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We present the implementation of the Blaizot-Méndez-Wschebor approximation scheme of the nonperturbative
renormalization group we present in detail, which allows for the computation of the full-momentum dependence
of correlation functions. We discuss its significance and its relation with other schemes, in particular, the
derivative expansion. Quantitative results are presented for the test ground of scalar O(N ) theories. Besides
critical exponents, which are zero-momentum quantities, we compute the two-point function at criticality in the
whole momentum range in three dimensions and, in the high-temperature phase, the universal structure factor.
In all cases, we find very good agreement with the best existing results.
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I. INTRODUCTION

The exact or nonperturbative renormalization group
(NPRG), as formulated in the seminal work of Wetterich [1],
leads to an exact flow equation for an effective action (see
also Refs. [2,3] for the original formulation of the NPRG).
In general, this equation cannot be solved but offers the pos-
sibility for developing approximation schemes qualitatively
different from those based on perturbation theory, allowing, in
particular, to tackle nonperturbative problems.

The derivative expansion (DE) is such a scheme: Based
on an expansion of the running effective action in terms of
gradients of the fields, it has been applied successfully to a
variety of physical problems, in condensed matter, particle
physics, or statistical mechanics (see, e.g., Ref. [4]). The DE
scheme allows us to calculate not only universal quantities,
such as critical exponents [4,5], but also nonuniversal quan-
tities defined at vanishing momenta, such as phase diagrams
(see, e.g., Ref. [6]). However, it does not give access to the full-
momentum dependence of correlation functions, something
desirable in many situations.

The present paper deals with another nonperturbative
scheme, namely, with the strategy proposed by Blaizot,
Méndez-Galain, and Wschebor (BMW) in Refs. [7,8], which
is reminiscent of earlier attempts by Parola and Reatto [9].
The BMW scheme, like all NPRG schemes, makes use of a
regulating or cutoff function Rk(q), which renders all vertex
functions smooth and ensures that the RG flow at scale
k involves the integration of fluctuations with momenta q

at most on the order of k. At order s, the approximation
consists of setting the internal momentum q to zero in the
n-point functions �

(n)
k with n > s leaving a closed set of flow

equations. In Ref. [7], it was shown that the BMW method
encompasses any perturbative results, provided it is pushed to
high-enough orders of s. For the particular s = 2 case studied
in the following, it is one-loop exact for the two-point function.
In Ref. [7], it has also been shown that, in the N → ∞
limit of the O(N ) scalar models, the BMW scheme is no
longer an approximation, thus allowing the computation of
any correlation function.

The BMW approximation scheme has been applied to
O(N ) models with success in simplified versions involving
either the expansions in the fields [10] or an approximated
propagator [11]. In this paper, we provide a full account of
the practical implementation of the method without further
simplifications. We also detail and extend the results recently
obtained at order s = 2 [12]. In particular, we extract the
universal scaling function governing the critical region. At
the quantitative level, we find very good agreement with the
best existing results.

The remainder of this paper is organized as follows: After
a general presentation of the NPRG framework (Sec. II), we
detail the BMW approximation scheme in Sec. III and show
how to implement it in practice in Sec. IV. In Sec. V, we report
on the results obtained at criticality (critical exponent values,
shape of the two-point function, etc.), whereas, in Sec. VI, we
compare the universal scaling function obtained in the whole
critical region to existing results. In Sec. VII, we show how
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the BMW results shed new light on the derivative expansion
approximation scheme, and we discuss in particular its validity
domain. Conclusions can be found in Sec. VIII, whereas the
appendices gather technical material.

II. THE NPRG FRAMEWORK

For the sake of simplicity, in the following, we only discuss
a scalar-field theory in the Ising universality class and defer
the presentation of the equations that hold for general O(N )-
symmetric models to Appendix D.

We, thus, consider the usual partition function,

Z[j ] =
∫

Dϕe−S+∫
x
jϕ, (1)

where S is the classical action, which, apart from being
Z2 invariant, is an a priori arbitrary function (possibly
nonpolynomial). In the following, it is understood that, if
necessary, the functional integral in Eq. (1) is regularized by
a UV cutoff at a scale � (for instance, a lattice with spacing
a ∼ �−1) so that S is associated with this scale. Notice that
the usual φ4 model whose action reads

S =
∫

ddx

{
1

2
(∂μϕ)2 + r

2
ϕ2 + u

4!
ϕ4

}
(2)

belongs to this class but that, in the following, we do not
restrict our paper to this particular case (as explained below, S

is nothing but the initial condition of the RG flow at the UV
scale � and, thus, can take any form). In Eq. (1), j (x) is an
external source, and

∫
x
jϕ is shorthand for

∫
ddx j (x)ϕ(x).

The NPRG strategy is to build a family of theories indexed
by a momentum scale parameter k such that fluctuations are
taken smoothly into account as k is lowered from the UV
scale � down to 0 [1,2,4,13–17]). In practice, this is achieved
by adding to the original Euclidean action S a k-dependent
quadratic (masslike) term of the form

�Sk[ϕ] = 1

2

∫
q

Rk(q)ϕ(q)ϕ(−q), (3)

with
∫

q

≡
∫

ddq

(2π )d
,

so that the partition function at scale k reads

Zk[j ] =
∫

Dϕe−S−�Sk+
∫
x
jϕ. (4)

The cutoff function Rk(q) is chosen so that: (i) It is on
the order of k2 for q � k, which effectively suppresses the
modes ϕ(q � k); (ii) it vanishes for q � k, leaving the modes
ϕ(q) with q � k unaffected. Thus, when k = �, Rk(q) is on
the order of �2 for all q � �, and fluctuations essentially
are frozen. On the other hand, when k = 0, Rk(q) vanishes
identically so that Zk=0 = Z , and the original theory is
recovered. The specific form of the cutoff function Rk(q) will
be specified later.

Following Wetterich [1], an effective action at scale
k, �k[φ], is defined through the (slightly modified) Legendre
transform,

�k[φ] + ln Zk[j ] =
∫

x

jφ − �Sk[φ], (5)

where φ(x) = δ ln Zk[j ]/δj (x). This effective action obeys
the exact flow equation [1] (up to a volume factor),

∂t�k[φ] = 1

2

∫
q

∂tRk(q)

�
(2)
k [q,−q; φ] + Rk(q)

, (6)

where t = ln k/� and, thus, ∂t ≡ k∂k and �
(2)
k [q,−q; φ] is the

Fourier transform of the second functional derivative of �k[φ],

�
(2)
k [x1,x2; φ] ≡ δ2�k

δφ(x1)δφ(x2)
. (7)

Thus, {�(2)
k [q,−q; φ] + Rk(q)}−1 is the full propagator in the

presence of the field φ(x). The initial condition of the flow
equation (6) is specified at the microscopic scale k = � where
fluctuations are frozen by �Sk so that �k=�[φ] ≈ S[φ]. The
effective action �[φ] of the original scalar-field theory defined
by Eq. (1) is obtained as the solution of Eq. (6) for k → 0 (that
is, t → −∞), at which point, Rk(q) vanishes identically.

When φ is constant, the functional �k[φ] reduces, to within
a volume factor 
, to a simple function of φ called the effective
potential Vk(φ),

�k[φ] = 
Vk(φ), φ const. (8)

The flow equation for Vk reads

∂tVk(ρ) = 1

2

∫
q

∂tRk(q)Gk(q; φ), (9)

where

G−1
k (q; φ) = �

(2)
k (q; φ) + Rk(q) (10)

(see Appendix A for notation).
Let us now consider the flow of n-point functions. By taking

two functional derivatives of Eq. (6), letting φ be constant,
and Fourier transforming, one obtains the equation for the
two-point function,

∂t�
(2)
k (p; φ) =

∫
q

∂tRk(q)G2
k(q; φ)

{
�

(3)
k (p,q,−p − q; φ)

×Gk(q + p; φ)�(3)
k (−p,p + q,−q; φ)

−1

2
�

(4)
k (p,−p,q,−q; φ)

}
. (11)

The flow equations (9) and (11) are the first equations of an
infinite tower of coupled equations for the n-point functions:
Typically, the equation for �

(n)
k involves all the vertex functions

up to �
(n+2)
k . Thus, approximations and truncations are needed

to obtain any practical result.
The presence of a sufficiently smooth cutoff function Rk(q),

(i) ensures that the �
(n)
k ’s remain regular functions of the

momenta and (ii) limits, through the term ∂tRk(q), the internal
momentum q in equations, such as Eq. (11), to q � k. These
key remarks allow for approximations without equivalence in
more traditional frameworks and, thus, constitute one of the
specificities of the NPRG approach.
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The approximation scheme most widely used is the deriva-
tive expansion, which is entirely based on the above remarks
about the analyticity of the vertex functions. It amounts
to formulating an ansatz for �k[φ] as an expansion in the
derivatives of the field. For instance, at order ∇2,

�k[φ] =
∫

x

[
Vk(φ) + 1

2
Zk(φ) (∇φ)2 + O(∇4)

]
. (12)

The flow equation (6) then reduces to a set of two coupled
partial differential equations for the functions Vk(φ) and
Zk(φ). During the years. the derivative expansion scheme
has produced a wealth of remarkable results (see, e.g.,
Refs. [4,6,18]), but it does not allow accessing the full-
momentum dependence of the vertex functions, something
inherently possible within the BMW scheme. We discuss this
point in Sec. VII, where we show how the BMW approach
sheds new light on the derivative expansion.

III. THE BMW APPROXIMATION SCHEME

The BMW scheme at order s aims at preserving the
full-momentum dependence of �

(s)
k and approximating the

momentum dependence of �
(s+1)
k and �

(s+2)
k in the flow

equation of �
(s)
k [7,8].

For uniform fields, the following formula:

�
(s+1)
k ({pi},ps+1 = 0; φ) = ∂φ�

(s)
k ({pi}; φ), (13)

where index i runs between 1 and s, allows reducing the order
of the vertex functions as soon as one momentum vanishes.

The BMW approximation relies on this formula, together
with the analyticity of the vertex functions and the fact that the
internal momentum q in the flow equations, such as Eq. (11)
effectively is limited to q � k. The BMW scheme at order s,
thus, consists of:

(i) neglecting the dependence on the internal momentum q

of �
(s+1)
k and �

(s+2)
k :

�
(s+1)
k (p1, . . . ,ps − q,q; φ) → �

(s+1)
k (p1, . . . ,ps,0; φ), (14)

and similarly for �
(s+2)
k (p1, . . . ,ps,−q,q; φ);

(ii) using Eq. (13), which allows us to express the approx-
imated expressions (14) as derivatives of �

(s)
k with respect to

φ, thereby closing the hierarchy of RG equations at the level
of the flow equation for �

(s)
k .

