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Iterative solution of integral equations on a basis of positive energy Sturmian functions
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An improvement of Weinberg’s quasiparticle method for solving general one-dimensional integral equations
is presented. The method uses simple auxiliary Sturmian functions for positive or negative energies, and corrects
iteratively for the truncation errors of the Sturmian expansion of the solution. Numerical examples are given
for the solution of the Lippmann-Schwinger integral equation for the scattering of a particle from a potential
with a repulsive core. An accuracy of 1 : 106 is achieved after 14 iterations, and 1 : 1010 after 20 iterations. The
calculations are carried out in configuration space with an accuracy of 1 : 1011 by using a spectral expansion
method in terms of Chebyshev polynomials. The method can be extended to solving a Schrödinger equation with
Coulomb and/or nonlocal potentials.
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I. INTRODUCTION

Sturmian functions are eigensolutions of a Sturm-Liouville
differential (or integral) equation, and form a complete and
discrete set of basis functions. Negative energy Sturmian
functions, introduced in the 1960s by M. Rotenberg [1],
found many useful applications, such as in the calculation
of electron-induced ionization collisions [2,3], and in many
other applications to atomic physics [4]. In addition, they can
be used in the identification of resonances in nucleon-nucleus
scattering [5], in the calculation of stripping cross sections in
deuteron-nucleus collisions, as affected by deuteron breakup
[6], in the solution of a Schrödinger equation with nonlocal
potentials [7], for a separable representation of scattering
t matrices [8], and in the solution of three-body Faddeev
equations [9]. For the applications involving long-range
Coulomb forces, the analytical expressions for the Coulomb
Green’s functions, initially developed by Hostler and Pratt [10]
have found many applications [11]. A team of scientists in
Argentina recently revived the use of Sturmians [12] as a tool
to solve a number of interesting problems, like two-electron
atomic systems [13], the confinement of a helium atom inside
a fullerene complex [14], or the description of three-body
reactions with hyperspherical Sturmians [15].

However, the expansion of a wave function into these func-
tions in many cases does not converge well [16], and methods
to improve the convergence, such as Padé approximants, have
frequently been utilized [2,17]. Because of the slow conver-
gence of Sturmian expansions, an iterative method to correct
for the truncation error becomes desirable, and it is the purpose
of this study to introduce such a method, based on the original
quasiparticle (QP) method of Weinberg [18]. The present
method envisages treating integral equations with a general
integral kernel in anticipation of solving the more complicated
two-dimensional integral equations that occur in the solution
of three-body equations in configuration space [16,19]. Since
Sturmians that are eigenfunctions of the general kernel are
as difficult to obtain as the solution of the integral equation
itself, our method uses auxiliary Sturmian functions, based on
the eigenfunctions of a Lippmann-Schwinger integral equation
(L-S) using simple auxiliary potentials. The calculations are
performed with a spectral expansion into Chebyshev polyno-
mials [20,21], with an accuracy expected to be better than

seven to eight significant figures, which is desirable for doing
atomic physics calculations. By comparison, the solution of
three-body equations for nuclear physics applications, done
commonly in momentum space [22], achieve an accuracy
not better than four significant figures [23]. Because of the
stability of the spectral expansion method, one can easily
incorporate the effect of long-range tails of potentials, as was
demonstrated in the calculation of the bound state eigenvalue
of a helium-helium dimer [24].

The iteration method is formulated for a general integral
kernel in configuration space for a positive energy E, but
the numerical tests of the iterations restrict themselves to the
solution of an (L-S) integral equation describing the scattering
of a particle from a potential V that has a repulsive core.
Positive energy complex Sturmian functions are employed, so
that the asymptotic form of the approximated wave function
is the same as that of the exact wave function. This is in
contrast to the solution for bound-state wave functions, where
it is customary to represent the potential by negative energy
Sturmians that are real. However, it is found that for the
scattering case the use of negative energy Sturmians does
not improve the convergence of the iterations, as compared
with the use of positive energy Sturmians. An example for
the case of zero energy has already been presented in finding
the frequencies of a vibrating inhomogeneous string [25] . An
advantage of the Sturmian expansion method over the Fourier-
grid method [26] for positive energies is that the Sturmian
method emphasizes only that part of the spatial region where
the potential is non-negligible, the asymptotic part of the wave
function being already incorporated into the Sturmian basis,
while in a Fourier-grid method, the asymptotic part has to be
obtained explicitly. The present method to calculate Sturmian
functions supersedes the one developed previously [27], which
used a square well potential Sturmian basis set in terms of
which the desired Sturmians were expanded. The present
method, being based on a spectral expansion, is considerably
more precise and flexible, and hence permits a more accurate
study of the iteration convergence properties.

In Sec. II we present the formalism that defines the
separable expansion of the integral kernel O into the aux-
iliary Sturmian functions; Sec. III describes the case where
O = G0V , for which the integral equation becomes equivalent
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to the Schrödinger equation, including numerical applications;
Sec. IV contains the summary and conclusions. Appendix A
describes the properties of Sturmian functions and benchmarks
numerical values for a set of Sturmian eigenvalues to 11
significant figures; Appendix B justifies the convergence of
the iterations, and Appendix C presents the singular value
decomposition method, expected to reduce the complexity of
future applications.

