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Dipole interaction of the Quincke rotating particles
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We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting
fluid under the action of the external electric field. We consider the case when the strength of the external electric
field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the
dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused
by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of
the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the
particles and the external electric field strength vector, particles can attract or repel each other. In contrast to
the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the
strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles
either does not change or decreases with the increase of the strength of the external electric field depending on
the strength of the external electric field and electrodynamic parameters of the particles.
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I. INTRODUCTION

In spite of the large number of investigations concerned with
a behavior of weakly conducting fluid-particle suspensions
subjected to an external electric field, this system continues
to attract the attention of experimentalists and theoreticians
working in the field. The main two reasons are the importance
of fluid-particle suspensions subjected to an external electric
field in various fields of physics and biophysics [1,2] and the
variety of physical effects which are characteristic for these
systems. Systematic investigation of these systems based on
the unified approach started in the study by Melcher and Taylor
[3] and was developed further in numerous investigations
(see, e.g. [3–6]).

Special emphasis in the above mentioned theoretical and
experimental studies was given to the case when parti-
cle electric conductivity σp and permittivity εp satisfy a
condition

εp/σp > εout/σout, (1)

where εout and σout are permittivity and electric conductivity
of a host fluid, respectively. Condition (1) corresponds to the
case when a characteristic relaxation time of the free charge
inside the particle τp = ε0εp/σp is larger than a characteristic
relaxation time of the free charge in the host fluid, τout =
ε0εout/σout. Under these conditions and in the presence of a
sufficiently strong external electric field particles rotate around
their axes of symmetry. This effect of rotation (the Quincke
effect) is associated with the dependence of the direction of
torque acting at the particle in the external electric field by the
relation between the characteristic times, τp and τout. Changing
the inequality (1) to the opposite results in the reversal of the
direction of the dipole moment of the induced free charge at
the surface of the particle. In a case of the spherical particle
the dipole moment, which is caused by the “instantaneous”
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polarization of the particle, is always directed along the
direction of the external electric field and does not result in
torque acting at the particle. However, the torque caused by
a free charge can change sign and corresponds to the stable
or unstable particle equilibrium. In the latter case particles
can rotate with a constant angular velocity even in a stagnant
host fluid. Herewith the electric charge which is carried away
by a convective electric current caused by particle rotation is
compensated by the conductivity current. Consequently, the
effective distribution of electric charges at the particle surface
does not change and corresponds to such distribution whereby
the direction of the dipole moment of the particle does not
coincide with the direction of the external electric field. Clearly
particle rotation can be caused also by other forces. Therefore
the inequality (1) determines the condition when the torque
which is required for particle rotation is less than in the case
without the external electric field. The nature of this effect is
manifested in full capacity when the external rotating electric
field is applied [6]. In this case, due to the finite relaxation time
of the dipole moment, the direction of the dipole moment does
not coincide with the direction of the external electric field,
and therefore the torque is applied at the particle independent
of whether the condition (1) is satisfied or not. The difference
is that when the condition (1) is not satisfied particles rotate
in the direction of rotation of the external electric field with
the lower angular velocity. When angular velocity of rotation
of the external electric field vanishes the angular velocity of
particle rotation also vanishes. If condition (1) is satisfied
the balance between a convective and a conductive electric
current is altered so that stationary rotation occurs when
particles rotate against the direction of rotation of the external
electric field. Therewith when a velocity of rotation of the
external electric field vanishes but the amplitude of the field
exceeds some critical value, particles continue to rotate. It
was suggested to call particles which meet the condition (1)
negative electroviscosity particles (NEV particles) [6] since
in the main rotation regime in the presence of the external
rotating electric field these particles rotate in the opposite
direction.
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Studies of the effect of Quincke rotation on the behavior
of the system can be tentatively classified into two groups:
(i) investigations of the dynamics of a single solid [7,8]
or liquid [9] particle (body) and (ii) investigations of the
changes of the properties of emulsions due to Quincke effect,
e.g., modification of viscosity [10] or electric conductivity
[11,12]. Although quite a few studies on the Quincke rotation
were published in the past, some facets of this phenomenon
remained unexplored. One of these facets is associated with
interaction between the dipole moments of rotating particles.
In the present study we consider a case when both particles
are NEV particles. In Sec. II of this study we present a
detailed derivation of the electrodynamic equations governing
the behavior of particles in a dipole approximation. We derived
equations which determine the strengths of the electric fields
acting at the particles during their stationary rotation. In this
section we also present general formulas which determine the
force of particle interaction for an arbitrary orientation of the
straight line connecting the centers of spherical particles with
respect to the direction of the external electric field. In Sec. III
using the derived formulas we investigate the dependence of
the shift of the frequency of the Quincke rotation on the mutual
orientation of particles with respect to the direction of the
external electric field and directions of particle angular velocity
vectors. In Sec. IV we investigate the dependence of the force
of interaction of rotating particles vs mutual orientation of
particles with respect to the direction of the external electric
field and the directions of particle angular velocity vectors.