Note that the substitution in Eq. (14) is not applied to the
q dependence already present in the initial (also called bare)
n-point functions [7,8]. Thus, for instance, at the lowest level
of the approximation (s = 0, the local potential approximation
discussed below in Sec. III A), one leaves the initial q2

dependence of �
(2)
k (q) untouched. This ensures, in particular,

that the propagator is one-loop exact.
The accuracy of the scheme depends on the rank s

at which one operates the approximation. Obviously, the
implementation becomes increasingly complicated as s grows.
Later, we will show that good results can be obtained with
low order truncations, i.e., at the levels s = 0 and s = 2.
The corresponding approximations are discussed in the next
subsections.

A. s = 0: The local potential approximation

The local potential approximation (LPA) often is seen as
the leading order of the DE approximation scheme [4,17]. In
this subsection, we show that it also can be seen as the zeroth
order of the BMW scheme.

The BMW approximation for s = 0, consists of neglecting
the (nontrivial) q dependence of the two-point function in the
flow equation (9) of the zero-point function, that is, of the
effective potential Vk . That is, one substitutes

�
(2)
k (q; φ) → q2 + �

(2)
k (0; φ) = q2 + ∂2

φVk. (15)

Note that the equality in the equation above is a particular
case of the general relation (13). By substituting Eq. (15) in
Eq. (9), one gets the equation for the potential in the form

∂tVk(ρ) = 1

2

∫
q

∂tRk(q)

q2 + Rk(q) + ∂2
φVk

. (16)

This is the flow equation for the potential obtained within the
DE truncated at the LPA level. There, Eq. (9) is derived by
computing the propagator from the ansatz,

�LPA
k [φ] =

∫
ddx

{
1

2
(∇φ)2 + Vk(φ)

}
, (17)

by inserting it in Eq. (9).
Since it allows for the calculation of the entire effective

potential, the LPA provides information on all the �
(n)
k ’s at

once but only for vanishing external momenta: These functions
are indeed those that are obtained by taking the derivatives of
the effective potential, i.e.,

�
(n)
k (0, . . . ,0; φ) = ∂n

φVk. (18)

Non-trivial -momentum dependence will appear at the next
level of approximation to be described in the next subsection.

B. First order with full-momentum dependence: s = 2

The order of s = 2 is the first order of the BMW approx-
imation where a non-trivial-momentum dependence is kept.
The loop momentum q in the three- and four-point functions
on the right hand side of Eq. (11) is neglected, and Eq. (13)
is applied. The flow equation for �

(2)
k (p; φ) then becomes a

closed equation,

∂t�
(2)
k = J3(p; φ)

(
∂φ�

(2)
k

)2− 1
2I2(φ)∂2

φ�
(2)
k , (19)

where we have introduced the notation,

In(φ) ≡ Jn(p = 0; φ),
(20)

Jn(p; φ) ≡
∫

q

∂tRk(q)Gk(p + q; φ)[Gk(q; φ)]n−1.

Again, as is the case for the LPA, the approximation at
s = 2 provides information on all the n-point functions. This
time, the n-point functions depend on a single momentum.
They may be obtained as derivatives of the two-point function,
according to

�
(n)
k (p,−p,0, . . . ,0; φ) = ∂n−2

φ �
(2)
k (p; φ), (21)

which may be viewed as a generalization of Eq. (18). Thus,
for instance, the momentum dependence that remains within
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the three- and four-point vertices in Eq. (19) is indeed that of
the two-point function itself.

At this point, an important subtlety appears, coming from
the fact that the flow of the potential (or of its second
derivative) can be calculated either from Eq. (9) in which
Gk(q; φ) is obtained from Eqs. (19) and (10), or from
Eq. (19) directly at p = 0, since �

(2)
k (0; φ) = ∂2

φVk . If no
approximations were made, both results would be identical.
However, once approximations are performed, as is the case
here, both results do not coincide.

At any order of s of the BMW approximation scheme, the
same ambiguity takes place for any correlation function �

(n)
k up

to n = s − 1. Given the fact that the approximation is imposed
only on the flow equation of �

(s)
k and not on those of �

(n)
k with

n < s, it is natural to compute these functions from their own
flow equation (which is exact) and not from the flow equation
of �

(s)
k (which is approximate).

One then subtracts the parts of it that can be expressed
in terms of lower order correlation functions from �

(s)
k and

performs the BMW approximation in the equation for the
difference. For s = 2, this amounts to compute the potential
from Eq. (9) and to implement the BMW approximation on
�

(2)
k (p; φ) − �

(2)
k (0; φ).

The rationale behind this choice is that computing the
flow of ∂2

φVk from the equation for �
(2)
k (p; φ) at p = 0

would imply two approximations: Eq. (19) for �
(2)
k (p; φ) is

itself approximated, and propagators and vertices on its right
hand side also are approximated. On the contrary, Eq. (9)
for the potential is formally exact and only the propagator
used in it is approximated. This general consideration can be
made more concrete in the perturbative regime: The function
�

(2)
k (p; φ) obtained from Eq. (19) is one-loop exact and so is

�
(2)
k (p = 0; φ) = ∂2

φVk . When the corresponding propagator,
computed from Eq. (10), is inserted in Eq. (9), the obtained
potential becomes two-loop exact. By generalizing the above
subtraction procedure at higher orders, similar perturbative
considerations can be performed: At order s = 2s ′ of the
BMW scheme, the potential computed from Eqs. (9) and (10)
is (s ′ + 1)-loop exact, �

(2)
k computed from Eq. (11) is s ′-loop

exact, and so on. We, thus, expect that implementing the BMW
approximation only on the part of �

(s)
k , which is genuinely at

order s, will have a decreasing impact on the lower order
correlation functions as s grows.

In practice, for s = 2, we rewrite

�
(2)
k (p; φ) = p2 + �k(p; φ) + ∂2

φVk(φ), (22)

where Vk(φ) is obtained by solving Eq. (9), and moreover,
for numerical convenience (see below), the initial p2 term has
been extracted. The BMW approximation is implemented only
on the flow for �k . The equation for �k(p; φ) can be deduced
from Eq. (19) by subtracting its p = 0 form

∂t�k(p,ρ) = 2ρJ3(p,ρ)[uk(ρ) + �′
k(p,ρ)]2 − 2ρI3(ρ)u2

k(ρ)

− 1
2I2(ρ)[�′

k(p,ρ) + 2ρ�′′
k (p,ρ)], (23)

with

ρ = 1
2φ2, (24)

m2
k(ρ) ≡ �

(2)
k (0,ρ) = ∂2

φVk, (25)

uk(ρ) ≡ ∂ρm
2
k(ρ), (26)

and the symbol ′ denotes the derivative with respect to ρ.
In closing this section, let us mention that the relationships

between the BMW scheme at order s = 2 and, on one hand,
the large N expansion and, on the other hand, the DE, are
discussed respectively in Secs. V C and VII.

IV. IMPLEMENTATION AT CRITICALITY

In order to efficiently treat the low-momentum region
at criticality and, in particular, to accurately capture the
fixed-point structure, we first introduce dimensionless and
renormalized variables to be denoted with a tilde. We, thus,
introduce a renormalization factor Zk , which reflects the finite
change in normalization of the field between UV scale � and
scale k. Within the DE at O(∇2), this factor describes the
overall variation with k of the function Zk(φ) in Eq. (12).
Here, we define the factor Zk by

Zk = ∂�
(2)
k (p,ρ)

∂p2

∣∣∣∣
p=p0, ρ=ρ0

, (27)

where p0 and ρ0 are a priori arbitrary. Notice that we assume
in the following that the scaling dimension of φ is d/2 − 1 in
mass units as usual, so that Zk is dimensionless. From Zk , we
define the running anomalous dimension ηk by

ηk = −k∂k ln Zk. (28)

As usual, it is convenient to measure all quantities in units
of the running scale k. Thus, momenta are rescaled naturally
according to p = kp̃, and other quantities are made dimen-
sionless by dividing them by appropriate powers of k (and
possibly conveniently extracting numerical factors). Thus, we
define

ρ = Kdk
d−2Z−1

k ρ̃, m2
k(ρ) = Zkk

2m̃2
k(ρ̃),

uk(ρ) = Z2
kk

4−dK−1
d ũk(ρ̃), (29)

where Kd is a constant originating from angular integrals,

K−1
d = 2d−1dπd/2�(d/2). (30)

We also set

Gk(p,ρ) = 1

Zkk2
G̃k(p̃,ρ̃), (31)

Jn(p,ρ) = Kd

kd+2−2n

Zn−1
k

J̃n(p̃,ρ̃). (32)

Instead of Rk(q), it is convenient to work with a dimensionless
cutoff function considered as a function of y = q2/k2,

r(y) ≡ Rk(q)

q2Zk

. (33)

Now, we note that, as p → 0 at fixed k, �k(p,ρ) ∝ p2. This
p2 dependence may generate numerical instabilities in the
equation for � (once transformed to dimensionless variables).
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In order to avoid these, we found it convenient to introduce the
renormalized and dimensionless two-point function Ỹk(p̃,ρ̃),

1 + �k(p,ρ)

p2
≡ Zk[1 + Ỹk(p̃,ρ̃)], (34)

The function Ỹk(p̃,ρ̃) is a slowly varying function of p̃, and its
flow equation is regular. This equation is obtained easily from
the flow equation for �(p,ρ), Eq. (23). It reads

∂t Ỹk = ηk(1 + Ỹk) + p̃ ∂p̃Ỹk − (2 − d − ηk)ρ̃Ỹ ′
k

+ 2ρ̃p̃−2
[
(p̃2Ỹ ′

k + ũk)2J̃3 − ũ2
kĨ3

]
− Ĩ2(Ỹ ′

k/2 + ρ̃Ỹ ′′
k ). (35)

The normalization condition (27) now is expressed as

Ỹk(p̃ = p̃0, ρ̃ = ρ̃0) = 0, ∀ k. (36)

The equation for Ỹk(p̃,ρ̃) needs to be completed by the flow
equation for the dimensionless effective potential Ṽk(ρ̃) =
k−dVk(ρ), or rather, the equation for its derivative W̃k(ρ̃) =
Ṽ ′

k(ρ̃), which is more convenient since Ṽk contains a trivial
constant part that induces a numerical divergence. The equa-
tion for W̃k reads

∂tW̃k(ρ̃) = −(2 − ηk)W̃k(ρ̃) + (d−2+ηk)ρ̃W̃ ′
k(ρ̃) + 1

2 Ĩ ′
1(ρ̃).