II. NOTATION AND EQUATIONS

The general one-dimensional integral equation to be solved
for ψ is

ψ(r) = F (r) +
∫ ∞

0
O(r,r ′)ψ(r ′) dr ′, (1)

where F is the driving term and O is the integration kernel,
both assumed to be known. The shorthand form of the above
equation is

ψ = F + Oψ. (2)

The iterative solution of Eq. (1) is achieved by approximating
the operator O by a separable representation ON of rank N ,
defining the remainder �

(1)
N as

�
(1)
N = O − ON, (3)

and iterating on the remainder. If the norm of �
(1)
N is

less than unity, the iterations should converge. Since the
numerical complexity of performing iterations is less than the
complexity of solving a linear equation with a matrix of large
dimension, this method can be computationally advantageous,
and furthermore the exact eigenfunctions of the operator O
need not be known.

The approximate discretization of the kernel O into a
representation of rank N is accomplished by using a set
of auxiliary positive or negative energy Sturmian functions
�s(r), s = 1,2, . . . ,N and is of the form,

ON (r,r ′) =
N∑

s=1

O �s〉 1

〈�sV̄ �s〉 〈�sV̄ . (4)

Here the symbol 〉 denotes that the quantity to the left of it is
evaluated at position r , and 〈 denotes that the quantity to the
right of it is evaluated at r ′. The bra-ket 〈�sV̄ �s〉 denotes the
integration 〈�sV̄ �s ′ 〉 = ∫ ∞

0 �s(r)V̄ (r)�s ′(r)dr where 〈�s is
not the complex conjugate of �s, and V̄ (r) is the potential
used in the definition of the Sturmians.

The Sturmian functions �s are eigenfunctions of the
integral kernel G0(r,r ′)V̄ (r ′),

ηs�s(r) =
∫ ∞

0
G0(r,r ′)V̄ (r ′)�s(r

′)dr ′, s = 1,2,3, . . . , (5)

with ηs the eigenvalue, and G0(r,r ′) the Green’s function
defined in Appendix A for a particular Sturmian energy, and
V̄ (r ′) is the Sturmian potential. The differential Schrödinger
equation corresponding to Eq. (5) is

(d2/dr2 + E) �s = �sV̄ �s, (6)

with �s = 1/ηs . The Sturmians for positive energies are not
square integrable, but they are orthogonal to each other with
the weight factor V̄ (that is assumed to decrease sufficiently
fast with r). The normalization of the Sturmians adopted for
most of the present discussion is

〈�sV̄ �s ′ 〉 =
∫ ∞

0
�s(r)V̄ (r)�s(r) dr = ηsδs,s ′ . (7)

Because of the completeness of the Sturmian functions, one
has the identity,

δ(r − r ′) =
∞∑

s=1

�s(r)
1

〈�sV̄ �s〉�s(r
′)V̄ (r ′). (8)

If the sum in Eq. (8) is truncated at an upper limit N , one
obtains Eq. (4). When N → ∞, then ON → O, and the norm
of the residue �

(1)
N becomes smaller and smaller. More details

for both positive and negative energy Sturmian functions are
presented in Appendix A.

In the case that O = d/dr, for example, Eq. (4) becomes

(d/dr)N =
N∑

s=1

�′
s〉

1

〈�sV̄ �s〉 〈�sV̄ , (9)

where �′
s = d�s/dr. This equation provides a finite rank inte-

gral approximation to the derivative operator. One can also use
the reverse of (9) (i.e., given a separable approximation to an
operator, one can find an equivalent derivative approximation
to this operator). This can have important use when analyzing
the nonlocalities present in an optical model [28], for example.
As an application of Eq. (9), when

ft (r) = 1

ā
exp ((r − R̄)/ā)/[1 + exp ((r − R̄)/ā)]2, (10)

then the finite rank approximation to dft/dr is

f
′ (N)
t (r) =

N∑
s=1

�′
s〉

1

〈�sV̄ �s〉 〈�sV̄ ft 〉. (11)

For R̄ = 3.5 fm and ā = 0.5 fm in Eq. (10), and using N = 24
negative energy Sturmians �s one obtains a numerical result
for f

′ (N)
t (r) that is accurate to better then 1 : 102. Both ft

and f
′ (N)
t (r) are illustrated in Fig. 1, where they are labeled

as “input” and “output,” respectively. The value of κ = √−E

is 0.3 fm−1, and the Sturmian potential is VWS, defined in
Appendix A.

The iterative procedure of solving Eq. (2), denoted as S1,

consists in first obtaining a function F (1)(r) that is the solution
of

F (1) = F + ONF (1), (12)

followed by an iteration on the remainder �
(1)
N . Because of the

separable nature of ON , the solution of (12) is algebraic, and
is given by

F (1)(r) = F (r) +
N∑

s=1

c(1)
s O �s〉r , (13)
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FIG. 1. (Color online) A numerical application for the integral
representation of a derivative, Eq. (11), applied to the function ft (r)
defined in Eq. (10), and denoted as “input.” The approximation
f

′ (N)
t (r) is denoted as “output.” With 24 negative energy Sturmians

the error for f
′ (24)
t (r) is less than 1 : 10−2.

where the c(1)
s , s = 1,2, . . . N are the solutions of the matrix

equation,

N∑
s ′=1

(
δs,s ′ − 1

〈�sV̄ �s〉 〈�sV̄O�s ′ 〉
)

c
(1)
s ′

= 1

〈�sV̄ �s〉 〈�sV̄ F 〉. (14)

The ansatz of Eq. (13) is preferable to the ansatz F (1)(r) =
F (r) + ∑N

s=1 d (1)
s �s〉r , because O �s〉r may lie outside of

the space spanned by the functions �s〉r , and hence is more
general.

An interesting application of Eq. (13) is to the solution
of a Schrödinger equation that contains a general nonlocal
potential, such as the one given by Perey and Buck [29].
The function F (1) obtained with 10 Sturmians gives an
approximation to ψ that has an error of the less than 0.1% [30].

