlikely to possess the multistable
equilibrium that is required for the existence of Brillouin-
Prandtl-Tomlinson instabilities [1–3]. They are also unlikely
to interlock. As the load increases, the contribution to the
friction coefficient from hard-core interactions will dominate
over adhesive interactions because the former increase with
load but the latter do not grow with increasing load.

It is quite likely that almost all surfaces possess roughness
on multiple length scales, and there is experimental evidence
that many surfaces are self-affine [7,8]. In Ref. [9], an expla-
nation for the occurrence of dry friction was proposed based
on a scaling approach and a multiscale contact mechanics
theory put forward by Persson [10]. Here it will be pointed out
that the argument given in Ref. [9] is stronger than what was
presented there, allowing us to conclude that the approaches
of Refs. [9,10] predict that there should almost always be
dry friction for self-affine surfaces, as is commonly observed,
unless the surfaces are extremely smooth.

Models for dry friction based on earthquake models [11,12]
have been proposed as microscopic models for the occurrence
of dry friction [13,14], which postulate the existence of
local bonds that break, resulting in instabilities like those
in the Prandtl-Brillouin-Tomlinson model [1–3], but since
these bonds are introduced without providing a microscopic
mechanism for them, they do not provide a true microscopic
explanation for the occurrence of dry friction. The explanation
that will be proposed here deals with a situation (likely to occur
in many applications) in which the interactions at the interface
are dominated by hard core interactions between atoms. The
proposed model uses Persson’s multiple-length-scale contact
mechanics theory [10] to show that rough surfaces posses
asperities on all length scales down to atomic scales. As
a result, all of the load must be supported by the smallest
length-scale asperities. Consequently, there is a very large

contribution to the normal force provided by each of these
smallest length-scale asperities. This contribution is provided
by the hard core repulsion of the atoms that are in contact. Since
these hard core repulsions must also have components along
the interface of comparable magnitude, the smallest length-
scale asperities are highly likely to exhibit the multistability
required for the occurrence of dry friction resulting from the
Brillouin-Prandtl-Tomlinson model [1–3]. Here the focus is
on the friction that occurs for very slow sliding velocity (but
still above the thermally activated creep regime), in contrast to
the small but finite velocity regime considered in Ref. [15].

II. A BRIEF SUMMARY OF HOW MULTISTABILITY
CAN RESULT FROM MULTISCALE ROUGHNESS

In order to present an explanation for why dry friction
almost always occurs, in the interest of clarity, let us first
summarize the treatment discussed in Ref. [9] briefly. The
improvements to Ref. [9] of this Brief Report are presented in
the next section. Let Lnm

represent the length (and width) of
the interface as viewed at the largest length scale, meaning that
the length and width of the interface are of the order of Lnm

. We
use the usual approach of replacing the problem of two rough
surfaces in contact by a rough surface in contact with a smooth
surface [6]. Then, the interface possesses a collection of hills or
asperities of length scale Lnm−1, less than Lnm

, a fraction cnm−1

of which are in contact. Each of these asperities is covered with
asperities of length scale Lnm−2 (Lnm−2 < Lnm−1), a fraction
cnm−2 of which are in contact. This is illustrated schematically
if Fig. 1. We continue going down to smaller length scales until
we reach L0 and then a, the atomic length scale. In contrast
to Ref. [10] in which Ln for smaller values of n represents
larger length scales, here we take Ln for smaller values of n to
represent smaller length scales. It was shown in Ref. [10] that
the contact area at the nth length scale is given by

A(ζn)

A
= P (ζn), (1)

where ζn = Lnm
/Ln, A = L2

nm
, and

P (ζn) =
∫ σy

0
dσP (ζn,σ ), (2)

where P (ζn,σ ) is the distribution of stresses σ over the
interface at the length scale denoted by ζn and σy is the yield
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FIG. 1. This is a schematic illustration of the asperity hierarchy
on the top surface sliding on a flat substrate (i.e., the bottom block).
(Real asperities have arbitrary shapes, as opposed to the rectangular
shapes shown in this schematic representation.) Each asperity of a
given order has a number of (smaller) asperities of one order lower
on its surface. In turn, each of these lower order asperities has a
number of (smaller) asperities of one order lower. This continues
until we reach the zeroth order asperity, whose surface consists of
atoms. Only three orders of asperities are illustrated here.