II. MATHEMATICAL MODEL

Let us consider a system of two spherical particles with
parameters εi,σi,ai , where ai is a radius of the ith particle;
εi,σi are the permittivity and the electric conductivity of
the ith particle and i = 1,2. Assume that these particles are
embedded in a host fluid with the permittivity εout and the
electric conductivity σout, and the electric field �E = E0�e is
applied to the whole system (�e is a unit vector, see Fig. 1).The
volumetric charge of the host fluid and the total charge of
the particles are equal to zero. Consequently, there are no
fields with the monopole symmetry in the system. Rotation
of the particle subjected to the external electric field in the
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FIG. 1. Schematic view of the system of weakly conducting
spherical particles subjected to the homogeneous external electric
field.

overdamped regime is governed by the following equation
(see [13], Chap. II, Sec. 20):

�ω =
�Me

6πηV
, (2)

where �ω is angular velocity of the particle, η is dynamic
viscosity of the host fluid, V is particle volume, and �Me is
torque acting at the particle due to the presence of the external
electric field. In Eq. (2) the ordinal number of the particle, i,
is dropped out and the hydrodynamic interaction between the
particles is neglected. It is assumed that particles are located
far away from the electrodes so that their interaction with the
electrodes can be neglected.

In the framework of the piecewise continuous model
whereby parameters of the system ε and σ change only
at the interface between different media, the electric field
in the volume occupied by a particle can be considered as
a superposition of the continuous field due to the external
sources and the field produced by the particle. The electric
field produced by the particle has a finite jump at the particle
surface due to the total surface charge. The formula for the
total surface charge density reads (see, e.g., [14,15])

γT = ε0�n · [ �E], (3)

where [E] = E+ − E−, E+ and E− are the values of the
function A at the external and internal surfaces, respectively,
and �n is the external unit normal vector at the particle surface.

The force and torque acting at the particle are determined
by the following relations (for details see [16]):

�F =
∫

γT
�EcdA, �Me =

∫
γT �r (A) × �EcdA, (4)

where �Ec is the continuous-at-the-surface component of the
electric field which will be determined further, symbols �r (A)
and dA denote that vector �r is taken at the particle surface,
and integration is performed over the surface of the particle.

The system of equations which determine the electrody-
namic part of the problem reads (for details see [3])

�∇ · �D = ρex, (5)

∂ρex

∂t
+ �∇ · �j = 0, (6)

�D = ε0ε �E, �j = �jσ + �jc, �jσ = σ �E,
(7)�jc = ρex �vc, �E = − �∇�,

where ρex is the density of the free charge which is formed
during the relaxation process that is governed by Eq. (6), ε and
σ are the local values of permittivity and conductivity, �jc is the
density of the convective current caused by the macroscopic
motion of charges, �vc is the velocity of a macroscopic motion
of electric charge, �vc(�r) = �̇c + �ω × (�r − �c), �c is the location
of the center of the spherical particle, �̇c is the velocity of
translational motion of the particle, and �ω is the angular
velocity.

Hereafter we consider an electrically neutral medium
where free charges can be formed at the boundaries between
different media. Consequently, the surface density of the free
charge γ and the density of the free charge ρex are related:
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∫
ρexdV = ∫

γ dA or ρex = γ δ(w)| �∇w|, where δ(w) is the
Dirac’s delta function, w = (x,y,z,t), and w = 0 is an
equation of the particle surface. Equations (4) and (6) must
be supplemented with the boundary conditions:

[�n · �D] = γ, [�n · �jσ ] = −∂γ

∂t
− �vc · �∇γ. (8)

Equations (7) imply that for determining electric fields and
currents it is sufficient to determine the electric potential, �.
Due to the linearity of the problem the electric potential in
the medium with the piecewise constant properties, which
includes particles embedded in a host fluid, can be found
by partitioning the space into the domains occupied by
the particles and the external space. Hereafter we consider
the problem in a dipole approximation whereby the electric
potential in the vicinity of the ith particle can be written as
follows:

�i (�r) = − �Eci · �ri + θi
�di · �ri + (1 − θi) a3

i

�di · �ri

|�ri |3
. (9)

Here �Eci is a continuous component of the electric field
which is the sum of the external electric field �E0 and the field
produced by other particles in the vicinity of the ith particle,
�ri = �r − �ci , �di is the dipole moment per unit volume of the
particle, θi = 1 inside the ith particle, and θi = 0 outside the
ith particle. Therefore the expression for the electric field �Eci

can be written as follows:

�Eci = �E0 + �Ej (ci), �Ej (�ci) = �Ej (�r)|�r=�ci
,

�Ej (�r) = a3
j

|�r − �cj |3
�dj · T̂j (�r), (10)

where matrix T̂j (�r) = 3�sj �sj − ê, �sj = (�r − �cj )/|�r − �cj |, and
ê is a unit tensor. For a system of two particles, i = 1,2 and
j = 3 − i.

Equations (5)–(10) yield the following set of equations for
determining the free charge, γi :

�di · �n(3 + κεi) = κεi �n · �Eci + γi/ε0εout, (11)
�di · �n(3 + κσi) = κσi �n · �Eci − (γ̇i + �vc · �∇γi)/σout, (12)

where κεi = εi/εout − 1 and κσi = σi/σout − 1. For further
analysis it is convenient to introduce the dipole moment:

�P =
∫

γT (�r − �c) dA, (13)

where integration is performed over the particle’s surface.
Equations (3)–(9) imply the following expression for the total
surface charge, γT :

γT = 3ε0 �d · �n.

Derivation of Eqs. (11) and (12) from Eq. (8) using Eq. (9)
and development of the latter expression for the total surface
charge through the vector of the dipole moment �d are outlined
in Appendix. The latter formula for the total surface charge
and Eq. (13) yield formulas for the torque and forces acting at
the particle. Keeping only the first terms in the expansion
of the electric field in the vicinity of �r = �ci which yield

nonzero contribution to the torque and the force, we obtain
the following formulas instead of Eqs. (4):

�Mi = �Pi × �Eci, �F ij = ( �Pi · �∇) �Ej |�r=�ci
. (14)

Formulas (14) determine the torque and the force acting at
the particle due to the external electric field and the electric
field produced by polarization of the neighboring particle.
Definitions of the surface density of the total external charge
and of the dipole moment [Eqs. (3) and (13)] and formula (9)
for the potential yield the following expression for the dipole
moment:

�Pi = 3ε0 �diVi.

The force applied by j th particle at the ith particle is a
function of three vectors: �di , �dj , and �sij = (�ci − �cj )/|�ci − �cj |.
Using these vectors allows us to rewrite Eqs. (14) as follows:

�Fij = 9ε0Via
3
j

|�ci − �cj |4 [ �di( �dj · �sij ) + �dj ( �di · �sij ) + �sij ( �di · d̄j )

− 5( �di · �sij )( �dj · �sij )�sij ], (15)

�Mi = 3ε0Vi
�di × �Eci. (16)

Equation (15) implies that �Fij = − �Fji .
It is convenient to rewrite Eqs. (11) and (12) introducing

the dipole moments, �dε and �dσ , such that �di = �dε + �dσ :

�dεi = κεi
�Eci

3 + κεi

, �dσi · �n = γi

ε0εout(3 + κεi)
. (17)

Using Eqs. (11), (12), and (17) and taking into account that
γ̇i + �̇ci · �∇γi = 0 we arrive at the following equation:

∂ �dσi

∂t
− �ωi × �dσi +

�dσi

τi

= (κσi − κεi) �Eci

τi(1 + κσi/3)(κεi + 3)
, (18)

where τi = τ0(3 + κεi)/(3 + κσi) and τ0 = ε0εout/σout and �ω
is the vector of particle angular velocity.