The iterations on the remainder �
(1)
N proceed according to

ψ = F (1) + χ
(1)
2 + χ

(1)
3 + . . . , (15)

where the χ (1)
n are calculated iteratively according to

χ
(1)
n+1 = ONχ

(1)
n+1 + �

(1)
N χ (1)

n , n = 1,2, . . . , (16)

with χ
(1)
1 = F (1). The solution of Eq. (16) is also algebraic. If

the expansion of χ
(1)
n+1 is given by

χ
(1)
n+1(r) =

N∑
s=1

d (1)
s φs(r), (17)

then the coefficients d (1)
s obey an equation similar to Eq. (12),

with F replaced by �
(1)
N χ (1)

n . Numerical examples are given in
Sec. III.

It is found that instead of solving Eq. (2), if the once iterated
form ψ = F + O(F+Oψ),

ψ = F + OF + O2ψ, (18)

is to be solved, then the iterations will converge faster, as
will be verified in the context of the numerical examples
in Sec. III, and formally demonstrated in Appendix B. This
iteration method, called S2, is as follows. In Eq. (12) F is
replaced by F + OF,ON is replaced by (ON )2, the residue
�

(2)
N is defined as

�
(2)
N = O2 − (ON )2, (19)

and F (1) is replaced by F (2), which is the solution of

F (2) = F + OF + (ON )2F (2). (20)

The equation for F (2) can again be solved algebraically since,
as a result of Eqs. (4) and (5), and the normalization (7) of the
Sturmians, it follows that

(ON )n =
N∑

s,s ′=1

O�s〉(On−1)s,s ′
1

〈�s ′ V̄ �s ′ 〉 〈�s ′ V̄ , (21)

where the N × N matrix O has matrix elements given by

Os,s ′ = 〈�sV̄O�s ′ 〉/〈�sV̄ �s〉, s,s ′ � N. (22)

The terms χ (2)
n required for the subsequent iterations,

ψ = F (2) + χ
(2)
2 + χ

(2)
3 + χ

(2)
4 + · · · , (23)

are obtained by solving

χ
(2)
n+1 = (ON )2 χ

(2)
n+1 + �

(2)
N χ (2)

n , n = 1,2, . . . , (24)

with χ
(2)
1 = F (2). If the norm of �

(2)
N is less than one, the

iterations (24) will converge. As shown in Appendix B,
|�(2)

N | < |�(1)
N |, and hence method S2 will converge faster than

method S1.

In the sections below the operator O in Eqs. (1) and (4) is
the integral operator that appears in an (L-S) integral equation
for a scattering function distorted by a potential V . However,
the potential V̄ that defines the Sturmian functions in Eq. (5)
will not be equal to the scattering potential V. This is done in
order to examine the feasibility of expanding a general operator
using Sturmians that are not eigenfunctions of that operator.

III. THE CASE THAT O = G0V

In this case the numerical iterative solutions of Eqs. (2) and
(18) are denoted as S1 and S2, respectively. The solution of
either equation is equivalent to the solution of the Schrödinger
equation with a scattering potential V and energy E. Accord-
ing to Eqs. (1) and (A1) in Appendix A, the asymptotic form
of ψ is

ψ(r → ∞) = F (r) + SH(r), (25)

with

S = −1

k

∫ ∞

0
F (r ′)V (r ′)ψ(r ′) dr ′. (26)

Near the origin F (r → 0) → 0 and the integral term in
Eq. (1) goes to zero, hence ψ(r → 0) → 0. As a result of
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the normalization (7) of the Sturmian functions the matrix O,

Eq. (22), is given in the present case by

V s,s ′ = 〈�sV �s ′ 〉, (27)

Eq. (21) becomes

(ON )n =
N∑

s,s ′=1

G0V �s〉(V n−1)s,s ′
1

ηs ′
〈�s ′ V̄ , (28)

(ON )2 is given by

(ON )2 =
N∑

s,s ′=1

G0V �s〉(V )s,s ′
1

ηs ′
〈�s ′ V̄ , (29)

and consequently �
(2)
N = O2−(ON )2 is formally given by

�
(2)
N =

∞∑
s,s ′=N+1

G0V �s〉(V )s,s ′
1

ηs ′
〈�s ′ V̄ (30)

in view of the completeness of the Sturmian functions
[Eq. (8)].

The iterative approximation to the solution ψ of Eq. (18) is
as follows. First the function F (2), defined as the solution of

F (2) = F + OF + (ON )2F (2), (31)

is given in the present case by

F (2) = F + OF +
N∑

s,s ′=1

G0V �s〉V s,s ′c
(2)
s ′ , (32)

where the coefficients c
(2)
s ′ = 〈�s ′ V̄F (2)〉/ηs ′ are obtained from

the solution of the linear equation,

N∑
s ′=1

(δs,s ′ − V 2
s,s ′ )c

(2)
s ′ = 1

ηs

〈�sV̄ (F + OF )〉. (33)

Next the iterations for χ (2)
n are performed as described above.

A. Applications with positive energy Sturmians

Methods S1 and S2 will be illustrated in the applications
below for O = G0V . In these examples the scattering potential
V = VP is of the Morse type with a repulsive core near the
origin given by

VP (r) = 6 exp(−0.3 r + 1.2) × [exp(−0.3 r + 1.2) − 2].