strength of the material. In the above treatment of multiscale
roughness, there are a total of

cnm−1
(
Lnm

/
Lnm−1

)2
cnm−2

(
Lnm−1

/
Lnm−2

)2

×cnm−3
(
Lnm−2

/
Lnm−3

)2 · · · cn(Ln+1/Ln)2 (3)

nth length-scale asperities in contact with the second surface.
(What we mean by being in contact is that all Ln−1 length-scale
asperities have atoms on them that are in contact with atoms
on the second surface.) Then, A(ζn)/A is the product of the
number of nth length-scale asperities given in Eq. (3) and
L2

n/A, and since A = L2
nm

, we obtain

P (ζn) = A(ζn)/A = cnm−1cnm−2cnm−3 · · · cn. (4)

In order to write down a condition for the occurrence
of multistability, it is argued in Ref. [9] that the elastic
energy of a typical nth length-scale asperity is of the order of
L′

nL
2
nK(�xn/L

′
n)2, where L′

n and Ln are the mean height and
length of a typical nth length-scale asperity, respectively, �xn

is the displacement at the top of the asperity due to shearing,
and K is the shear modulus of the material. In order to treat the
interaction of the asperities with the second surface, let us first
discuss the interaction of the n = 0 length-scale asperities with
the second surface due to hard core interactions. The product of
the component normal to the surface of the hard core repulsive
force between the atoms belonging to the two surfaces that are
in contact F times the number of atoms in contact Na must be
equal to the total load supported by the surface, which is equal
to σA, where σ is the total load divided by the surface area
(at the nm length scale), and hence FNa ∼ σA. Then, clearly,
Na ∼ c(A/a2), and hence F ∼ σa2/c, where c, the fraction
of surface atoms in contact with the second surface, is equal
to cnm−1cnm−2 · · · c0ca , where ca is the fraction of atoms on
the zeroth order length-scale asperities that are in contact with
second surface. Then the mean potential energy of interaction
between an atom on an n = 0 asperity and the second surface
must have the approximate form V0f0(�x0/a), where f0 is
a function whose value is of order unity that varies over a
range of its argument of order unity, and V0 ∼ σa3/c since
the work done by the component of the hard core interaction
along the interface is of the order of Fa. To determine the
net force due to the second surface on an n = 0 asperity, we
have two possibilities. Either the n = 0 order asperities are

in the strong pinning regime, in which each of the atoms can
displace enough to lie close to the potential minima of the
second surface, in which case, the potential acting on an n = 0
asperity due to the second surface is ca(L0/a)2V0f0(�x0/a),
or the asperity is in the weak pinning regime [16], in which the
atoms cannot sink to their potential minima and hence the hard
core forces acting on them cannot act together. (In the strong
pinning regime, the atoms can displace under the action of the
substrate potential so that each atom lies in a substrate potential
minimum. In contrast, for weak pinning the interaction of the
atoms with each other is strong enough to prevent the atoms
from sinking into substrate potential minima. As a result, the
interaction of an n = 0 asperity with the second surface will be
proportional to the number of asperity atoms in contact with the
second surface in the strong pinning regime and proportional
to the square root of the number of asperity atoms in contact
with the second surface for weak pinning.) It will be shown
later that the small length-scale asperities are almost always
in the strong pinning regime, and hence, weak pinning will
not be considered. Applying the same arguments to the n = 1
asperities, the elastic energy is given by L′

1L
2
1K(�x1/L

′
1)2,

and the interaction of the asperities on the second surface is
ca(L0/a)2c0(L1/L0)2V0f1(�x1/a). Continuing to the n = 2
length-scale asperities and so on, we have, for the elastic
energy and interaction with the second surface for the nth
order asperities,

L′
nL

2
nK(�xn/L

′
n)2 (5)

and

[ca(L0/a)2c0(L1/L0)2 · · · cn−1(Ln/Ln−1)2]V0fn(�xn/a)

(6)

for the interaction of the asperities with the second surface for
strong pinning.