(37)

Finally, ηk in Eq. (35) is determined implicitly by inserting
the renormalization condition (36) in the flow equation of
Ỹk(p̃,ρ̃) and evaluating the right hand side at ρ̃ = ρ̃0 and
p̃ = p̃0.

In principle, and if no approximations were performed, no
physical quantity would depend on the choice of ρ̃0 and p̃0

nor on the relatively free choice of the cutoff function r(y).
In practice, the BMW scheme, as any approximation scheme,
introduces spurious dependences on these choices. Below, we
use the one-parameter family of cutoff functions,

r(y) = α

ey − 1
, (38)

and study the dependence of our results on ρ̃0, p̃0, and α [19].
We numerically solved the flow equations having, as an

initial condition at scale �, a φ4-like classical action. More
precisely, we took

W̃�(ρ̃) = r/�2 + (u/3)�d−4Kdρ̃,
(39)

Ỹ�(ρ̃,p̃) = 0,

searching, at fixed u, for the critical point by dichotomy on
parameter r . We set ũ ≡ u�d−4Kd .

The numerical resolution is performed on a fixed regular
(p̃,ρ̃) grid, with 0 � p̃ � p̃max and 0 � ρ̃ � ρ̃max. With our
choice of cutoff function, we have found that the contribution
of the momentum interval q̃ ∈ [4,∞] to the integrals Ĩn

and J̃3 is extremely small, and we, thus, have neglected
it by restricting the integration domain to q̃ ∈ [0,4]. When
computing the double integrals J̃3(p̃,ρ̃), we need to evaluate Ỹ

for momenta p̃ + q̃ beyond p̃max. In such cases, we set Ỹ (p̃ >

p̃max) = Ỹ (p̃max), an approximation checked to be excellent
for p̃max � 5. To access the full-momentum dependence, we
also calculate �

(2)
k (p,ρ̃) at a set of fixed freely chosen external

p values. For a given such p, p/k is within the grid at the

-25 -20 -15 -10 -5 0
t

0

0.02

0.04

η
k

FIG. 1. (Color online) Example of the dichotomy procedure used
for reaching the fixed point (N = 1, d = 3, ũ = 6 × 10−2, ρ̃0 =
0, p̃0 = 0, and α = 2.25). The plot shows the running anomalous
dimension ηk as a function of t = ln(k/�). Each curve corresponds
to a different initial value of r [see Eq. (39)]. The red dashed line
indicates the estimated asymptotic value η � 0.039 43.

beginning of the flow. This is no longer so when k < p/p̃max;
then, we switch to the dimensionful version of Eq. (35) and set
J3(p,ρ̃) = G(p,ρ̃)J2(0,ρ̃), an excellent approximation when
p > k p̃max.

We found that the simplest time stepping (that is, explicit
Euler), a finite-difference evaluation of derivatives on a regular
(p̃,ρ̃) grid, and the use of Simpson’s rule to calculate integrals
are sufficient to produce stable and fast-converging results.
For all the quantities calculated, the convergence to, at least,
three significant digits is reached with a (p̃,ρ̃) grid of 50 × 60
points and elementary steps δp̃ = 0.1 and δρ̃ = 0.1. With such
a grid, a typical run takes a few minutes on a current personal
computer. The step in t = ln k/� is �t = 10−4, and the flow
is run down to t ∼ −20. In order to find the fixed point, we
performed a simple dichotomy procedure on the bare (initial)
mass m2

� = r/�2 at fixed u, by studying the flow of W̃k(0).
Figure 1 illustrates the flow of ηk as one approaches the fixed
point.

V. RESULTS AT CRITICALITY

Although the main goal of the BMW method is to provide
access to full-momentum dependence, it can, of course,
also be used to compute critical exponents and other zero-
momentum quantities [12]. In this section, where we turn to
the O(N ) models (with general N ), we provide details on the
calculation of the critical exponents and check their robustness
with respect to variations in the different parameters of the
method, such as the numerical resolution, the choice of the
cutoff function, and the location of the normalization point
(ρ̃0,p̃0).

Since we focus here on the regime of small momenta, it is
convenient to take, as an initial condition [see Eq. (39)], a value
of the dimensionless coupling ũ not too small compared to 1
in order to initialize the flow far from the Gaussian fixed point
ũ = 0 and, thus, to quickly approach the infrared (IR) fixed
point. This is useful not only because of the shortened time
needed to reach the critical regime, but also because otherwise,
due to the 16-digit precision used, our dichotomy procedure
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does not allow for an accurate determination of the fixed point
directly from initial parameters. The results to be presented
below have been calculated for ũ = 6 × 10−2/N .

A. Numerical extraction of critical exponents

The anomalous dimension η comes out of the solution
of the flow equations, which provide a direct estimate of ηk

(Fig. 1). It can also be extracted from �
(2)
k=0(p,ρ = 0) ∝ p2−η

at small momentum with the same result, although this is a
much less practical way.

In the vicinity of the fixed point, the behavior of any
dimensionless and renormalized quantity, such as the di-
mensionless mass m̃2

k = m̃2
k(ρ̃ = 0), is as follows (recall that

t = ln k/� < 0):

m̃2
k = m̃2

∗ + m̃2
1e

− t
ν + m̃2e

ωt + m̃3e
ω2t + · · · , (40)

with the universal critical exponent ν describing the departure
from the critical surface and the correction to scaling exponents
ω,ω2, . . . describing the approach to the fixed point.

In practice, we use the flow (40) of the mass (the flow of
ηk could also be used) to extract ν and ω [20]. We explore
successive regions of t values where one of the exponentials
in the equation above dominates. For instance, for t negative
enough, we write

ln |∂t m̃
2| ∼ − t

ν
+ const (41)

to find ν. To extract ω, we choose |t | large enough but not so
large as to leave the vicinity of the fixed point. We then write

ln |∂t m̃
2| ∼ ωt + const. (42)

Notice that, away from the fixed point, the exponents thus
determined, themselves depend weakly on t since, strictly
speaking, Eq. (40) holds only in the infinitesimal vicinity of the
fixed point. We, thus, obtain only (slowly) running exponents
νk and ωk . In practice, these exponents are calculated by taking
the t derivative of Eqs. (41) and (42). Then, the procedure is
repeated for a set of initial conditions that bring the system
closer and closer to the critical point (we vary r at fixed u, see
Fig. 2). The estimates of νk and ωk saturate at their fixed-point
values reflected in the plateau seen in Fig. 2 for ωk (ω is
more difficult to determine numerically than ν). Given such
curves, one can extract even more accurate estimates from the
(exponential) approach to the asymptotic plateau values, see
the inset of Fig. 2.

With this method, we could, in principle, extract exponents
with almost arbitrary numerical accuracy. In practice, however,
only a few digits are significant: Our results suffer indeed from
an uncertainty related to the choice of the cutoff function (see
the next subsection); besides, it is not necessary to present
results with an accuracy that far exceeds the deviation from
those with which they are compared.

B. Dependence on renormalization point and regulator

Although, as explained above, the values of the critical
exponents should, in principle, depend neither on the normal-
ization point (p̃0,ρ̃0) nor on the shape of the cutoff function
Rk(q), this is no longer the case once approximations are
performed.

-8 -6 -4 -2 0
t

0

0.5

1

ω
k

-8 -6 -4 -2
t

-4

-2

0

ln
 |ω

k-0
.7

84
|

FIG. 2. (Color online) Running exponent ωk (d = 3, N =
1, α = 2.25, p0 = 0, and ρ0 = 0). Each curve corresponds to a
different initial value of r [see Eq. (39)]. Inset, the exponential
approach to the asymptotic exponent is used to estimate ω � 0.784.

In practice, we apply the principle of minimal sensitivity,
searching for a local extremum of the physical quantities under
study [19,21] in a reasonable subspace of values taken by α

[the parameter of the cutoff function (38)], p̃0, and ρ̃0. Then,
it is expected that the corresponding values are optimal in the
sense that they show, locally, the weakest dependence on the
above parameters.

Here, we first notice that, at fixed α and ρ̃0, the dependence
of our estimates on p̃0 is much weaker than that found
by varying α and ρ̃0. Figure 3 shows the variation in the
anomalous dimension η with α for two typical values of N

in three dimensions. As in all other cases studied, we observe
the existence of a unique extremum for a value of α that we
call α∗ in the following. Below, we always use these extremum
values to report our best estimates for the critical exponents.
Note that we do not show the variations in the exponents
with ρ̃0 as they can be shown to be equivalent to those with
α [22].

C. Results for the critical exponents

We now present our results for the critical exponents of the
scalar O(N ) models in d = 3. They have been obtained with a
two-dimensional grid in ρ̃ and q̃ with nρ = 51 points in the ρ̃

0 2 4 6 8 10
α

0.02

0.03

0.04

0.05

η
N=1
N=10

FIG. 3. (Color online) η as a function of the cutoff parameter α

for N = 1 and N = 10 (d = 3, ρ̃0 = 0, and p̃0 = 0).
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TABLE I. Results for the anomalous dimension η in d = 3, compared with results obtained within the DE at order O(∇2), field theory
(FT), and Monte Carlo (MC) methods.

N BMW DE FT MC

0 0.034 0.039 [28] 0.0272(3) [29] 0.0303(3) [30]
1 0.039 0.0443 [19] 0.0318(3) [29] 0.03627(10) [31]
2 0.041 0.049 [28] 0.0334(2) [29] 0.0381(2) [32]
3 0.040 0.049 [28] 0.0333(3) [29] 0.0375(5) [33]
4 0.038 0.047 [28] 0.0350(45) [34] 0.0365(10) [35]
10 0.022 0.028 [28] 0.024 [36]
100 0.0023 0.0030 [28] 0.0027 [26]
O(1/N ) 0.23/N 0.270/N [26]

direction, nq = 60 points in q̃, and with q̃max = 4, p̃max = 6,
and ρ̃max = 5N . Tables I–III contain our results for the critical
exponents η, ν, and ω, together with some of the best estimates
available in the literature, obtained either from MC or from
resummed perturbative calculations [that we refer to as FT].
Our numbers all are given for the optimal values α∗ of the
cutoff parameter, and the digits quoted remain stable when α

varies in the range [α∗ − 1/2,α∗ + 1/2]. The quality of these
numbers is obvious: Our results for ν agree with previous
estimates to within less than a percent, for all N ; as for the
values of η and ω, they are typically at the same distance from
the MC and high-temperature series estimates (for instance,
for N = 1 and ν = 0.6298(3) [23]) as the results from re-
summed perturbative calculations. Our numbers also compare
favorably with those obtained at order ∇2 in the DE scheme
[19].