(34)

The number 6 is given in units of fm−2, the number 0.3 is in
units of fm−1, r is given in units of fm, and the other constants
have no dimensions. The Sturmian potentials VS, and VWS

used in the present investigation, together with potential VP ,

are illustrated in Fig. 2.
Potential VS is given by

VS = 6 exp(−0.3 r) [exp(−0.3 r) − 2], (35)

and the Woods-Saxon potential is

VWS = V0/{1 − exp[(r − R)/a]}, (36)
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FIG. 2. (Color online) Three Sturmian potentials as a function of
radial distance, given by Eqs. (34)–(36).

with V0 = −5 fm−2, R = 15 fm, and a = 0.5 fm. Both
potentials VS and VWShave no repulsive core. A third Sturmian
potential is

VB(r) = VP (r) [1 − exp( − (r/0.5)2)], (37)

which is identical to potential VP at large distances, but has its
repulsive core near the origin changed into a small repulsive
barrier that decreases to zero as r → 0. These potentials are
in units of inverse length squared, and were transformed from
their energy units by multiplication with the well-known factor
2μ/h̄2. The energy E is related to the wave number k according
to E = k2, and the potentials VP ,VS , and VWS are illustrated
in Fig. 2. The main purpose of this application is to investigate
the rate of convergence of the iterative solution of Eq. (2),
by expanding the operator O into Sturmians that are not
eigenfunctions of O.

Carrying out Eqs. (27)–(33), with both the scattering energy
and the Sturmian energy equal to k2, with k = 0.5 fm−1, the
convergence of the iterations for method S2 is illustrated in
Fig. 3. This figure shows that the convergence of the iterations
is faster for Sturmians based on a longer range potential (the
WS Sturmians) than for Sturmians (S Sturmians) based on
potential VS whose range is the same as that of the scattering
potential VP .

In Fig. 3, the points labeled “P Sturmians” are obtained
using the Sturmians for the scattering potential, V̄ = VP , and
hence the Sturmian functions �s , defined by Eq. (5) are the
same, to within a normalization constant, as the eigenfunctions
of the operator O = G0VP . This method was introduced by
Weinberg [18], and is denoted as the quasiparticle method
(QP). In this case the matrix V becomes diagonal, V s,s ′ =
δs,s ′ηs, and many of the equations simplify. Because these (QP)
Sturmians take into account ab initio the repulsive core and
attractive valley of the scattering potential, it is not surprising
that this method converges fastest. This figure shows that, if the
eigenfunctions of the operator O were available, then the QP
method would be the method of choice. However, the present
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FIG. 3. (Color online) Rate of convergence of the asymptotic
limit S of the wave function to the “exact” one, defined by Eqs. (25)
and (26), as a function of the number of iterations n. The Sturmian
functions S and WS are obtained with potentials VS and VWS,
respectively, which have no repulsive cores. Iteration method S2 was
used for results VS and VWS and method S1 was used for potential VP .

(The latter is identical to the potential used to calculate the scattering
wave function). The solid line, denoted as “est” (for estimate) is given
by 3.48 × (0.34)n. The wave number is k = 0.5 fm−1; the number of
WS Sturmians is 31.

investigation for a general kernel O assumes that the (QP)
Sturmians are not known.

The convergence of method S1, based on Eqs. (15)–(24), is
considerably slower than for S2 , as illustrated in Fig. 4, and
as is expected from the arguments described in Appendix B,
particularly Eqs. (B5) and (B7).

The points labeled B and B2 are obtained by using methods
S1 and S2, respectively, using the Sturmians based on potential
V̄ = VB, defined in Eq. (37). Points S2 are obtained with
methodS2 using the Sturmians based on potential V̄ = VS . The
result that both Sturmians B and S give nearly indistinguishable
results for the iteration, as shown by the symbols + and
by the solid line, respectively, shows that the behavior of
the Sturmians near the origin does not significantly affect
the results, provided that there is no repulsive core in the
Sturmian potentials. The open circles in Fig. 4, labeled as
Gr-B, were obtained with a Green’s function iteration method,
in which potential Vp is divided into VB + (VP − VB). The
(L-S) equation with potential VB is solved exactly [not using
the algebraic Eq. (13)] to produce the function F and the
corrections due to (VP − VB) are obtained iteratively in a
Born-series manner as approximation to the exact function
ψ . The asymptotic value of F is much closer to that of ψ

than for method S2, but the rate of convergence of the Green’s
function iterations is not as fast as that of method S2, using
potential VB (or VS) for generating the Sturmian functions.
Contrary to what is the case for a general integral kernel O,
the Green’s function iterative method can only be used for the
case that O = G0V, while the method based on Eqs. (13)–(23)
is more general.
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FIG. 4. (Color online) The convergence of the iterations n =
1,2, . . . as measured by the error of the asymptotic value S of the
wave function ψ [Eq. (26)]. The results labeled B and B2 are obtained
with Sturmian potential V̄ = VB for methods S1 and S2, respectively.
The solid line labeled as S2 is obtained with method S2 for the
Sturmian potential VS. The result P is obtained with the original QP
method, with Sturmians obtained for potential VP . The open circles,
labeled Gr-B, are obtained with Green’s function iterations, based on
VP − VB , described in the text.

An examination of the uniformity of the convergence of
the iterations shows that the convergence at a distance smaller
than the range of the Sturmian potential is significantly better
than at larger distances. This is illustrated in Fig. 5, and
is due to the gradual loss of independence of the Sturmian
functions at large distances. Had the potential VS been used
for generating the Sturmian functions for Fig. 5, rather than

0 10 20 30

10−5

10
0

r

er
ro

r no iteration

14 th iteration

FIG. 5. (Color online) Absolute value of the error of the wave
function as a function of radial distance r . The result labeled as
“no iteration” illustrates the result for F (2), Eq. (32), with N = 31.