Consider a stationary regime. In this case angular velocity
�ω is aligned with the torque Eq. (16), �ω is normal to the dipole
moment of the particle and the direction of the angular velocity
does not change. Solution of Eq. (18) in this case reads

�dσi = βi(
1 + ν2

i

)
(κεi + 3)

( �Eci + �νi × �Eci),

βi = κσi − κεi

1 + κσi/3
, �νi = �ωiτi . (19)

Taking into account the definitions of �dε and �dσ we arrive
at the following equation for �di = �dεi + �dσi :

�di = 1

κεi + 3

[(
κεi + βi

1 + ν2
i

)
�Eci + βi

�νi × �Eci

1 + ν2
i

]
. (20)

In order to simplify Eq. (20) let us introduce the following
notations:

ξi = 1

κεi + 3

(
κεi + βi

1 + ν2
i

)
,
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and the antisymmetric matrix

�̂k� = −�̂�k = βi

(κεi + 3)
(
1 + ν2

i

)εkm� (�νi)m ,

where εkm� is the Levi-Civita symbol.
Using these notations Eq. (20) can be written as follows:

�di = (ξi ê + �̂i) · �Eci.

Using the definition of the field �Eci [Eq. (10)] we obtain a
relation between the fields �Ec1 and �Ec2:

�Ec1 = �E0 + λ2T̂ (ξ2ê + �̂2) �Ec2, λ2 = a3
2

S3
,

T̂ = T̂j (�ci), S = |�c1 − �c2|. (21)

Using a similar relation which expresses the strength of the
electric field �Ec2 through the field strength �Ec1, we can exclude
�Ec2 and arrive at the following equation:

(ê − R̂2 · R̂1) �Ec1 = R̂2 · �E0 + �E0, (22)

where R̂i = λiT̂ · L̂i and L̂i = ξi ê + �̂i . If the inverse matrix
to the matrix ê − R̂2 · R̂1 exists, then Eq. (22) determines the
electric field �Ec1 in the leading dipole approximation. The
particular case of Eq. (22), when the particles do not rotate and
are located at the straight line which is aligned in the direction
of the external electric field, was considered in Ref. [16].
The interchange of indices in Eq. (22) yields an equation for
determining the electric field �Ec2.

Taking into account Eqs. (19) and (20) we can rewrite
formulas (2) and (14) for the torques �Mi as follows:

1 + ν2
i = E2

ci

E2
∗i

, E2
∗i = 2η(κσi + 3)2

3ε0τ0(κεi − κσi)
. (23)

Equations (23) for i = 1,2 together with Eq. (20) for the
electric fields �Ec1 and �Ec2 provide a complete set of equations
for determining the vectors of the particle angular velocities.
It must be noted that although according to Eqs. (22) and (23)
the fields �Ec1 and �Ec2 appear in the equations separately, the
angular velocity of one dipole depends on the angular velocity
of the other dipole due to the structure of the matrix R̂1.
Therefore, the electric fields �Ec1 and �Ec2 are interdependent.
Equation (21) implies that for particle rotation the conditions
given by Eq. (1) must be satisfied. If this condition is not
met then the particle cannot rotate with a constant angular
velocity, even when the other particle experiences the Quincke
rotation. The latter assertion is associated with the fact that the
dipole moments of the rotating particles remain constant, and,
consequently, the magnitudes of the electric fields produced
by the particles remain constant. In a case of a single particle,
�Eci = �E0, and Eq. (23) determines the dependence of the
angular velocity of the Quincke rotation of a single particle
vs the amplitude of the external electric field �Eci = �E0. Note
that the magnitude of the electric field scale, �E∗, is determined
by the value of the parameter η/(ε0τ0). For τ0 ∼ 1s and
η ∼ 1 kg/(m · s), E∗ ∼ 3 × 106 V/m.

III. SHIFT OF THE ANGULAR VELOCITY
OF INTERACTING PARTICLES

Let us determine the shift of the angular velocity of the
particles caused by their dipole interaction. We consider a
problem in the first nonvanishing approximation with respect
to the parameters λ1 = a3

1/S
3 and λ2 = a3

2/S
3. In this case the

magnitude of the electric fields �Eci is given by the following
relation:

�Eci = R̂3−i · �E0 + �E0. (24)

Substituting Eq. (24) in Eq. (23) and keeping only the
first nonvanishing terms with respect to the parameter λ3−i

we arrive at the system of equations which determine the
frequencies of the particle rotation:

1 + ν2
i = E2

0

E2
∗i

[1 + 2λ3−iξ3−i(3μ2 − 1)