In the limit of large N , the BMW scheme becomes exact
for the two-point function for s � 2 [7,8]. This generalizes the
fact, shown in Ref. [24], that the LPA (s = 0) is exact in the
large N limit for the effective potential. From Tables I–IV, it
can be verified that the large N limit values η = 0, ν = 1, and
ω = 1 are approached for large values of N .

We also can perform a 1/N expansion [25,26]. This already
was performed in Ref. [11] where the BMW scheme was
approximated further by the use of LPA propagators. As
the LPA becomes exact in the large N limit, these results
are unchanged at first order in 1/N , except for the use of
another type of regulator profile. An analytical study of the
BMW equations in this limit provides the following values
for the critical exponents at order 1/N : η = 0.23/N and
ν = 1 − 1.034/N , to be compared with the exact results [26]
η = 0.27/N and ν = 1 − 1.081/N . In Ref. [11], the use of
another regulator profile allowed us to obtain somewhat better
results for η in this limit: η = 0.25/N . Notice that all these
analytical results are recovered in our numerical solution for
large values of N (notice, in fact, that terms at order 1/N2

already are very small for N > 4).
The two-dimensional case, for which exact results exist,

provides a very stringent test of the BMW scheme. We focus
here on the Ising model N = 1, which exhibits a standard
critical behavior in d = 2 and the corresponding critical
exponents. Notice that the perturbative method that works
well in d = 3 fails here: For instance, the fixed-dimension
expansion that provides the best results in d = 3 yields, in

d = 2 and at five loops, η = 0.145(14) [27] in contradiction
with the exact value η = 1/4.1 Instead, we find η = 0.254
and ν = 1.00 in excellent agreement with the exact values
η = 1/4 and ν = 1. A more detailed study of O(N ) models in
d = 2, at and out of criticality, will be presented in a separate
paper.

D. The function �(2) at criticality and further tests at
intermediate and large momenta

We now study the momentum dependence of the two-point
function at criticality. In dimension three, the bare (initial)
coupling constant u has the dimension of a momentum
and, thus, sets a scale (the Ginzburg length ξG ∼ u1/(d−4)).
Typically, there are three momentum domains for �(2)(p,ρ =
0) [11,12]:

(i) The IR domain defined by p � u where �(2)(p) ∼
uηp2−η. In Fig. 4, we show that this behavior is well reproduced
by our solution of the flow equation. To clearly see this regime
on a large range of momenta, we have integrated the flow
with an initial value of u not too far from the value of �,
ũ = 6.10−2/N .

(ii) The UV domain defined by p � u (and � � p) where
�(2)(p) can be studied perturbatively and is found to behave
at two loops as �(2)(p) − p2 ∼ −(CN/96π2)u2 ln p/u [with
CN = (N + 2)/3]. In Ref. [11], it was shown that, in the BMW
approximation, and at large momenta, �(p,ρ = 0) behaves as
u2 ln(p/u), more precisely,

∂�k=0(p,0)

∂|p| = CN

u2

2|p|
∫

l,q

∂tRk(l)G2
0(l)G2

0(q). (43)

The u2 ln p/u behavior, thus, is retrieved, see Fig. 5, with
a prefactor that, however, depends on Rk(q). With the
exponential cutoff function, Eq. (38), the prefactor can only be
calculated numerically. We have studied its dependence on α

1It has been conjectured (see Ref. [55] and references therein), and
this is confirmed by 1/N calculations, that the presence of nonanalytic
terms in the flow of the φ4 coupling u could be responsible for
the discrepancy between exact and perturbative results in d = 2.
According to Sokal, no problem should arise when all couplings,
including the irrelevant ones, are retained in the RG flow, as performed
here. This probably explains the quality of our results in d = 2.
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TABLE II. Results for the critical exponent ν in d = 3, compared with results obtained within the DE at order O(∇2), FT, and MC methods.

N BMW DE FT MC

0 0.589 0.590 [28] 0.5886(3) [29] 0.5872(5) [37]
1 0.632 0.6307 [19] 0.6306(5) [29] 0.630 02(10) [31]
2 0.674 0.666 [28] 0.6700(6) [29] 0.6717(1) [32]
3 0.715 0.704 [28] 0.7060(7) [29] 0.7112(5) [33]
4 0.754 0.739 [28] 0.741(6) [34] 0.749(2) [35]
10 0.889 0.881 [28] 0.859 [36]
100 0.990 0.990 [28] 0.989 [26]
O(1/N ) 1 − 1.034/N 1−1.081/N [26]

and have shown that there is an extremum around α ∼ 5 where
the difference with the exact result is about 8%. Of course, this
UV behavior shows up only if the bare coupling u is sufficiently
small compared to �. We have chosen ũ = 10−6/N to have a
large UV domain where this behavior is seen clearly. Note
that, at small p, �(2)(p) − p2 ∼ p2−η, which is visible in
Fig. 5, although this regime is approached very slowly.

(iii) The crossover between the IR and the UV domains.
This regime of momentum is visible in both Figs. 4 and 5 for
p � u.

For purposes of probing the intermediate-momentum re-
gion between the IR and the UV, we have calculated the
quantity,

c = −256

uN
ζ [3/2]−4/3

∫
d3p

[
1

�(2)(p)
− 1

p2

]
, (44)

which is very sensitive to the crossover regime: The in-
tegrand in Eq. (44) is peaked at p ∼ (Nu)/10 [38]. For
this reason, the calculation of c has been used as a
benchmark for nonperturbative approximations in the O(N )
model.

In the O(2) case and for d = 3, this quantity determines
the shift in the critical temperature of the weakly repulsive
Bose gas [39] (notice that c is not defined for d = 2). Thus,
it has been much studied recently using various methods even
for other values of N . In particular, the large N limit for this
quantity has been calculated analytically and has been found to
be c = 2.3 [40]. In this paper, we have found the values for c for
some representative values of N . Our results, compared to the
best ones available in the literature (with their corresponding
errors when available), are presented in Table IV. For all values
of N where lattice and/or seven-loop resummed calculations

TABLE III. Results for the correction to scaling exponent ω in
d = 3 compared with results obtained within the BMW method, FT,
and MC results.

N BMW FT MC

0 0.83 0.794(6) [29] 0.88 [30]
1 0.78 0.788(3) [29] 0.832(6) [31]
2 0.75 0.780(10) [29] 0.785(20) [32]
3 0.73 0.780(20) [29] 0.773 [33]
4 0.72 0.774(20) [34] 0.765 [35]
10 0.80
100 1.00

exist, our results are within the error bars of those calculations
(and comparable to those obtained from an approximation
specifically designed for this quantity [8,41]), except for N =
2, where very precise lattice results are available. In the large
N limit, one can see that our result differs from the exact
value by less than 3%. Notice that the large N behavior of
the quantity c is, in fact, at order 1/N [40], which, as we
have seen, is not calculated exactly at this level of the BMW
approximation.

Altogether, we can see that the BMW method at order s = 2
is able to reproduce the correct behavior of the two-point
function at criticality in all momentum regimes. Note, in
particular, that this is not the case of conformal field theoretical
methods that only are able to capture the conformally invariant
p2−η behavior at criticality but that can reproduce neither
the UV behavior, corresponding to u � p � �, nor the
crossover between the IR and the UV regions, corresponding to
p � u.

VI. SCALING FUNCTIONS

As an approximation of the NPRG, the BMW scheme
allows us to investigate all momentum, temperature, and
external magnetic-field regimes and is not restricted to the
long distance physics at criticality. A particularly interesting

10
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-4

10
-2

10
0

p/Λ
0.95

1

1.05

1.1

Γ(2)
(p,ρ=0)/p

(2-η)

FIG. 4. (Color online) The ratio of the two-point function
�(2)(p,0) and of p2−η at criticality as a function of p/� (d = 3,N =
2, α = 2, p0 = 0, and ρ0 = 0). The normalization has been chosen
so that this ratio starts close to 1 at small p. The bare (initial)
dimensionless coupling is ũ = 6.10−2/N .
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FIG. 5. (Color online) The difference �(2)(p,0) − p2 at criticality
as a function of p/�, compared with its expected UV behavior
∼u2 ln p/u (d = 3, N = 2, α = 2,p0 = 0, and ρ0 = 0). The IR
p2−η behavior is also shown (see text). The bare dimensionless
coupling is ũ = 10−6/N .

and a priori difficult regime is the critical domain where
the correlation length is large but finite. In this case, an
appropriately rescaled two-point function shows a univer-
sal behavior. As the BMW approximation allows for the
calculation of genuine momentum-dependent quantities, the
calculation of this scaling function and its comparison with
the best available theoretical results from the literature and
with experimental data represent one of the most stringent
tests of the approximation.

In this paper, we consider the case N = 1 relevant, for
instance, to describe the critical behavior of fluids near the
liquid-gas critical point. Near this point and for p � ξ−1

G ∼ u,
one expects the general scaling behavior,

G
(2)
± (p) = χg±(pξ ), (45)

with, by definition, G(2) as the density-density correlation
function, χ−1 = �(2)(p = 0) as the compressibility, and ξ−2 =
k2m̃2

k with k → 0 as the correlation length that diverges close to
criticality with the ν critical exponent. Here, ± refers to the two
phases, above and below the critical temperature, respectively.
The functions g±(x), normalized so that

g−1(x) = 1 + x2 + O(x4) (46)

TABLE IV. Results for quantity c defined in the text.