The other line is obtained after the 14th iteration. Method S2 was
used for these results, using positive energy Sturmians for potential
VWS. The “exact” scattering function ψ, which provides a measure
of the error of the iteration results, is obtained with potential VP , and
k = 0.5 fm−1, using the spectral integral equation method.
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FIG. 6. (Color online) Comparison between various cases of the
iterative rate of convergence of the asymptotic limit S of the wave
function to the “exact” one, defined by Eqs. (25) and (26). All
Sturmian functions are obtained with potentials VWS, with iteration
method S2. Of the three cases the first two, denoted by −E20
and +E20, employ 20 Sturmians each, for negative and positive
energies, respectively. The third case (+E32) employs 32 positive
energy Sturmians. The positive and negative energy wave numbers
are k = 0.5 fm−1 and κ = 0.3 fm−1, respectively.

Sturmian potential VWS, then after the 14th iteration the error
of the wave function would have become large already for
r > 7 fm, and asymptotically the error would have been several
orders of magnitude larger than the error shown in Fig. 5.
Both Figs. 3 and 5 attest to the importance of using a basis
of Sturmian functions generated with an auxiliary potential
whose range is larger than the range of the operator O in
Eq. (2).
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FIG. 7. (Color online) Comparison between the real parts of the
approximate scattering function F̄ (2) and the exact function ψ , as
a function of radial distance r , using negative energy Sturmians, as
described in the text. In the legend, these functions are denoted as F2
and PSIe, respectively.
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FIG. 8. (Color online) Similar to Fig. 7 for the comparison of the
imaginary parts of F̄ (2) and ψ.

B. Results with negative energy Sturmians

For an integral equation (2) with a general integral kernelO,
such that the solution ψ(r) asymptotically has positive energy
ingoing and outgoing waves, it is to be expected that a suitable
finite rank expansion ofO should be in terms of positive energy
Sturmians, as expressed by Eq. (4), since they have the same
asymptotic behavior as the function ψ(r). However, since for
the case that O = G0V Eq. (4) can be written as

ON (r,r ′) = G0

N∑
s=1

V �s〉 1

〈�sV̄ �s〉 〈�sV̄ , (38)

one could interpret this equation as providing a separable
expansion of the scattering potential V. Assuming that V , even
though possibly complex or nonlocal, decays exponentially
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FIG. 9. (Color online) Absolute value of the error of the scattering
wave function ψ , as a function of radial distance r. The line on top
shows the result for F̄ (2), also shown in Figs. 7 and 8; the bottom
line is obtained after 14 iterations. The Sturmians are calculated for
a negative energy with κ = 0.3 fm−1 for potential VWS.
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with distance, it would then seem preferable to use negative
energy Sturmian functions for a basis set for the expansion of
V , since they also decay exponentially with distance, and one
would therefore expect a better convergence of the iterations
than by using positive energy Sturmians. This is, however, not
the case as will be shown. The basic reason is that in the present
treatment, the quantity being expanded in terms of Sturmians
is the scattering function ψ, or its approximation F (2), and
not the scattering potential V . The numerical verification is
documented below.

The main difference from the treatment with positive energy
Sturmians is that the matrix O that appears in the expansion
of (ON )2 in Eq. (21), is no longer given by the matrix V
[Eq. (27)], but rather by

Os,s ′ = 〈�̄sV̄ G0V �̄s ′ 〉/〈�̄sV̄ �̄s〉, s,s ′ � N. (39)

This requires a two-variable integral, and hence is more
cumbersome to perform, but the rest of the calculation
proceeds along the same lines as described in Sec. II. The
functions thus obtained are denoted with a bar, such as F̄ (2),
for example.

The iteration results for the asymptotic value of ψ using
negative energy Sturmians are displayed in Fig. 6, where they
are compared with the result using positive energy Sturmians.
Using 20 �̄s basis functions, for the VWS Sturmian potential
and negative energy with κ = 0.3 fm−1 (labeled as −E 20),
the convergence of the iterations is a little worse than the
convergence using the same number of Sturmians of positive
energy, with k = 0.5 fm−1 (labeled as +E 20). Using a larger
number of positive energy Sturmians (N = 30) provides still
better convergence.

The result for F̄ (2) is illustrated in Figs. 7, and 8, and the
error as a function of radial distance is displayed in Fig. 9. In
conclusion, the use of negative energy Sturmians for method
S2 does not show a decisive advantage over the use of positive
ones for the calculation of scattering functions, for the case
that O = G0V .

IV. SUMMARY AND CONCLUSIONS

In summary, the basic thrust of the present investigation
is to present an iterative method to correct for the slow
convergence of Sturmian expansions in the solution of a
general, one-dimensional, integral equation. The new feature is
that exact Sturmian eigenfunctions of the integral operator are
not required, as would have been the case for the quasiparticle
method of Weinberg [18]. It is also shown that solving a once
iterated integral equation, denoted as method S2, will lead to a
faster convergence of the iterations than for the noniterated
equation (method S1). The basic idea of either method is
to construct a separable (and truncated, i.e., of finite rank)
approximation ON to an operator O by an expansion into N

auxiliary Sturmian functions. A numerical example of such
an expansion is given for the case that O = d/dr (i.e., d/dr

is represented as a superposition of separable integral terms).
For a Fredholm integral equation of the second kind, O is the
kernel of the integral term, and the corresponding solutionF of
the integral equation with ON can be obtained algebraically.

The corrections to F , required for the solution of the exact
integral equation, are performed iteratively, and the rate of

convergence of the iteration is compared for various variants
of the method. The advantage of doing iterations rather than
solving the integral equation numerically directly, is that the
numerical complexity for obtaining the algebraic solution for
F and the subsequent iterations can be substantially less than
for the direct numerical solution, especially if the kernel of the
integral equation is very complicated.