+ 6λ3−iμ( �V3−i · �ν3−i)], i = 1,2, (25)

where μ = �s · �e, �e is a unit vector in the direction of the external
electric field �E0, �V3−i = �ep[ξ3−i − κε3−i/(κε3−i + 3)], �ep =
�e × �s, and the vector �s is either the vector �sij or the vector
�sji = −�sij since only even powers of �sij appear in Eq. (24).
Since the system of equations (25) is obtained in the first
nonvanishing approximation with respect to the parameter
λ3−i , in the formulas for the rotation frequencies one can use
the value of ν3−i obtained in the zeroth approximation with
respect to the parameter λ3−i :

ν3−i = ν3−i0 =
√

E2
0

E2
∗3−i

− 1. (26)

The vector of the rotation frequency �ν3−i is perpendicular
to the direction of the external electric field �e. In many sys-
tems used for experimental investigation of Quincke rotation
(see, e.g., [8,10,12]) the value of the parameter κε, which
is determined by the difference between the real parts of
permittivities of the particle and the host medium, is much less
than the magnitude of the parameter κσ , which is determined
by the difference between electric conductivities of the particle
and the host medium. In view of the latter remark hereafter
we neglect κε in order to considerably simplify derivations,
assume that κε � κσ ,κε � 3, and set κε = 0.

Using Eqs. (25) we arrive at the following formula for the
difference ν2

i − ν2
i0, where 1 + ν2

i0 = E2
0/E

2
∗i :

ν2
i − ν2

i0 = �0

(
μ2 − 1

3
+ μχν3−i0

)
,

�0 = 6λ3−i

E2
0κσi (κσ3−i + 3)

E2
∗i (κσi + 3)2 , (27)

χ = �s · (�eν3−i × �e) ,

where vector �eν3−i is a unit vector in the direction of the
rotation frequency vector, �ν3−i0.

Equation (27) implies that the signs of the frequency shift
are opposite in the cases when μ = ±1 and μ = 0. Since
the Quincke rotation of the ith particles occurs only when
κσi < 0, in the case when the straight line connecting the
particle centers is normal to the external electric field, the
frequency shift is positive and in the limit κσi ≈ κσ3−i ≈ −1,
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FIG. 2. Dependence of the shift of rotation frequency of the
Quincke rotating particle vs the magnitude and orientation of angular
velocity of the neighboring particle.

this shift is of the order of ν2
i − ν2

i0 ≈ a3
3−iE

2
0/(S3E2

∗). When
the straight line connecting the centers of particles having the
same parameters is parallel to the external electric field, the
frequency shift is negative, ν2

i − ν2
i0 ≈ −3a3

3−iE
2
0/(S3E2

∗). For
the arbitrary values of the parameter μ and given electric
conductivities of particles and of the host fluid, the frequency
shift of the ith particle is determined by scalar products, �s · �e
and �s · �eν3−i , i.e., by the projections of the unit vector �s on
the direction vector of the external electric field �e and on the
direction vector of the angular velocity �eν3−i . For the analysis
of the behavior of the frequency shift � = ν2

i − ν2
i0 which is

determined by Eq. (27) it is convenient to expand the unit
vector �s into the three unit vectors, �e, �eν3−i , �eν3−i × �e:

�s = μ�e +
√

1 − μ2(cos ϕ3−i �eν3−i − sin ϕ3−i �eν3−i × �e), (28)

where ϕ3−i is the azimuthal angle of the vector �s in the
counterclockwise direction. The schematic view of the system
is shown in Fig. 1. The parameter μ in the above formulas is
related with the angle θ in this figure, μ = cos θ . Let us set
i = 2 so that Eq. (27) determines the dependence of the shift
of the rotation frequency of the second particle vs the direction
and the magnitude of the unperturbed angular velocity of the
first particle, ν10. Expansion (28) allows us to rewrite Eq. (27)
as follows:

� = �0U (μ,ϕ),

U (μ,ϕ) = μ2 − 1
3 + sin(ϕ)ν10μ

√
1 − μ2.

Equation U (μ,ϕ) = 0 has two roots, μ1(ϕ) and μ2 (ϕ),
where μ1 (ϕ) < μ2 (ϕ). In the domain k1 = ν10 sin (ϕ) > 0,
μ1 = −

√
b + √

b2 − c, μ2 =
√

b − √
b2 − c, where b =

(2 + 3k2
1)/6(1 + k2

1) and c = 1/9(1 + k2
1). In the domain k1 <

0, μ1 = −
√

b − √
b2 − c, μ2 =

√
b + √

b2 − c. The behavior
of the function U (μ,ϕ) is showed in Fig. 2. Inspection of this
figure shows that U > 0 in the range μ < μ1 and μ > μ2.
When κε = 0, the condition (1) implies that κσi < 0. Since
κσi > −1, the range of the angles where U > 0 corresponds
to the negative shift of the oscillation frequency, � < 0.