In order to determine whether there is multistability at the
nth length scale, we minimize the sum of the asperity elastic
potential energy and its interaction with the second surface,
which gives

(Ka3/V0)(cac0 · · · cn−1)−1(a/L′
n)�xn/a ∼ f ′

n(�xn/a) (7)

if the nth order asperities are in the strong pinning regime. The
solution of Eq. (7) gives the equilibrium values of �xn, as is
illustrated in Fig. 2.

For strong pinning, the straight line representing the left
hand side of Eq. (7) intersects the curve represented by the
right hand side more than once. This condition becomes
(V0/Ka3)(cac0 · · · cn−1)(L′

n/a) > 1, which gives

σ > (a/L′
n)

(
cncn+1 · · · cnm−1

)
K = (a/L′

n)

(
A(ζn)

A

)
K. (8)

Since as n decreases (i.e., we consider smaller and smaller
length scales) A(ζn) decreases, it is clear that as we move to
smaller and smaller length scales, it becomes easier to satisfy
the above conditions for the occurrence of the multistability of
the asperities on that length scale.

It has been argued in the context of friction force micro-
scope tips sliding over surfaces that thermal activation out
of potential wells in which the tip resides can sometimes
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FIG. 2. Illustration of the solution of Eq. (7) for �xn. The function
f ′(x) is a schematic illustration of the functions f ′

0, f ′
1, and f ′

n, and
the x axis denotes �xn. Lines A and B represent the left hand side of
Eq. (7) for (Ka3/V0)(cac0 · · · cn−1)−1(Ln/L

′
n) less than and greater

than 1, respectively. For the situation illustrated by line A, there are
multiple solutions, while for the situation illustrated by line B, there
is only one.

allow the tip to slide without rapid stick-slip motion [17].
From the discussion following Eq. (4), we know that in the
strong pinning regime a typical L0 length-scale asperity lies
in a potential due to the second surface with a corrugation
strength of the order of V0ca(L0/a)2 ∼ (σ/c)a3ca(L0/a)2,
where c = cnm−1cnm−2 · · · c0ca = caA(ζ0)/A, from Eqs. (1)
and (4). Then, the corrugation felt by an L0 length-
scale asperity can be written as [Fn/A(ζ0)]L2

0a since
the total normal force Fn = σA. Equation (C14) in
the first paper cited in Ref. [10] gives A(ζ0)/A =
[2σL/(πE∗h0)][(1 − H )/πH ]1/2(ζ0)−(1−H ). Substituting this
in the above expression, we obtain, for the corrugation,
(1/2)(πh0/L)E∗a3[πH/(1 − H )]1/2(L/a)1−H (L0/a)2 since
ζ0 = L/a (where L = Lnm

), E∗ = E/(1 − ν2), where E

is Young’s modulus and ν is Poisson’s ratio. For E∗ ∼
1011 dyn/cm2, a = 3 × 10−8 cm, ζ0 ∼ 108, h0/L ∼ 10−2,
L0/a ∼ 10, and H = 0.8, the latter expression gives, for the
corrugation of an L0 length-scale asperity, about 10 eV. For
such a large well depth, the Boltzmann factor is much too
small at room temperature for thermal activation of the well to
play a significant role in the sliding motion.

III. AN EXPLANATION FOR WHY DRY FRICTION
ALMOST ALWAYS OCCURS

Using Eq. (C14) of Persson’s contact mechanics theory [10]
to determine A(ζn)/A, the condition for multistability given in
Eq. (8) becomes