Numerical examples are presented for solving a Fredholm
integral equation of the second kind with O = G0V , where
V has a repulsive core, while the Sturmians are defined for
a potential V̄ without a repulsive core. After 20 iterations an
accuracy of between 9 and 10 significant figures is obtained
using the iteration method S2. This accuracy is achieved by
using very precise Sturmian functions and their eigenvalues,
obtained with a spectral [21] iterative method [25] for solving
the integral eigenvalue equations for the Sturmian functions
and also for carrying out the required overlap integrals. As a
result, previous investigations with positive energy Sturmians
[27], hampered by lack of this type of accuracy, were improved
upon and expanded in the present study. It is shown that
utilizing negative energy Sturmian functions does not lead
to better convergence of the iterations and also that the range
of the auxiliary Sturmian potential V̄ should be larger that the
range of the kernelO of the integral equation to be solved. That
result is not surprising, since the Sturmians become linearly
dependent for distances beyond the range of V̄ .

In summary, the present method (a) overcomes the difficulty
that Sturmian expansions tend to converge slowly by introduc-
ing an iterative correction method, and (b) it shows that a large
variety of Sturmian functions can be calculated numerically to
great accuracy, replacing the analytical functions previously
used, such as Laguerre or Coulomb Sturmians. It is carried out
in configuration space, and can be extended to solve coupled
channel integral equations, or to include nonlocal potentials
[30] as well as Coulomb interactions in the Schrödinger
equation.

APPENDIX A: STURMIAN FUNCTIONS

The definition and some properties of Sturmian functions
are given in the text, according to Eqs. (5)–(7). The purpose
of this appendix is to present more details about Sturmians by
means of numerical examples.

One can understand intuitively the properties of the �’s
as follows [27]. The Sturmian functions �s(r), s = 1,2, . . .

obey, in addition to the integral equation [Eq. (5)], the
radial differential equation (6) with V̄ replaced by � V̄ .

By comparing the (L-S) Eq. (5), with Eq. (6) one sees that
�s = 1/ηs. As the index s increases, the corresponding values
of �s increase, and hence the potential �sV̄ increases in
magnitude. If V̄ is real and attractive and the real part of �s is
positive, then the real part of �sV̄ becomes more attractive, and
the corresponding eigenfunction �s becomes more oscillatory
inside the attractive region of the well. So, from one s to
the subsequent s + 1 the eigenfunction acquires one more
node inside the well. According to flux considerations the
imaginary part of �sV̄ has to be positive (i.e., the well has to
be emissive [27]), so as to correspond to the outgoing nature of
the asymptotic function H . This is exactly the opposite of the
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FIG. 10. (Color online) The spectrum of the Sturmian eigenvalues
�s for the potential VS defined in Eq. (35) and illustrated in Fig. 2.
The wave number is k = 0.5 fm−1.

case of an optical potential that absorbs flux. These properties
will be verified in the numerical illustrations below.

1. The positive energy case

For the case that the orbital angular momentum L is zero,the
positive energy Green’s function G0(r,r ′) in Eq. (5) is given by

G0(r,r ′) = −1

k
F (r<) × H (r>), (A1)

where (r,r ′) = (r<,r>) if r � r ′ and (r,r ′) = (r>,r<) if r � r ′,
where

F (r) = sin(kr); H (r) = cos(kr) + i sin(kr), (A2)

and k is the wave number, in terms of which the energy
E = k2 is defined. For positive energies the Sturmians
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FIG. 11. (Color online) Sturmian eigenfunctions for the potential
VS defined in Eq. (35) for a wave number k = 0.5 fm−1. They are
normalized such that asymptotically they all approach the outgoing
Hankel function H (r) = cos(kr) + i sin(kr).
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FIG. 12. (Color online) Same as Fig. 11 for the imaginary part of
the Sturmian functions.

obey the boundary conditions �s(r → 0) = 0; �s(r → ∞) =
ks H (r), where the constant ks is determined by the normal-
ization of the Sturmian function, and H is the outgoing wave
Hankel function defined below. A generalization to angular
momenta L > 0 can be easily accomplished [20].

An example for k = 0.5 fm−1, for the attractive po-
tential V̄ = VS [Eq. (35)] that has no repulsive core
near the origin and that decays exponentially at large
distances, is given below. The � spectrum is shown
in Fig. 10; the real and imaginary parts of the first
four Sturmians are illustrated in Figs. 11 and 12,
respectively. Since the potential VS is entirely attractive, the
real parts of �s are positive, while the imaginary parts are
negative, in accordance with the argument given below. A list
of these eigenvalues precise to 11 significant figures is also
given below, for benchmarking purposes.

If the potential V̄ has a repulsive core, as is the case for
potential VP [Eq. (34)], the Sturmians change in character, as
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FIG. 13. (Color online) The spectrum of the eigenvalues �s for
the potential VP defined in Eq. (34). This potential has a repulsive
core. The wave number is k = 0.5 fm−1.
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FIG. 14. (Color online) Real parts of Sturmian functions �s for
the potential VP , for k = 0.5 fm−1. This potential, defined in Eq. (34),
has a repulsive core. The result for the anomalous s = 5 function is
shown in a separate figure.

is illustrated in Fig. 13, for the spectrum of �s = 1/ηs which
shows that there are some values of �s whose real parts are
negative.