IV. DIPOLE INTERACTION OF QUINCKE
ROTATING PARTICLES

In this section we analyze the behavior of the force of the
dipole interaction between two particles in the whole range
of the external electric field. Hereafter we assume that for
two particles, i = 1,2, the following condition is satisfied:

E∗1 < E∗2. We consider the behavior of the force of the
dipole interaction in three ranges of the external electric field:
(i) E0 < E∗1 < E∗2; (ii) E∗1 < E0 < E∗2; (iii) E∗1 < E∗2 <

E0. In the first range the external field does not cause particle
rotation. In the second range only particle 1 participates in
the Quincke rotation while in the third range both particles
rotate. As we will see from further analysis in each of these
domains there is a particular qualitatively different dependence
of the interaction forces vs the amplitude of the external
electric field and parameters of the problem. Clearly, at
the boundaries between these domains these dependencies
coincide.

Calculation of the interaction force is based upon Eq. (15).
In the first nonvanishing approximation with respect to the
parameters λi the dipole moment of the particle is the dipole
moment that is induced by the external electric field, �E0. The
same approximation has been used earlier in Sec. III.

Under these conditions let us consider the magnitude of
dipole interaction in the range E0 < E∗1 < E∗2. Setting νi = 0
in Eq. (20) we find that �di = �E0κσi/(3 + κσi). Substituting the
latter relation in Eq. (15) yields

�F = F0[(1 − 5μ2) �s12 + 2μ�e], (29)

where μ = �e · �s12 and the amplitude of the force F0, which is
independent of the characteristic directions in the problem, is
determined by the following formula:

F0 = 12πε0a
3
1a

3
2αE2

0

S4
, α = κσ1κσ2

(κσ1 + 3)(κσ2 + 3)
. (30)

Equation (29) determines the force acting at particle 1
by particle 2. The force applied by particle 1 at particle 2
is determined by Eq. (29) where �s12 is replaced by �s21 =
(�c2 − �c1)/S. The formula for the component of the force along
the line connecting the centers of the particles reads

Fs = �F · �s12 = F0(1 − 3μ2). (31)

This component changes its sign at μ2 = 1/3. When μ2 >

1/3 and α > 0 particles attract each other. In the case when
the line connecting the centers of the particles is parallel to
the direction of the external electric field, μ = ±1, Eqs. (29)
and (30) recover formula (23) in Ref. [16]. Equation (29)
determines the force of particle interaction in the stationary
regime when as the result of recharging of the system the
surface density of the free charges at the boundaries between
different media attains its saturation. In order to determine the
force of particle interaction at the initial moment when the
surface density of the free charges at the interfaces is small,
it is sufficient to replace κσi in Eq. (30) by κεi . Therefore,
without rotation the particle interaction force for small time
scales is determined by the instantaneous polarizability of
particles while at large time scales it is determined by their
conductivities.

The situation is different in the case with the Quincke rota-
tion. In the stationary regime, which is attained at large time
scales, Eq. (20) implies that the dipole moment of the particle
depends not only on its conductivity but also on the pol-
arizability. Hereafter, in the analysis of particle interaction
when at least one of the particles rotates, we neglect the
contribution of polarizability to the interaction and assume that
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κε = 0. The conditions for the validity of this approximation
can be easily obtained from Eq. (20) and are not presented
here.

In the range of the external electric field E∗1 < E0 < E∗2,
Eq. (20) yields:

�d1 = κσ1( �E0 + �ν10 × �E0)

(κσ1 + 3)
(
1 + ν2

10

) , �d2 = κσ2

3 + κσ2

�E0,

�ν10 = ν10�e1, (32)

where the absolute value of the rotation frequency ν10 is
determined by Eq. (26) and the unit vector �e1 is perpendicular
to the direction of the external electric field �E0.

