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Confinement of semiflexible polymers
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A variational framework is developed to examine the equilibrium states of a semiflexible polymer that is
constrained to lie on a fixed surface. As an application the confinement of a closed polymer loop of fixed length
2πR within a spherical cavity of smaller radius, R0, is considered. It is shown that an infinite number of distinct
periodic completely attached equilibrium states exist, labeled by two integers: n = 2,3,4, . . . and p = 1,2,3, . . .,
the number of periods of the polar and azimuthal angles, respectively. Small loops oscillate about a geodesic
circle: n = 2, p = 1 is the stable ground state; states with higher n exhibit instabilities. If R � 2R0 new states
appear as oscillations about a doubly covered geodesic circle; the state n = 3,p = 2 replaces the twofold as the
ground state in a finite band of values of R. With increasing R, loop states make a transition from oscillatory and
orbital behavior on crossing the poles, returning to oscillation upon collapse to a multiple cover of a geodesic
circle (signaled, respectively, by an increase in p and an increase in n). The force transmitted to the surface does
not increase monotonically with loop size, but does asymptotically. It behaves discontinuously where n changes.
The contribution to energy from geodesic curvature is bounded. In large loops, the energy becomes dominated
by a state independent contribution proportional to the loop size; the energy gap between the ground state and
excited states disappears.
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I. INTRODUCTION

Understanding how surfaces may constrain the configura-
tion of biopolymers on mesoscopic scales is important in a
number of processes in cell biology. It is particularly relevant
in the packing of DNA within viral envelopes [1,2]. Modeling
all of the relevant interactions is complicated: One needs
to accommodate the competition between polymer elasticity
and entropy; in the case of DNA, electric fields will be
important. A nice short review in this context is provided
in [3]. Recently, simulations treating various features of the
confinement process have been performed [4,5]; the former
focuses on entropy, the latter on the dramatic effects of friction
and the finite transverse dimensions of the confined object.

In this paper, we address an aspect of the problem of
a fundamental nature that does not appear to have been
addressed previously in any detail: How does one characterize
the equilibrium states of the three-dimensional elastic energy
of a polymer confined within a fixed surface? While this
description of confinement leaves out a lot of the physics that
is relevant in biological systems, it presents a well-defined
problem exhibiting a striking level of complexity that is worth
studying in its own right.

The semiflexible polymer will be modeled as a curve
in three-dimensional space parameterized by arclength s.
The bending energy associated with a given conformation is
quadratic in the Frenet-Serret curvature along the curve, κ(s),

H = 1

2

∫
ds κ(s)2. (1)

Curves of fixed length minimizing the unconstrained energy
(1) were first studied in depth by Euler. A historical review
is provided in Ref. [6]; a more contemporary approach to the
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problem is presented in [7,8] and reviewed in Ref. [9]. An
alternative framework, which lends itself to adaptation to the
confinement problem, was developed in Ref. [10].

In the absence of constraints on a closed loop, there is not a
lot to say: The only stable equilibrium is a circle. Confinement
within a surface, however, will generally oblige the loop to
adopt a noncircular shape, increasing its elastic energy. The
contact with the surface itself may be complete or it may be
partial; and contrary to one’s initial guess, the bound state will
not generally follow a surface geodesic; nor need it be unique.

The wrapping of a semiflexible polymer around a cylinder,
a closely related problem relevant in the the winding of DNA
around histone octamers, was first examined some time ago by
Nickerson and Manning [11,12].1 Their strategy was to look
at the independent degrees of freedom of the surface-bound
polymer. While focusing directly on these degrees of freedom
makes sense, it does not exploit the symmetries of the problem.
For, even though the constraint breaks the Euclidean invariance
of the three-dimensional bending energy, how this occurs is
not arbitrary. A variational framework is developed here that
involves the unconstrained degrees of freedom, imposing the
constraint using a local Lagrange multiplier. This multiplier
will quantify the loss of Euclidean invariance in the constrained
system. Its value at any point along the loop will be identified as
the local normal force that is being transmitted to the surface.

The well-known integrability of the Euler-Lagrange equa-
tions for the unconstrained curve is a consequence of the
Euclidean invariance of its energy. The constrained counterpart
generally will not be integrable. In various interesting cases,

1See also [13] and the work of Rudnick and Zandi [14]. A review is
provided in Ref. [15]. There has also been some nice work done more
recently by Van der Heijden et al. [16]. More directly relevant is the
study of confinement of cylindrical sheets within a circular cylinder
by Boué et al. [17].
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(a) R = 1.1 (b) R = 1.5 (c) R = 2

(d) R = 2.127 (e) R = 2.5 (f) R = 2.99

FIG. 1. (Color online) State with twofold symmetry for values of R in the interval [1,3] within a unit sphere: (a) and (b) display increasingly
large oscillations about the equator; (c) oscillations develop overhangs; (d) first self-contacts made at the two poles; (e) self-intersecting triple
orbit of sphere; (f) orbit collapses to triple cover of the equator. The normalized local confining force λ is color coded in these figures.

however, the confining geometry will respect some subgroup
of the Euclidean group. In particular, the conservation of torque
associated with the residual rotational invariance of a sphere
permits the Euler-Lagrange equation to be cast as a quadrature
in the geodesic curvature which can be integrated directly. It
also provides a direct recipe for the reconstruction of the loop
from its curvature data adapted to the conserved torque vector
as an axis of symmetry.