Because potential VP has both a repulsive and an attractive
part, the eigenvalues fall into two categories. In category I
the eigenvalues � have a positive real part and a negative
imaginary part, and the corresponding eigenfunctions are
large mainly in the attractive regions of the potential well.
Examples are given in Figs. 14 and 15. In category II the
real parts of � are negative so as to turn the repulsive piece
of the potential near the origin into an attractive well, and the
formerly attractive valley into a repulsive barrier. Examples
of the corresponding Sturmian indices are s = 5,7,10,15, . . .

and one of these functions is shown in Fig. 16. The Sturmian
for s = 10 is similar to that for s = 5 in that it is also large near
the origin (with an amplitude of �109) and has a node near
r = 1. The functions for s = 5 and 10 are “resonant” in the
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FIG. 15. (Color online) Same as Fig. 14 for the imaginary parts
of the Sturmian functions.
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FIG. 16. (Color online) Sturmian function in category II for
s = 5, for potential VP and k = 0.5. This result illustrates a shape
resonance. For other cases in category II the Sturmian function can
be very small in the region of the potential, and become of order unity
outside.

radial region r ∈ [0,4], while the one for s = 7 is nonresonant.
For a larger energy the effect of the barrier for the functions
of class II decreases, and the absolute value of the eigenvalues
ηs = 1/�s decreases for s < 10, as is illustrated if Fig. 17.
As will is shown in Appendix B, the functions for which
|ηs | < 1 play an important role for the iterative correction
of the truncation errors. Furthermore, in the expansion of a
wave function in terms of Sturmians which are themselves
eigenfunctions of the integral operator, a dominator (1 − ηs)
is likely to appear in the expansion of the wave function. For
the values of s for which real (ηs) � 1, and imag (ηs) � 0, the
corresponding Sturmians make a resonant contribution to that
expansion. In Fig. 18 the real and imaginary parts of some of
the ηs are illustrated in the form of an Argand diagram for
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FIG. 17. (Color online) Absolute value of ηs as a function of the
Sturmian index s for two values of the wave number k, both for a
positive energy. The eigenvalues ηs are defined in Eq. (5) or (6), with
V̄ = VP .
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FIG. 18. (Color online) Argand diagram of ηs , for the potential
VP for s = 4,5, . . . 10, for three values of k (in units of fm−1). The
Sturmian energy is positive. The points for s = 10 lie closest to the
right, and the points for s = 4 lie closest to the left. The s = 7 points
for all three wave numbers k are close to the resonance condition, for
which the real parts of ηs � 1, and the imaginary parts of ηs � 0.

three values of k, which shows that for s = 7 the values of ηs

for the three k values satisfy the resonance criterion by lying
close to unity.

2. The case of negative energies

For negative energies E = −κ2, the Green’s function Ḡ0 is

Ḡ0(r,r ′) = − 1

κ
F̄ (r<) × H̄ (r>), (A3)

where again (r,r ′) = (r<,r>) if r � r ′ and (r,r ′) = (r>,r<) if
r � r ′, and where

F̄ (r) = sinh(κr); H̄ (r) = exp(−κr). (A4)

For the Woods-Saxon potential [Eq. (36)] and for a negative
energy wave number κ = 0.3 fm−1 the first four Sturmian
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FIG. 19. (Color online) Negative energy Sturmians �̄s, for the
potential VWS defined in Eq. (36), with κ = 0.3 fm−1.
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FIG. 20. (Color online) Eigenvalues �s for the negative energy
Sturmians with κ = 0.3 fm−1, for the potential VWS defined in
Eq. (36). Some of the corresponding Sturmian functions are illustrated
in Fig. 19.

functions are displayed in Fig. 19, and the eigenvalues �s =
1/ηs are shown in Fig. 20. Since the normalization integral
〈�̄sV̄ �̄s〉 = 〈�̄2

s V̄ 〉 in Eq. (7) is negative (since the potential
V̄ is negative definite), the Sturmians �̄s are purely imaginary,
and the imaginary parts are displayed in Fig. 19.

The numerical calculations are performed using a
Chebyshev spectral expansion method [20,21]. The Sturmians,
as well as the eigenvalues, are obtained by an iterative spectral
method accurate to 1 : 1011, as described in Ref. [25], that
supersedes a method previously described in Ref. [27]. The

TABLE I. Eigenvalues for Sturmian potential VS for k = 0.5 fm−1.

Real part of �s Imag. part of �s

1 −0.03297806784 −0.05633093256
2 0.04181033607 −0.12298817955
3 −0.02140651197 −0.23641901361
4 0.21055103262 −0.15935376881
5 0.43743611684 −0.17810671020
6 0.71976101832 −0.19289033454
7 1.05649701588 −0.20516494913
8 1.44649394898 −0.21538251834
9 1.88887575723 −0.22390738772

10 2.38303461225 −0.23106484062
11 2.92855765503 −0.23712639599
12 3.52516147256 −0.24230800967
13 4.17264661513 −0.24677772914
14 4.87086853262 −0.25066566005
15 5.61971940360 −0.25407296058
16 6.41911669954 −0.25707898962
17 7.26899583793 −0.25974669404
18 8.16930533353 −0.26212658464
19 9.12000350403 −0.26425965551
20 10.1210561674 −0.26617953514
21 11.1724349888 −0.26791408364
22 12.2741162656 −0.26948659119
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increased accuracy is needed in order to assess the convergence
of the iterative method described here.

For future benchmark purposes, the eigenvalues of Eq. (5)
are given in Table I for the Sturmian potential VS defined in
Eq. (34), for a wave number k = 0.5 fm−1.