N BMW Lattice Seven loops [42]

1 1.15 1.09(9) [43] 1.07(10)
2 1.37 1.32(2) [44] 1.27(10)

1.29(5) [45]
3 1.50 1.43(11)
4 1.63 1.60(10) [43] 1.54(11)
10 2.02
100 2.36

are universal. Their limiting behavior is well known. For small
x, they are well described by the Ornstein-Zernicke (mean-
field) approximation,

gOZ(x) = 1

1 + x2
. (47)

The corrections to the Ornstein-Zernicke behavior usually are
parametrized as [46]

g±(x)−1 = 1 + x2 +
∑
n=2

c±
n x2n. (48)

The above behavior of g±(x)−1 is a priori valid only for x < 1,
but since the coefficients cn are very small, it turns out that the
Ornstein-Zernicke approximation actually is valid over a wide
range of x values as we see later. For large x (that is, ξ � p−1),
the scaling functions show critical behavior with an asymptotic
anomalous power law decay,

g±(x) � C±
1

x2−η
, (49)

which allows for the experimental determination of the
exponent η. This expression also allows for corrections as
given by Fischer and Langer [47],

g±(x) = C±
1

x2−η

(
1 + C±

2

x(1−α)/ν
+ C±

3

x1/ν
+ · · ·

)
. (50)

Different approximate results for the universal scaling
functions exist in the literature, obtained either by MC methods
[46] or by the use of an analytical ansatz, interpolating
between the two known limiting regimes (48) and (49), using ε

expansion results (the Bray approximation [48]). Experimental
results from neutron scattering in CO2 near the critical point
also exist [49].

In Bray’s interpolation for the high-temperature phase, one
assumes g−1

+ (x) to be well defined in the complex x2 plane
with a branch cut in the negative real x2 axis, starting at x2 =
−r2

+ where r2
+ = 9M2

gapξ
2 ≡ 9SM , following the theoretical

expectation that the singularity of g+(x) nearest to the origin
is the three-particle cut [48,49]. The parameter Mgap is the
mass gap of the Minkowskian version of the model. For the φ4

theory, it is known that the difference between mass gap and
ξ−1 is very small and replacing one by the other corresponds
to an error that is beyond the accuracy of our calculation [46].
Then, Bray’s ansatz in the high-temperature phase (the only
phase studied in the following) reads:

g−1
+ (x) = 2 sin πη/2

πC+
1

×
∫ ∞

r+
duF+(u)

[
SM

u2 − SM

+ x2

u2 + x2

]
, (51)

where F+(u) is the spectral function, which satisfies
F+(+∞) = 1 and F+(u) = 0 for u < r+ and F+(u) � 0 for
u � r+. On top of this, one must impose g−1(0) = 1, which
fixes the value for C+

1 .
One must then specify F+(u). Bray [48] proposed the use of

a spectral function with the exact Fischer-Langer asymptotic
behavior of the type,

F+,B(u) = P+(u) − Q+(u) cot 1
2πη

P+(u)2 + Q+(u)2
, (52)
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where

P+(u) = 1 + C+
2

uι
cos

πζ

2
+ C+

3

u1/ν
cos

π

2ν
,

(53)

Q+(u) = C+
2

uι
sin

πζ

2
+ C+

3

u1/ν
sin

π

2ν
,

with ζ ≡ (1 − α)/ν. This definition contains a certain number
of parameters. On top of the critical exponents, which can be
injected using either the BMW values or the best available
results in the literature, one also must fix S+

M, C+
2 , and C+

3 .
For S+

M , one can use the best estimate in the literature, given
by the high-temperature expansion of improved models [51].
Bray proposed to fix C+

2 + C+
3 for its ε-expansion value

C+
2 + C+

3 = −0.9 and, then, to determine C+
1 by requiring

F+,B(r+) = 0. These conditions allow for a little parameter
tuning by adjusting the relative weight of the C+

2 and C+
3

parameters. When comparing our results with Bray’s ansatz,
we will use this freedom. We now turn to the scaling function
computed by the BMW method.

In terms of the variables used in this paper, we find that

g−1(pξ ) = (pξ )2 + �(pξ,0) + Zkk
2m̃2

k(0)

Zkk2m̃2
k(0)

, (54)

when k → 0. In this paper, for purposes of comparison
with existing results, we only have computed the scaling
function in the high-temperature phase. We have performed
the calculation for different values of the correlation length
(and, hence, of T − Tc). When plotted, one indeed can see the
perfect data collapse for different values of ξ , which is the
first nontrivial test of the quality of our results for the scaling
function.

In Fig. 6, we plot the BMW scaling function together with
the experimental results from Ref. [49]. Due to the small values
taken by the coefficients cn and the critical exponent η in
d = 3, the Ornstein-Zernicke behavior dominates even beyond
pξ = 1. In order to measure the deviation from this behavior,
one usually makes use of the auxiliary function,

h(x) = ln

[
g(x)

gOZ(x)

]
. (55)
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FIG. 6. (Color online) The two-point scaling function g(pξ ) as a
function of x = pξ in the high-temperature phase (d = 3, N = 1).
Solid blue line, BMW result. Red squares, experimental results of
Ref. [49]. Inset, same data with logarithmic scales.
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FIG. 7. (Color online) Deviation in the scaling function from its
trivial Ornstein-Zernicke form, Eq. (55). The dotted and dashed lines
correspond to two extreme choices of parameters C2 and C3 of Bray’s
ansatz. Dotted line, C1 = 0.924, C2 = 1.8, and C3 = −2.28. Dashed
line, C1 = 0.918, C2 = 2.55, and C3 = −3.45.

In Fig. 7, we plot this function together with the experimental
results from Ref. [49] and the results from the Bray ansatz for
two extreme choices of the C+

2 and C+
3 parameters. There, one

can see that the BMW approximated result compares very well
with all these results. In particular, it is in between the results
obtained from the two Bray ansätze considered.

Let us mention that, even with large system sizes, the MC
results suffer from significant systematic errors for pξ larger
than typically 5–10. This probably comes from the fact that the
universal behavior of the structure factor shows up only when
ξ and separation l between the spins, at which we calculate the
correlation function, are large compared to the lattice spacing
and are small compared to the lattice size: Even for lattice
sizes of a few hundreds of lattice spacings, this leaves only a
small window of useful values of ξ/ l [46].

On top of these results, we also can compare results for
the values of coefficients c+

2 and C+
1 . The results for BMW

are c+
2 ∼ −4.5 × 10−4 to be compared with the improved

high-temperature best estimate [51] c+
2 = −3.90(6) × 10−4,

whereas, for C+
1 , BMW yields C+

1 = 0.914 to be compared
with the ε-expansion result C+

1 = 0.92.
We conclude this section by noting that (i) the structure

factor encompasses much more information on the universal
behavior of a model than the (leading) critical exponents (that,
moreover, are difficult to measure experimentally), (ii) Bray’s
ansatz, although powerful, depends on two parameters C2 and
C3 that perturbatively are determined poorly as well as on
two critical exponents, (iii) the present state of the art of the
MC simulations, by far, is insufficient to reliably compute
the structure factor in the interesting region of momentum
where pξ is large, and (iv) the BMW method leads to a
determination of the structure factor that has no free parameter
once a choice of regulator has been made (possibly involving
an optimization procedure as described in Sec. V B). The
results above, summarized in Fig. 7, suggest that the BMW
method leads to an accurate determination of the structure
factor in the whole momentum range, while the experimental
results seem to suffer at small momentum from systematic
deviations.
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VII. RELATION WITH THE DERIVATIVE EXPANSION

The validity of the DE rarely is questioned, satisfactory
results being taken as an a posteriori check. We now show that
the BMW approach allows for a deeper understanding of its
range of applicability and of some of its peculiar features.

The ansatz defining the order of the DE [see, for instance,
Eq. (12) for order 2] is used to

(i) define the quantities to be determined, which, in the
case of order 2, are the effective potential and the field
normalization, both functions of the (constant) field φ,

Vk(φ) = 1



�k[φ(x)]|φ(x)=φ,

(56)
Zk(φ) = ∂p2

(
�

(2)
k [p; φ]

)∣∣
p=0,φ

.

(ii) Compute the n-point functions �
(n)
k and the propagator

Gk = (�(2)
k + Rk)−1 that enter the right hand sides of the flow

equations of Vk, Zk , etc.
In short, the DE projects the functional �k[φ] on a

polynomial expansion in powers of the derivatives of the field,
the expansion coefficients being field dependent. In Fourier
space, the DE amounts to a polynomial expansion of the n-
point functions �

(n)
k (p1, . . . ,pn; φ) in powers of the momenta

pi around vanishing momenta [see, for instance, Eq. (18)].
At this point, it is useful to introduce a distinction between
external momenta, the momenta that appear in the n-point
function �

(n)
k (p1, . . . ,pn; φ) whose flow is being considered

and the internal momentum, denoted by q, appearing in the
n-point functions on the right hand side of the corresponding
flow equation and which is integrated over. In contrast to
what is performed in the BMW approximation, in the DE,
no distinction is made between these two sets of momenta,
which can lead to inconsistencies. For instance, in the
flow equation for Zk(φ) at order 2, the product �

(3)
k (p,q,

− p − q)�(3)
k (−p,−q,p + q) [see Eq. (11)] leads to four

terms of order 4: (p2)2,p2q2,(pq)2,(q2)2, which, in a strict
expansion to this order, should be neglected (notice that this
usually is not what is performed in the context of the DE
of Wetterich’s equation). In fact, since Zk(φ) already is the
coefficient of the p2 term in the expansion of �

(2)
k (p; φ), any

dependence of �
(3)
k (and of �

(4)
k ) on the internal momentum q

should be neglected in ∂kZk(φ) at this order of the DE. Since
the BMW approximation at order s = 2 precisely consists of
setting q = 0 in �

(3)
k and �

(4)
k in the flow equation of �

(2)
k , we

conclude that, at this order, the BMW approximation contains
all terms of the DE at order ∇2.

The BMW approximation, which disentangles the roles of
the internal and external momenta, differs deeply from the DE
precisely on the point explained above: As the DE, it takes
advantage of the fact that the internal momentum is cut off
by ∂kRk(q) in order to expand in powers of q/k (in fact, only
the leading term q = 0 is retained) but does not rely on the
smallness of the external momenta.