(
L

Ln

)1−H

>
2K

πE∗

(
1 − H

πH

)1/2
L

h0

a

L′
n

, (9)

where L = Lnm
. Since L/Ln can be as large as 108, the

inequality in Eq. (9) is not difficult to satisfy if H is not
too close to 1 because, although L/h0 ≈ 100 by Persson’s
estimates, a/L′

n can be quite small, except for very small
n asperities. (The ratios of the other quantities on the right
hand side of the inequality are of order 1.) The physical
reason for why the inequality in Eq. (8) is satisfied under most
conditions is that A(ζn)/A decreases as Ln/L decreases but
is proportional to σ , implying that as σ increases, small-scale
asperities do not flatten out by a larger percentage than larger
length-scale asperities. The reason that surfaces with an index
H close to 0 are rough and those H close to 1 are smooth is that
Persson [10] treats the surfaces as self-affine [8], which means

that if we look at the surfaces on a length scale Ln−1 instead
of Ln, the coordinates x and y (along the surface) get reduced
by Ln−1/Ln, whereas distances normal to the surface, such as
the asperity heights, only get reduced by a factor (L′

n−1/L
′
n)H ,

with H < 1. Consequently, when viewed on smaller length
scales, the asperities appear taller compared to their spacing.
In contrast, the inequality in Eq. (9) can be difficult to satisfy,
except for values of H not too close to 1 (which are very rough
surfaces), because L/h0 ≈ 100.

From the results of Ref. [9] we conclude that the n = 0
asperities will be in the weak pinning regime if σ0 <

c
1/2
a K , where σ0 is the mean load carried by an n = 0

asperity, which is given by σ0 = σ/(c0c1 · · · cnm−1), or σ <

c
1/2
a (c0c1 · · · cnm−1)K . By similar arguments, it follows that the

condition for the nth asperity to be in the weak pinning regime
is σn < c

1/2
n−1K , where σn is the mean load carried by an nth

length scale asperity, or σ � c
1/2
n−1(cncn+1 · · · cnm−1)K . Since

the condition for weak pinning for n = 0 is obviously easier to
satisfy than that for higher values of n, in order to determine
whether any asperities are likely to be weak pinning, let us
examine the condition for weak pinning of the n = 0 asperities.
The condition for weak pinning of the n = 0 asperity, using
the fact that from the relationship given above

P (ζn) = A(ζn)/A = cnm−1cnm−2cnm−3 · · · cn, (10)

and hence the condition for the n = 0 asperity being in the
weak pinning regime can be written as

σ < c1/2
a

A(ζ0)

A
. (11)

Using Persson’s expression [10] for A(ζ0)/A, Eq. (11) can be
written as

(
L

a

)1−H

< c1/2
a

2K

πE∗

(
1 − H

πH

)1/2
L

h0
, (12)

which, except for H very close to 1 and c0 extremely small,
is difficult to satisfy since L/a can be as large as 108. Thus,
we conclude that, in most cases, the asperities will all be
in the strong pinning regime, and for that regime, Eq. (9)
tells us that at least the smallest length-scale asperities will
be multistable, except for the case of extremely smooth
surfaces.

Because the small length-scale asperities often carry very
high loads, we expect that most of them will deform plastically.
If an nth length-scale asperity deforms plastically under load,
shearing of the asperity should also occur plastically [18].
As a consequence, the restoring force when the asperity is
sheared by an amount �xn will no longer be linear in �xn as
it was when the asperity was assumed to deform elastically.
Instead, the left hand side of Eq. (7) will now be a sublinear
function of �xn, and the solution of that equation illustrated in
Fig. 2 will be more likely to have multiple solutions, implying
that the asperity is more likely to exhibit multistability. Thus,
when plasticity is taken into account, the condition for the
occurrence of dry friction is even more likely to be satisfied.
In Appendix C of Ref. [10], it is shown that about 50% of the
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asperities at a length scale Ln will have yielded plastically if
the condition

H

1 − H

(
π2Eh0

2(1 − ν2)LσY

)2

[(L/Ln)2(1−H ) − 1] ≈ 1 (13)

is satisfied. It was argued in Ref. [10] that this condition will
certainly be satisfied for Ln at atomic length scales (i.e., Ln

close to a).

IV. CONCLUSIONS

It is demonstrated on the basis of the Brillouin-Prandtl-
Tomlinson model [1–3] combined with a multiscale contact
mechanics theory [10] that when the interaction between two
surfaces is due to interatomic hard core interaction, self-affine
surfaces will exhibit friction that remains close to its value at
higher velocity for exceedingly low velocities (but still above
the thermally activated creep regime), except possibly those
with a Hurst index close to 1.
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