APPENDIX B: CONVERGENCE OF THE ITERATIONS

A justification of the faster convergence rate of method
S2 over S1 is as follows. Formally, Eq. (24) can be written
as χ2

n+1 = {[1 − (ON )2]−1�
(2)
N }nF (2), and hence the rate of

convergence of the iterations depends on the norm of the
operator [1 − (ON )2]−1�

(2)
N . Since the norm of [1 − (ON )2]−1

is expected to be smaller than unity, the rate of convergence
should be faster than the powers of the norm of �

(2)
N . In view

of Eq. (30), �
(2)
N is also given by

�
(2)
N =

∞∑
s,s ′=N+1

G0V �s〉V s,s ′
1

ηs ′
〈�s ′ V̄ . (B1)

By defining Ṽ ,

Ṽ s,s ′ = V s,s ′ s,s ′ > N,
(B2)

Ṽ s,s ′ = 0 s,s ′ � N,

and keeping in mind that

1

ηs ′
〈�s ′ V̄ G0V �s〉 = V s ′,s , (B3)

one can show that the powers of �
(2)
N are given by

(
�

(2)
N

)n =
∞∑

s,s ′=N+1

G0V �s〉(Ṽ 2n−1
)s,s ′

1

ηs ′
〈�s ′ V̄ , (B4)

and hence the norm of the iterations should decrease with the
order of the iteration n as∣∣χ (2)

n

∣∣ < k|(Ṽ 2
)n|, n = 1,2, . . . , (B5)

where k is some constant.
By contrast, for method S1,

(
�

(1)
N

)n =
∞∑

s,s ′=N+1

G0V �s〉(Ṽ n−1
)s,s ′

1

ηs ′
〈�s ′ V̄ , (B6)

and by a reasoning similar to the one above, one expects a
slower convergence rate, of the order of

|χ (1)
n | < k′|Ṽ n−1|, n = 1,2, . . . (B7)

These convergence estimates are supported by the numerical
results presented in Fig. 4 in Sec. III.

APPENDIX C: USE OF THE SINGULAR VALUE
DECOMPOSITION METHOD (SVD)

The singular value decomposition of an N × N matrix M
is given by [31,32] M =U SV †, or

Ms,s ′ =
N∑

i=1

us,iσi(vs ′,i)
†, s ′ = 1,2, . . . ,N. (C1)
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FIG. 21. (Color online) Error of the asymptotic values S of the
wave function ψ as a function of the number m of SVD terms for a
fixed iteration number n = 20. The Sturmian functions S and WS are
defined in Fig. 3, their total number N is 46 and 31, respectively. The
SVD-modified iteration method S2 was used for both results. The
wave number k = 0.5 fm−1.

Here us,i and vs ′,i are elements of the N × N unitary
matrices U and V, and S is a diagonal matrix containing the
singular values σi , with i = 1,2, . . . ,N. The σi are positive
numbers, ordered in descending values, and the value m

that defines O(1) and O(2) is chosen such that σi < 1 for
i = m + 1,m + 2, . . . ,N. The matrices U and V † are not
orthogonal to each other. The symbol † denotes complex
conjugation and transposition. In the text of this article the
SVD was not used, but it could be of value for future
studies.

The SVD decomposition (C1) will now be applied to (ON )2

which occurs in method S2 for the once iterated integral
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singular value index i

σ i

FIG. 22. (Color online) Singular values σi for the SVD decom-
position of the matrix V , defined in Eq. (27), and calculated for two
different sets of Sturmian functions, S and WS, respectively. The
potential V is VP . The wave number is k = 0.5 fm−1.
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FIG. 23. (Color online) The real part of �i(r),i = 1, . . . 4, as a
function of radial distance r, for the first four SVD indices i. This
function is defined in Eq. (C5). The scattering potential is VP , the
Sturmian potential is VWS; the wave number is k = 0.5 fm−1.

equation (18), which, according to Eq. (29), in turn involves the
first power of the matrix O. The SVD decomposition is used in
order to separate from the matrix O a piece O (1) whose norm
is larger than unity, the remainder being called O (2), according
to which

O (1)
s,s ′ =

m∑
i=1

us,iσi(vs ′,i)
†; O (2)

s,s ′ =
N∑

i=m+1

us,iσi(vs ′,i)
†.

(C2)

The above decomposition of O leads to the decomposition
(ON )2 = (ON )2

1 + (ON )2
2, where

(ON )2
1 =

m∑
i=1

�i(r)σi 
i(r
′), (C3)

and

(ON )2
2 =

N∑
i=m+1

�i(r)σi 
i(r
′), (C4)

with

�i(r) =
N∑

s=1

O�s〉r us,i , i = 1,2, . . . ,N, (C5)
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FIG. 24. (Color online) Same as Fig. 23 for the imaginary part
of �i.

and


i(r
′) =

N∑
s ′=1

(vs ′,i)
†�s ′ V̄ 〉r ′/〈�s ′ V̄ �s ′ 〉, i = 1,2, . . . ,N.

(C6)

The size m of the SVD modified quantities defined in Eq. (C3)
can be considerably smaller than the number N of Sturmian
functions used for obtaining the matrix V . This is demonstrated
in Fig. 21, which illustrates the error of the asymptotic value
S of the wave function ψ for various SVD values of m, for
a fixed number of iterations n = 20. The results in Fig. 21
are corroborated by an inspection of the singular values of the
decomposition of the matrix V , calculated either with the S
or the WS Sturmians, illustrated in Fig. 22. The figure shows
that for m > 10 the singular values σi < 1 for i > m, hence
the iterations for m > 12 should converge well. The functions
�i(r) and 
i(r), i = 1,2, . . . N are associated with the SVD
formulation, and are needed for the calculation of a matrix
M, defined in Eq. (C1). Once multiplied with the coefficients
σic

(1)
i , the �i are also the basis functions in terms of which

function F (2) can be represented. Because of their importance,
the dependence of the real and imaginary parts of �i on the
distance r is illustrated in Figs. 23 and 24 for the first four
values of the singular value index i.
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