In fact, the natural expansion parameter of the DE is the ratio
p/k or p/m, whichever is smallest where m is the smallest of
the masses that may appear in the problem considered: When
k is much larger than all the masses, these can be ignored,
and p/k is the expansion parameter. When k becomes smaller

than the smallest mass, the flow essentially stops, and the
expansion parameter becomes p/m in the limit k → 0. Thus,
it is plausible that the DE performed as a power series in p/k

in a critical theory (m = 0) possesses a radius of convergence
on the same order as the DE performed as a power series in
p/m in a massive theory at k = 0. In this last case, the radius of
convergence is known for N = 1 in dimension three [48,50]: It
is three in the symmetric phase and two in the broken phase.2

The above arguments suggest that the DE is not able
to describe k-dependent correlation functions with external
momenta higher than typically 3 max(k,m). In particular, in
the critical case where massless modes are present, the DE
only is suited for the calculation of physical (that is, at k = 0)
correlation functions at p = 0: The anomalous momentum
behavior �

(2)
k=0(p) ∼ p2−η, valid at small p, will not emerge

at any order of the DE. Of course, this does not mean that
the anomalous dimension cannot be determined within the
DE as one can exploit general scaling relations and the fact
that the anomalous dimension also enters quantities that are
defined at zero momentum. Thus, for instance, η can be
estimated from the k dependence of the normalization factor
Zk ∼ k−η (or, alternatively, from the large-field behavior of the
fixed-point dimensionless effective potential). In contrast, the
BMW approximation correctly captures the anomalous scaling
of �

(2)
k=0(p) at small p, and this is a direct consequence of the

fact that no expansion in external momenta is performed.3

The origin of the difficulties of the DE is that it does
not have good decoupling properties in the momentum range
p � k. The decoupling property, crucial for universality,
means, on the example on the two-point function, that
�

(2)
k (p) becomes almost k independent when k � p and that,

therefore, �(2)
k=0(p) � �

(2)
k=p(p). Thus, one naively could expect

that external momenta {pi}, i = 1, . . . ,n play the role of IR
regulators in the flow of �

(n)
k ({pi}) and that, when k < pi, ∀ i,

the flow of �
(n)
k (almost) stops. In fact, in flow equations,

external momenta play, at best, the role of IR regulators when
all momenta involved (external and internal) are not in an
exceptional configuration. The problem is that, even when the
external momenta are not exceptional, the integral over the
internal momentum q in the flow equation of �

(n)
k involves

vertex functions (�(n+1)
k or �

(n+2)
k ) in exceptional configura-

tions. Depending on the approximation scheme, this can spoil

2The reason is understood easily in the Minkowskian version of
the theory. In this case, 3m is the particle production threshold (in
the symmetric phase) that reflects itself as a pole in the complex-
momentum plane. This pole, which is the closest to the origin,
determines the radius of convergence of the expansion in powers
of p. The same reasoning leads to 2m in the broken phase except
if there exists a two-particle bound state, in which case, its mass
(which is smaller than 2m) determines the radius of convergence. It is
very probable that such a bound state exists in the d = 3 and N = 1
cases [53], and its mass has been found on the order of 1.8m. Note
that this kind of analysis can be generalized for any model with a
Minkowskian unitary extension.

3We recall that the two determinations of η performed within the
BMW approximation, either through the momentum dependence of
�

(2)
k=0(p) or from Zk , lead to the same values of this exponent.
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the decoupling property that, undoubtly, should hold for the
(physical, that is, k � p) correlation functions themselves
when they are evaluated in nonexceptional configurations.
Therefore, the difficulty is to devise an approximation scheme
that satisfies the decoupling property. While this is the case for
the BMW scheme, it is neither of the perturbation theory nor
of the DE. Nevertheless, from the DE, one can try to extract,
the gross behavior of �(2)(p) (and of the other functions) by
stopping the flow at k = p by hand and by identifying �

(2)
k=p(p)

with �
(2)
k=0(p). This idea has been explored in Ref. [8] (see

also Ref. [52]). The resulting correlation functions roughly
show the expected momentum behavior, but as analyzed in
detail in Ref. [8], it does not seem possible to extend this
first qualitative analysis and to obtain quantitatively precise
correlation functions without having recourse to BMW.

To gain further insight into the validity of the DE, we may
consider a simple analytical representation of the function
�

(2)
k=0(p; φ) determined with the BMW approximation at order

s = 2, which, as we have shown, is very close to the exact
two-point function over the whole momentum range. The
following formula (inspired by Eq. (2.33) of Ref. [4]):

�
(2)
k (p,ρ) = Ap2

[
p2 + b k2 + b′M2

k (ρ)
]−ηk/2 + V ′

k + 2ρV ′′
k

(57)

where A, b, and b′ are independent of p and ρ and M2
k (ρ) is

a function homogeneous to a square mass, provides a good fit
for the BMW results when k as well as M2

k (ρ) are very small
compared to the UV cutoff �. This formula encompasses the
two different regimes that characterize the behavior of �

(2)
k (p)

at small p: First, for p, small compared to �, and large,
compared to k and to the mass, it yields �

(2)
k (p) ∼ p2−ηk , with

ηk as the running anomalous dimension. Thus, the critical
behavior is captured for k sufficiently small for ηk to be
quasistationary and (almost) equal to η. Second, for p, small
compared to either Mk or k, one can expand �

(2)
k (p; φ) in

powers of p2/(k2 + M2
k ) and can get

�
(2)
k (p,ρ) = A′[k2 + b′′ M2

k (ρ)
]−ηk/2

p2[1 + f1,k(ρ)p2

+ f2,k(ρ)p4 + · · · ] + V ′
k + 2ρV ′′

k . (58)

This is the kind of ansatz considered by the DE, and it
illustrates how the anomalous dimension can be extracted from
the k dependence of the coefficient of the p2 term in the running
action [8].

Finally, let us stress that the above remarks, while they
provide some justification for the DE and, in particular, specify
the conditions for its validity, are not sufficient to prove
convergence, which may strongly be affected by the regulator.
In particular, one may expect systematic errors in cases where
the range of the cutoff function Rk(q) is not smaller than the
natural radius of convergence of the DE. Notice, however, that,
at least for N = 1 in d = 3, the smallness of the cn coefficients
in Eq. (48) suggest that, even at low order, the DE should be
able to capture the low-momentum physics. An in-depth study
of this issue will be presented in Ref. [22].

VIII. CONCLUSIONS

In this paper, we have presented the complete numerical
implementation of the BMW approximation scheme that
allows for a solution of the NPRG flow equations, keeping
the full-momentum dependence of the two-point function. At
the level considered in this paper, this amounts to solving
two coupled equations for the effective potential and the two-
point function. These equations can be solved by elementary
numerical techniques.

We have considered applications to the O(N ) models,
mostly in dimension d = 3. An accurate momentum depen-
dence of the two-point function has been obtained from the
low-momentum critical region to the high-momentum pertur-
bative region (such a region exists when the dimensionful bare
coupling is small compared to the UV cutoff). In particular,
the critical exponents are determined accurately as already
reported in Ref. [12]. The additional results presented in this
paper concern the scaling functions that probe a different
aspect of the momentum dependence of the two-point function
in the vicinity of the critical point. More specifically, we have
considered the scaling function for the case N = 1 above the
critical point and have shown that it is in excellent agreement
with the best available theoretical estimates. Interestingly,
these estimates, including ours, differ significantly from the
experimental data at small momenta. These scaling functions,
which are difficult to obtain with other more conventional
techniques, including MC simulations, come out directly from
the two-point function obtained by solving the flow equations.

Another piece of information of physical interest, which
also was contained in the two-point function that we computed,
was its field dependence. Thus, a natural application of
the present method could be the investigation of the O(N )
models in the presence of an external magnetic field. We
also could contemplate extracting information about possible
bound states from the two-point function [53]. Finally, we note
that the BMW method paves the way toward understanding a
variety of situations where the momentum structure plays a
crucial role. For instance, a method similar in spirit has been
applied successfully to the determination of the fixed-point
structure of the Kardar-Parisi-Zhang equation [54,55] and to
the calculation of the spectral function in a Bose gas [52].
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APPENDIX A: NOTATION AND CONVENTIONS

By taking successive functional derivatives of �k[φ] with
respect to φ(x) and then letting the field be constant, one gets
the n-point functions,

�
(n)
k (x1, . . . ,xn; φ) ≡ δn�k

δφ(x1) · · · δφ(xn)

∣∣∣∣
φ(x)≡φ

, (A1)

in a constant background field φ. Since the background is
constant, these functions are invariant under translations of the
coordinates, and it is convenient to factor the δ function that
expresses the conservation of the total momentum out of the
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definition of their Fourier transform. Thus, with the usual abuse
of notation, we define the n-point functions �

(n)
k (p1, . . . ,pn; φ)

as

(2π )dδ(d)

(∑
j

pj

)
�

(n)
k (p1, . . . ,pn; φ)

≡
∫

ddx1 · · · ddxne
i
∑

j pj xj �
(n)
k (x1, . . . ,xn; φ).

Here, we use the convention of incoming momenta, and
it is understood that, in �

(n)
k (p1, . . . ,pn; φ), the sum of all

momenta vanishes so that �
(n)
k is actually a function of n − 1

momentum variables (and of φ). Notice that we use brackets
for the functional, e.g., �k[φ] and parentheses for functions,
e.g., �

(n)
k (p1, . . . ,pn; φ) when φ is uniform. For the two-point

function evaluated in a uniform-field configuration, which
effectively depends on a single momentum p, we often use
the simplified notation �

(2)
k (p; φ) in place of �

(2)
k (p,−p; φ).

APPENDIX B: EXTENSION OF BMW

In the approximation BMW with s = 2, we make the
following substitutions on the right hand side of the flow
equation for �

(2)
k (p): �

(4)
k (p,−p,q,−q) −→ �

(4)
k (p,−p,0,0)

and �
(3)
k (p,q,−p − q) −→ �

(3)
k (p,0,−p), that is, we set the

loop momentum q to zero in the three- and four-point
functions. (In this Appendix, we explicitly do not indicate the
dependence on φ for all n-point functions in order to alleviate
the notation.) By doing so, one obtains a closed equation for the
two-point function �

(2)
k (p), which is the object calculated with

optimum accuracy at the level s = 2. As explained in the main
part of the paper, the general strategy to obtain the three- and
four-point functions with comparable accuracy is to consider
higher orders (s > 2) in the approximation scheme. However,
in this appendix, we show that one already can improve the
accuracy of �

(3)
k and �

(4)
k simply by exploiting the information

available on �
(2)
k (p).