Equations (15) and (32) yield the expression for the force
of interaction between the particles:

�F = F0{[1 − 5μ(μ − ν10 sin ϕ1

√
1 − μ2)]�s12

+ (2μ − ν10 sin ϕ1

√
1 − μ2)�e − μν10�e2}, (33)

where F0 = 12πε0a
3
1a

3
2αE2

∗1/S
4, �e2 = �e × �e1, and the az-

imuthal angle, ϕ1, is the angle between the vector �e and
the reference vector �e1 in the counterclockwise direction (see
Fig. 1). It must be noted that in the range of the amplitude of
the external electric field E∗1 < E0 < E∗2, the coefficient F0

does not depend on the amplitude of the external field. The
component of the force acting at the particle 1 in the direction
of the straight line connecting particle centers is given by the
following formula:

Fs = �F · �s12 = F0(1 − 3μ2 + 3ν10 sin ϕ1μ
√

1 − μ2). (34)

Equation (34) implies that if the straight line connecting
particle centers is perpendicular to the external field (μ = 0) or
parallel to the external field (μ = ±1), the particle interaction
force in this range of the external field amplitudes remains
independent of the amplitude. The formula for the force
Eq. (34) can be written as follows: Fs = 3F0U (μ,ϕ), where
function U (μ,ϕ) also determines the frequency shift �/�0

(see the above analysis) and is shown in Fig. 2.
In order to determine the particle interaction force �F in the

range of the external electric field amplitude E∗1 < E∗2 < E0

let us introduce the unit vectors �e′
1 and �e′

2. The unit vector �e′
1

is directed along the angular velocity vector of particle 2, �ν20,
while the unit vector �e′

2 = �e × �e′
1. The unit vectors �e′

1 and �e′
2

are located in the plane that is parallel to the plane spanned
by the vectors �e1 and �e2. Vectors �e′

1 and �e′
2 are related with

0.3 0.6 0.9

−1

0

1

μ=1

ϕ0
2π

Fs

3F0 μ=0

μ=0.5

FIG. 3. Dependence of the normalized component of the inter-
action force of the Quincke rotating particles in the direction of the
straight line connecting particle centers, Fs/3F0, vs ϕ0 = ϕ2 − ϕ1 for
ϕ2 = 0.

0.3 0.6 0.9

−1

0

1
μ=0.5

ϕ0
2π

Fs

3F0
μ=0

μ=1

FIG. 4. Dependence of the normalized component of the inter-
action force of the Quincke rotating particles in the direction of the
straight line connecting particle centers, Fs/3F0, vs ϕ0 = ϕ2 − ϕ1 for
ϕ2 = π/2.

the vectors �e1 and �e2 through rotation by the angle ϕ0, where
tan ϕ0 = (�e′

1 × �e1) · �e/(�e′
1 · �e1).

The dipole moments �d1 and �d2 are determined by the first
formula in Eqs. (32) with the corresponding indices. Using the
introduced notations the formula for the particle interaction
force �F can be written as follows:

�F = F0(fs�s12 + f2�e2 + f ′
2�e′

2 + f �e), (35)

where

F0 = 12πε0a
3
1a

3
2αE2

∗1E
2
∗2

S4E2
0

, (36)

fs = 1 + cos ϕ0ν10ν20 − 5[μ2 − μ
√

1 − μ2(ν10 sin ϕ1

+ ν20 sin ϕ2) + (1 − μ2)ν10ν20 sin ϕ1 sin ϕ2], (37)

f2 = −ν10(μ −
√

1 − μ2ν20 sin ϕ2),

f ′
2 = −ν20(μ −

√
1 − μ2ν10 sin ϕ1), (38)

f = 2μ −
√

1 − μ2(ν10 sin ϕ1 + ν20 sin ϕ2).

In Eqs. (37) and (38) ϕ2 = ϕ0 + ϕ1. The component of
the interaction force between the particles in the direction of
the straight line connecting particle centers is given by the
following formula:

Fs = �F · �s12 = 3F0[(k1k2 − 1)μ2

+ (k1 + k2)μ
√

1 − μ2 + (1 + k0)/3 − k1k2], (39)

where k0 = ν10ν20 cos ϕ0,k1 = ν10 sin ϕ1,k2 = ν20 sin ϕ2.

0.3 0.6 0.9

−1

0

1

μ=1

ϕ0
2π

Fs

3F0 μ=0

μ=0.5

FIG. 5. Dependence of the normalized component of the inter-
action force of the Quincke rotating particles in the direction of the
straight line connecting particle centers, Fs/3F0, vs ϕ0 = ϕ2 − ϕ1 for
ϕ2 = π .
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1 μ=1

Fs
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ϕ0
2π

μ=0

μ=0.5

FIG. 6. Dependence of the normalized component of the inter-
action force of the Quincke rotating particles in the direction of the
straight line connecting particle centers, Fs/3F0, vs ϕ0 = ϕ2 − ϕ1 for
ϕ2 = 3π/2.