First, let us consider the function �
(4)
k . We know that, at one

loop and in vanishing fields, it has the following structure:

�
(4), one loop
k (p1,p2,p3,p4)

= f (p1 + p2) + f (p1 + p3) + f (p1 + p4), (B1)

where the function f (p) is found easily to be

f (p) = 1
2�

(4)
k (p,−p,0,0) − 1

6�
(4)
k (0,0,0,0). (B2)

Since �
(4)
k (p,−p,0,0) = ∂2

φ�
(2)
k (p) (for the constant field φ),

we arrive at the following expression for the four-point
function in terms of the two-point function �

(2)
k (p):

�
(4)
k (p1,p2,p3,p4) ≈ 1

2∂2
φ�

(2)
k (p1 + p2) + 1

2∂2
φ�

(2)
k (p1 + p3)

+ 1
2∂2

φ�
(2)
k (p1 + p4) − 1

2∂2
φ�

(2)
k (0).

(B3)

Note that, by construction, this expression is symmetric under
the exchange of the external legs, and it is one-loop exact at
zero external field.

For the function �
(3)
k , one can extract the following

equivalent in the limit of a vanishing field:

�
(3)
k (p,q,l)

φ
∼ ∂φ�

(3)
k (p,q,l)

∣∣∣∣
φ=0

∼ �
(4)
k (p,q,l,0)|φ=0 . (B4)

Then, by using the approximation above for �
(4)
k (B3), one

obtains the following expression for �
(3)
k , whose zero field

equivalent is exact at one loop:

�
(3)
k (p,q,l) ≈ 1

2∂φ�
(2)
k (p) + 1

2∂φ�
(2)
k (q)

+ 1
2∂φ�

(2)
k (l) − 1

2∂φ�
(2)
k (0). (B5)

At this point, we note that we may use the new expressions
that we have obtained for �

(3)
k and �

(4)
k in the flow equation

for �
(2)
k . Since these n-point functions are now one-loop exact,

the resulting approximation for �
(2)
k will be two-loop exact in

a zero external field. Therefore, this yields an improvement of
the BMW approximation, in particular, in the high-momentum
region where we know that it loses accuracy.

Consider then Eq. (11) for �
(2)
k , and rewrite it in terms of

�k(p),

∂t�k(p; ρ) =
∫

q

∂tRk(q)G2
k(q)

{[
�

(3)
k (p,q,−p − q)

]2

×Gk(q + p) − [
�

(3)
k (0,q,−q)

]2
Gk(q)

−1

2

[
�

(4)
k (p,−p,q,−q) − �

(4)
k (0,0,q,−q)

]}
.

(B6)

Next, perform the substitutions (B5), and

�
(4)
k (p,−p,q,−q) → 1

2∂2
φ�

(2)
k (p + q,−p − q)

+ 1
2∂2

φ�
(2)
k (p − q,−p + q). (B7)

One then gets

∂t�k(p) = 2ρH (p) − 1
2L(p), (B8)

with

H (p) ≡
∫

q

∂tRk(q)G2
k(q)

{
Gk(q + p)

[
1

2
�′

k(p) + 1

2
�′

k(q)

+1

2
�′

k(p + q) + 3V ′′
k + 2ρV ′′′

k

]2

−Gk(q)[�′
k(q) + 3V ′′

k + 2ρV ′′′
k ]2

}
, (B9)

and

L(p) =
∫

q

∂tRk(q) G2
k(q){�′

k(p + q) + 2ρ�′′
k (p + q)

−�′
k(q) − 2ρ�′′

k (q)}. (B10)

It is not difficult to generalize these expressions for the O(N )
model with arbitrary N . However, we do not present these
here because, despite the good properties presented above,
this extended version of the BMW approximation proves to be
unstable numerically, and we have not been able to solve the
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corresponding equations with simple techniques. A further
analysis, using more elaborate numerical techniques, is called
for.

APPENDIX C: INTEGRALS

In this Appendix, we give details on the calculation of the
integrals In(k; ρ) and Jn(p; k; ρ).

In the case of integral In(k; ρ), since Gk(q) (in a uniform
external field) depends only on q2, the angular integral is
straightforward. One gets

In = Sd

(2π )d

∫ ∞

0
dq qd−1∂tRk(q)Gn

k (q; ρ), (C1)

where

Sd = 2πd/2

�(d/2)
, Kd = Sd

d(2π )d
. (C2)

In the case of integral Jn(p; k; ρ), the presence of the external
momentum p makes the angular integral more involved.

1. Angular integrations

Consider integrals generically of the form∫
q

F (|p + q|) ≡ I(p). (C3)

One can proceed as follows:

I(p) =
∫

q

g(q)F (|p + q|)

=
∫ ∞

0
dq qd−1g(q)

∫
d
d

(2π )d
F (|p + q|)

= Sd−1

(2π )d

∫ ∞

0
dq qd−1g(q)

×
∫ π

0
dθ sind−2 θF (

√
p2 + q2 + 2pq cos θ )

= Sd−1

(2π )d

∫ ∞

0
dq qd−2 g(q)

p

×
∫ p+q

|p−q|
dξ ξJd (ξ,p,q)F (ξ ), (C4)

where we made a change in variables ξ ≡√
p2 + q2 + 2pq cos θ , and

Jd (ξ,p,q) ≡
[

1 −
(

ξ 2−p2 − q2

2pq

)2 ](d−3)/2

. (C5)

The interest in the last formula (C4) lies in the fact that
the needed integration points belong to the grid so that
the integral can be calculated numerically without the need
for interpolation. Furthermore, this method is particularly
convenient in d = 3 because the Jacobian (C5) then is trivial.

2. Dimensions less than 3

The Jacobian (C5) is unity in d = 3 and is regular for
d > 3 but becomes singular for d < 3. More precisely, for
d < 3, it diverges when ξ approaches the boundaries of
its integration domain (ξ = p + q or |p − q|). Even if the

integral eventually converges, this divergence is the source of
numerical difficulties.

For d < 3, we then use a different strategy based on
Cartesian variables. We define q1 as the component of q along
p and proceed as follows:

I(p) =
∫

dd−1q2

(2π )d−1

∫ +∞

−∞

dq1

2π
g(q)F (|p + q|)

= Sd−1

(2π )d

∫ ∞

0
qd−2

2 dq2

×
∫ ∞

−∞
dq1,g(q)F

(√
p2 + q2

1 + q2
2 + 2pq1

)
, (C6)

with q as the modulus of the vector q: q =
√
q2

1 + q2
2 and |p +

q| =
√
p2 + q2

1 + q2
2 + 2pq1.

This expression has no singularities for d � 2, but it
requires multiple interpolations that make the numerics more
involved than in d � 3.

3. Small-momentum limits

Integral Jn(p; k; ρ) is regular when p → 0. However, the
expression given by the angular integration does not make this
manifest. To get the small p behavior of the generic integral
(C3), one directly can expand F (|p + q|) − F (q) in the first
line of Eq. (C4),

F (|p + q|) − F (q) = 2p · q + p2

2q
∂qF (q)

+ (p · q)2

2q2

[
∂2
qF (q) − 1

q
∂qF (q)

]

+O(p3). (C7)

Then, one can use, with the brackets denoting angular
averages,

〈f (q)〉 = 1

Sd

∫
d
d (q) = f (q),

〈(q · p) f (q)〉 = 1

Sd

∫
d
d (q · p)f (q) = 0,

(C8)

〈(q · p)2f (q)〉 = 1

Sd

∫
d
d (q · p)2f (q)

= p2q2

d
f (q)

to obtain

〈F (|p + q|) − F (q)〉

= p2

2d

[
∂2
qF (q) + d − 1

q
∂qF (q)

]
+ O(p4), (C9)

and

I(p) − I(0) = p2

2
Kd

∫ ∞

0
dq g(q)qd−1

×
[
∂2
qF (q) + d − 1

q
∂qF (q)

]
+ O(p4)

= p2

2
Kd

∫ ∞

0
dq g(q)∂q[qd−1∂qF (q)] + O(p4).

(C10)
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APPENDIX D: GENERALIZATION FOR O(N) MODELS

In this Appendix, the s = 2 BMW approximation and the
corresponding flow equations are presented for O(N ) models.
The exact flow of the two-point function in a constant external
field reads (we omit the renormalization group parameter k in
this appendix for notational simplicity)

∂t�
(2)
ab (p,φ)

=
∫

q

∂t [R(q)]in

{
Gij (q,φ)�(3)

ajh(p,q,−p − q,φ)Ghl

×(q + p,φ)�(3)
blm(−p,p + q,−q,φ)Gmn(q,φ)

− 1

2
Gij (q,φ)�(4)

abjh(p,−p,q,−q,φ)Ghn(q,φ)

}
,

(D1)

where a,b, . . . denote O(N ) indices and φ denotes an N -
component uniform field. Within the BMW approximation,
we perform the substitutions,

�
(3)
ajh(p,q,−p − q,φ) → ∂�

(2)
ah (p,−p,φ)

∂φj

,

(D2)

�
(4)
abjh(p,−p,q,−q,φ) → ∂2�

(2)
ab (p,−p,φ)

∂φj∂φh

.

In order to manifestly preserve the O(N ) symmetry along
the flow, the regulator �Sk has to be an O(N ) scalar, and,
accordingly, the cutoff function has to be a tensor,

[R(q)]ij ≡ R(q)δij .