Formula (39) implies that the interaction force in the
direction of the straight line connecting particle centers
can be written as Fs = 3F0U1(μ,ϕ1,ϕ2), where the function
U1(μ,ϕ1,ϕ2) determines the angular distribution of the attrac-
tion and repulsion forces. Apart from the parameter k1 which
determines the behavior of the function U (μ,ϕ), U1(μ,ϕ1,ϕ2)
depends also upon the parameters k0 and k2. When ν20 → 0,
U1(μ,ϕ1,ϕ2) → U (μ,ϕ) and F0, which is determined by
Eq. (36), tends to F0 which is given by Eq. (33). Equation (36)
also implies that in the range of external field amplitude E∗1 <

E∗2 < E0, the magnitude of F0 decreases when the amplitude
of the external field grows. Although the algebraic structure of
the function U1(μ,ϕ1,ϕ2) is similar to the structure of function
U (μ,ϕ), a large number of independent parameters results
in the variety of behaviors of this function and complicates
their analyses. In Figs. 3–6 we showed the behavior of the
function U1(μ,ϕ1,ϕ2) vs the difference of the azimuthal angles,
ϕ0 = ϕ2 − ϕ1, for ϕ2 = 0,π/2,π,3π/2. Inspection of these
figures reveals that the dependence of the particle interaction
force vs the difference of the azimuthal angles, ϕ0, depends
also by the angle between the straight line connecting particle
centers and the direction of the external electric field. Particle
interaction force depends also upon the azimuthal angles ϕ1

and ϕ2, which determine the orientation of the straight line
connecting particle centers with respect to the particle angular
velocity vectors. It must be noted that although Eqs. (37) are
invariant with respect to the substitution k1 ↔ k2, Eqs. (37)
are not invariant with respect to the substitution ϕ1 ↔ ϕ2

since ν10 �= ν20.

V. CONCLUSIONS

We considered interaction of the Quincke rotating NEV
particles when their parameters satisfy the condition (1), in the

whole range of the external electric fields. It was demonstrated
that depending on the mutual orientation of the particle angular
velocity vectors, the direction of the external electric field and
the direction of the straight line connecting particle centers,
the magnitude and the sign of the particle interaction force
change. We showed that in contrast to the case of nonrotating
particles where the amplitude of the force, F0, grows with
the amplitude of the external field Eq. (30), in the case of
the Quincke rotating particles, depending on the range of the
external electric field strength, the force factor F0 remains
constant Eq. (33) or decreases when the amplitude of the
external electric field grows Eq. (36). We investigated also the
shift of particle rotation frequency as a function of the angular
velocity vector of the rotating neighboring particle. Depending
on the geometry of the problem which is determined by
four vectors—(i) the vector of the direction of the external
electric field, (ii) the vector of the direction of the straight
line connecting the particle centers, (iii) the angular velocity
vectors—the angular velocity shift can be either positive or
negative.

APPENDIX: DERIVATION OF EQS. (11), (12), AND
EXPRESSION FOR THE TOTAL SURFACE CHARGE

Equation (9) implies the following formula for the potential
in the vicinity outside the ith sphere:

�out,i(�r) = − �Eci · �ri + a3
i

�di · �ri

|�ri |3 . (A1)

Potential inside the ith sphere reads

�ins,i(�r) = − �Eci · �ri + �di · �ri . (A2)

For �r = �ci + ai �n or |�ri | = |�r − �ci | = ai , �out,i = �ins,i and

�∇�ins,i = − �Eci + �di,
(A3)

�∇�out,i = − �Eci + a3
i

�di

|�ri |3 − 3a3
i

( �di · �ri)�ri

|�ri |5 .

Taking into account that �n = (�r − �ci)/ai , Eqs. (8), (A3),
and the definition of induction [the first formula in Eqs. (7)]
yield:

2εout �di · �n + εi
�di · �n + (εout − εi) �Eci = γ

ε0
. (A4)

Introducing κεi = εi/εout − 1 yields Eq. (11). Equation (12)
is derived similarly by replacing κεi → κσi = σi/σout − 1 and
γ /ε0 → −(γi + �vc · �∇γi).

Equation (A3) and the formula for the total surface charge
density Eq. (3) imply that γT = 3ε0 �d · �n.
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