The symmetry of the theory also implies that the matrix of the
two-point functions can be written in terms of two independent
tensors. We chose to write it in the form

�
(2)
ab (p,−p,φ) = �A(p,ρ)δab + φaφb�B(p,ρ), (D3)

with ρ = 1
2

∑
a φaφa . This form turns out to be convenient in

the limit ρ → 0.
The symmetry also allows us to write the propagator in this

equation in terms of its longitudinal and transverse components
with respect to the external field,

Gab(p2,φ) = GT (p2,ρ)

(
δab − φaφb

2ρ

)

+GL(p2,ρ)
φaφb

2ρ
. (D4)

It is easy to find the relationship between these propagators
and �A and �B ,

G−1
T (p,ρ) = �A(p,ρ) + R(p), (D5)

G−1
L (p,ρ) = �A(p,ρ) + 2ρ�B (p,ρ) + R(p). (D6)

Using the definition (D3) of the functions �A and �B as
well as the form given above for the propagators, one can
decompose the flow equation (D1) in two equations for �A

and �B .
As in the case of N = 1, we introduce the functions,

�A(p,ρ) = �A(p,ρ) − p2 − �A(p = 0,ρ), (D7)

�B(p,ρ) = �B(p,ρ) − �B(p = 0,ρ). (D8)

Notice that, at the bare level, �A(p,ρ) − �A(p = 0,ρ) =
p2 while �B(p,ρ) − �B(p = 0,ρ) = 0, which explains the
difference between the two definitions. In terms of these
functions, �A and �B read

�A(p,ρ) = p2 + �A(p,ρ) + V ′, (D9)

�B(p,ρ) = �B(p,ρ) + V ′′, (D10)

where the primes denote derivatives with respect to ρ. The
equations for �A and �B read

∂t�A(p,ρ) = 2ρ
{
JLT

3 (�′
A + V ′′)2+J T L

3 (�B +V ′′)2 − (
ILT

3 + I T L
3

)
V ′′2} − 1

2ILL
2 (�′

A + 2ρ�′′
A) − 1

2I T T
2 [(N − 1)�′

A + 2�B],

(D11)

∂t�B(p,ρ) = J T T
3 (N − 1)(�B + V ′′)2 − JLT

3 (�′
A + V ′′)2 − J T L

3 (�B + V ′′)2 + JLL
3 {(�′

A + 2�B + 3V ′′)2

+ 4ρ(�′
B + V ′′′)(�′

A + 2�B + 3V ′′) + 4ρ2(�′
B + V ′′′)2} − 1

2I T T
2 (N − 1)�′

B − 1
2ILL

2 (5�′
B + 2ρ�′′

B)

− [
(N − 1)I T T

3 − ILT
3 − I T L

3

]
V ′′2 − ILL

3 (3V ′′ + 2ρV ′′′)2 + �BIA − {
(N − 1)I T L

3 − ILT
3 − I T L

3

}
V ′′2, (D12)

where we have omitted the ρ and p dependences on the right hand side for compactness. We have introduced the integrals
(n > 1),

J αβ
n (p,ρ) =

∫
q

∂tR(q)Gn−1
α (q,ρ)Gβ (p + q,ρ),

(D13)
Iαβ
n (ρ) = J αβ

n (p = 0,ρ),

with α, β standing either for L (longitudinal) or for T (transversal). For n = 1, we set

I1 = (N − 1)I T T
1 (ρ) + ILL

1 (ρ). (D14)
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It turns out to be useful to also introduce the integral,

IA(ρ) ≡
∫

q

∂tR(q)[GL(q,ρ) + GT (q,ρ)]GL(q,ρ)GT (q,ρ),

and, in intermediate steps, we have used the identity,

1

ρ

[
G2

T (q,ρ) − G2
L(q,ρ)

]
= 2GL(q,ρ)GT (q,ρ)�B(q,ρ)[GL(q,ρ) + GT (q,ρ)],

(D15)

which allows us to handle expressions that manifestly are
regular for ρ = 0.

As mentioned in the main text, an accurate study of the
critical regime requires using dimensionless variables. Again,
using W (ρ) = V ′(ρ), we define

k2Zk[p̃2 + �̃A(p̃,ρ̃)] = p2 + �A(p,ρ), (D16)

�̃B(p̃,ρ̃) = Kd�B(p,ρ)

Z2
kk

4−d
. (D17)

We also have to use the dimensionless functions corre-
sponding to Eq. (D13),

Ĩ
αβ

3 (ρ̃) = I
αβ

3 (ρ)
Z2

kk
4−d

Kd

,

J̃
αβ

3 (p̃,ρ̃) = J
αβ

3 (p,ρ)
Z2

kk
4−d

Kd

, (D18)

Ĩ
αβ

2 (ρ̃) = I
αβ

2 (ρ)
Zkk

2−d

Kd

.

For numerical reasons, as explained in the main text for the
N = 1 case, we study the flow of

ỸA(p̃,ρ̃) = �̃A

p̃2
, ỸB(p̃,ρ̃) = �̃B

p̃2
. (D19)

Then, the dimensionless flow equations can be calculated
from Eqs. (D11) and (D12),

∂t ỸA(p̃,ρ̃) = ηỸA + 1 + p̃
∂ỸA

∂p̃
+ (d − 2 + η)ρ̃Ỹ ′

A + 2ρ̃

{
J̃ LT

3 p̃2

(
Ỹ ′

A + W̃ ′

p̃2

)2

+ J̃ T L
3 p̃2

(
ỸB + W̃ ′

p̃2

)2

− (
Ĩ LT

3 + Ĩ T L
3

)W̃ ′2

p̃2

}

− 1

2
Ĩ LL

2 (Ỹ ′
A + 2ρ̃Ỹ ′′

A) − 1

2
Ĩ T T

2 [(N − 1)Ỹ ′
A + 2ỸB], (D20)

∂t ỸB(p̃,ρ̃) = (d − 2 + 2η)ỸB + p̃
∂ỸB

∂p̃
+ (d − 2 + η)ρ̃Ỹ ′

B + (N − 1)J̃ T T
3 p̃2

(
ỸB + W̃ ′

p̃2

)2

+ J̃ LL
3

{
p̃2

(
Ỹ ′

A + 2ỸB + 3W̃ ′

p̃2

)2

+ 4ρ̃p̃2

(
Ỹ ′

A + 2Ỹ ′
B

3W̃

p̃2

)(
Ỹ ′

B + W̃ ′′

p̃2

)
+ 4ρ̃2p̃2

(
Ỹ ′

B + W̃ ′′

p̃2

)2 }

− J̃ LT
3 p̃2

(
Ỹ ′

A + W̃ ′

p̃2

)2

− J̃ T L
3

(
p̃2Ỹ 2

B + 2ỸBW̃ ′ + W̃ ′2

p̃2

)
− Ĩ LL

3

p̃2
(3W̃ ′ + 2ρ̃W̃ ′′)2

− [
(N − 1)Ĩ T T

3 − Ĩ LT
3 − Ĩ T L

3

]W̃ ′2

p̃2
− 1

2
Ĩ T T

2 (N − 1)Ỹ ′
B − 1

2
Ĩ LL

2 (5Ỹ ′
B + 2ρ̃Ỹ ′′

B) + ỸBIA, (D21)

with the primes now denoting derivatives with respect to ρ̃, and we have omitted the ρ̃ and p̃ dependences on the right hand side
for compactness.

The flow equation for the potential, which reads

∂tV (ρ) = 1
2I1(ρ) (D22)

allows us to derive an equation for the dimensionless derivative of the potential,

∂tW̃ (ρ̃) = −(2 − η)W̃ + (d − 2 + η)ρ̃W̃ ′ + 1

2

∂Ĩ1(ρ̃)

∂ρ̃
. (D23)

The flow of ηk follows from fixing a renormalization condition analogous to Eq. (36). For all values of k, we impose

ỸA(p̃0,ρ̃0) = 0. (D24)

The simplest choice is p̃0 = 0 and ρ̃0 = 0. It leads to

ηk = 1
2 [NỸ ′

A(0,0) + 2ỸB(0,0)]Ĩ T T
2 (ρ̃ = 0), (D25)

where we have used Ĩ T T
2 (ρ̃ = 0) = Ĩ LL

2 (ρ̃ = 0).
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In the case of a generic renormalization point, the equation for ηk is more cumbersome,

ηk = −1

1 + ρ̃0Ỹ
′
A

{
p̃0

∂ỸA

∂p̃
+ (d − 2)ρ̃0Ỹ

′
A + 2ρ̃0

[
J̃ LT

3

(
p̃0

2Ỹ ′2
A + 2Ỹ ′

AW̃ ′ + W̃ ′2

p̃0
2

)
− Ĩ LT

3
W̃ ′2

p̃0
2

]

+ 2ρ̃0

[
J̃ T L

3

(
p̃0

2Ỹ 2
B + 2ỸBW̃ ′ + W̃ ′2

p̃0
2

)
− Ĩ T L

3
W̃ ′2

p̃0
2

]
− 1

2
Ĩ LL

2 (Ỹ ′
A + 2ρ̃0Ỹ

′′
A) − 1

2
Ĩ T T

2 [(N − 1)Ỹ ′
A + 2ỸB]

}
, (D26)

with all functions evaluated at p̃ = p̃0 and ρ̃ = ρ̃0.
We also define

rt (q̃) = −ηq̃2r(q̃) − q̃3∂q̃r(q̃), (D27)

and the dimensionless propagators,

G̃T (p̃,ρ̃) = 1

p̃2[ỸA + 1 + r(p̃)] + W̃
, (D28)

G̃L(p̃,ρ̃) = 1

p̃2[ỸA + 1 + 2ρ̃ỸB + r(p̃)] + W̃ + 2ρ̃W̃ ′ , (D29)

from which follow the expressions:

Ĩ αβ
n (ρ̃) = d

∫ ∞

0
dq̃ q̃d−1rt (q̃)G̃n−1

α (q̃)G̃β(q̃), (D30)

J̃
αβ

3 (p̃,ρ̃) = Sd−1

Kd (2π )d

∫ ∞

0
dq̃

q̃d−2

p̃
rt (q̃)G̃2

α(q̃)
∫ p̃+q̃

|p̃−q̃|
dξ ξJd (ξ,p̃,q̃)G̃β(ξ ), (D31)

with Jd (ξ,p̃,q̃) as defined in Eq. (C5). We also need the functions,

ĨA(ρ̃) =
∫ ∞

0
dq̃ q̃d−1{rt (q̃)[G̃L(q̃) + G̃T (q̃)]G̃L(q̃)G̃T (q̃)[ỸB(q̃)q̃2 + W̃ ′]}, (D32)

K̃αβ(ρ̃) = 1

2dKd

Sd

(2π )d

∫ ∞

0
dq̃ rt (q̃)G̃α(q̃)∂q̃[q̃d−1∂q̃G̃β(q̃)], (D33)

that are used in the small-momentum region of the flow equations (cf. Appendix C in the N = 1 case).
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(1997).
[31] M. Hasenbusch, Phys. Rev. B 82, 174433 (2010).
[32] M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari,

Phys. Rev. B 74, 144506 (2006).
[33] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and

E. Vicari, Phys. Rev. B 65, 144520 (2002).

[34] R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103
(1998).

[35] M. Hasenbusch, J. Phys. A 34, 8221 (2001).
[36] S. A. Antonenko and A. I. Sokolov, Phys. Rev. E 51, 1894

(1995).
[37] A. Pelissetto and E. Vicari, J. Phys. A 40, F539 (2007).
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