In particular, we apply this framework to examine the
confinement of a closed polymer loop of fixed length 2πR

within a sphere of radius R0 � R.
In contrast to an open polymer which will wind around a

geodesic circle on the sphere when its length exceeds πR0,
the closure of the loop is incompatible with a geodesic unless
R is tuned to be commensurate with an integer multiple of
R0. We show that there exists an infinite number of distinct
completely attached states, labeled by a pair of integers, n

and p: n = 2,3,4 . . . , p = 1,2,3, . . . , the number of periods
of the polar angle and azimuthal angles in one circuit of the
loop, respectively. n characterizes the dihedral symmetry with
respect to the axis of symmetry; p characterizes the number of
revolutions about this axis. Small loops oscillate symmetrically
about a geodesic circle with p = 1 and an n-fold symmetry,

n = 2,3, . . .. The twofold is the stable ground state. For any
finite values of R, the higher n-folds are unstable with respect
to decay toward the twofold. States with n = 2 are illustrated
in Figs. 1(a)–1(c) for various normalized values of R.

Beyond some critical size, the loop will exhibit self-
intersections on the sphere. When n = 2 this will occur when
R = 2.127R0 where the loop crosses the poles as illustrated
in Fig. 1(d). We suppose that self-intersections are consistent
with the physics and do not cost energy.

As R is increased to R = 3R0, the loop will collapse onto a
geodesic circle which it will cover three times [see Figs. 1(e)
and 1(f)]. The discontinuity in the number of revolutions
occurs at an intermediate value of R where the loop crosses
the poles. This is accompanied by a transition from oscillatory
to orbital behavior. As R is increased above 3R0, the dihedral
symmetry of the lowest energy state descending from the n = 2
ground state will jump to n = 4 with the reestablishment of
oscillatory behavior.

The bending energy of this state as well as the total force that
gets transmitted to the surface will be determined as a function
of R. The three-dimensional bending energy decomposes
on the surface into a sum of two terms: One is associated
with the geodesic curvature, intrinsic to the sphere; the other
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is associated with the normal curvature inherited from the
surface, constant on a sphere. The latter energy thus counts
the number of times the loop is wound within the sphere and
it is proportional to R. The geodesic energy periodically falls
to zero whenever R = pR0 and the loop is geodesic. Local
maxima, associated with the incommensurability of the loop
length with geodesic behavior, are displayed between these
values; we show that their values decrease monotonically with
loop size. For large values of R, the normal contribution is
always dominant. It does not depend on the state in question.
Thus, in this limit, the energy gap between the ground state and
excited states disappears. The local force transmitted by the
completely attached ground state loop is positive everywhere.
Surprisingly, the total force does not grow monotonically with
loop length except asymptotically, where it grows linearly with
R and coincides with the naive expression, energy divided
by R0. The change of symmetry as R passes through odd
integral multiples of R0 manifests itself in a positive jump in
the transmitted force analogous to a Euler instability associated
with the buckling into oscillations.

When R � 2R0, a new set of states appears as oscillations
about a doubly covered geodesic circle, p = 2 with an n-fold
symmetry, n = 3,4,5, . . .; among these new states, the lowest
energy is displayed in the threefold. Also, because the geodesic
energy is small when the oscillations are small, these states
will have lower energy than the twofold ground state in a
finite band of values of R beginning at 2R0. There will be
similar behavior in an infinite set of bands of values of R

where the descendant states become geodesic. One thus needs
to reassess the stability of the twofold ground state and its
descendants. We provide a heuristic argument for stability by
constructing a homotopy that interpolates between the states
with n = 2, p = 1 and n = 3, p = 2. By examining the energy
along this homotopy, we show that a steep energy barrier
separates the two equilibrium states. The n = 2, p = 1 state
and its descendants thus appear to be stable classically. For
any R � 2R0, there are two stable states that alternate as the
ground state as the length is increased.

The paper is organized as follows: In Sec. II, we describe the
framework. In particular, the breaking of translational invari-
ance is quantified by the nonconservation of a vector along the
loop. We show that the Euler-Lagrange equation for the curve
can be cast as the vanishing of a linear combination of the
unconstrained Euler-Lagrange derivatives. The constraining
force is identified as some other linear combination of these
derivatives. In Sec. III the confinement of a closed loop by
spheres will be considered. In Secs. IV and V we analyze
loops in the harmonic and nonlinear regimes, respectively. The
equilibrium states of the loop will be identified and the forces
they transmit to the surface determined. An assessment of the
stability of these states will be provided. We conclude with a
discussion and a few suggestions for future work in Sec. VI.
A number of useful definitions, identities, and derivations are
collected in a set of appendixes.

II. CURVES CONSTRAINED TO SURFACES

Consider a space curve � : s → Y(s) parametrized by
arclength constrained to lie on a surface �. This surface is
described in parametric form by the mapping � : (u1,u2) →

X(u1,u2). The confined curve can then also be described as a
surface curve �� : s → (U 1(s),U 2(s)). In order to enforce the
condition that � lie on �, one adds to the energy H [Y] given
by Eq. (1) a term enforcing this constraint:

Hc[Y,Ua] = H [Y] +
∫

ds λ(s) · [Y(s) − X(Ua(s))], (2)

where λ is a vector-valued Lagrange multiplier defined along
the curve. This constraint will break the manifest translational
invariance of the energy H .

The variation of Hc with respect to the embedding functions
Y can be cast in the form

δYHc =
∫

ds(F′ + λ) · δY, (3)

where prime represents derivation with respect to arclength
and the tension in the loop F is given by

F =
(

1

2
κ2 − c

)
T + κ ′N + κτB. (4)

Here {T,N,B} is the standard Frenet-Serret frame carried by
the curve and τ is its torsion. The constant c is associated
with the constraint of fixed length. A derivation of Eq. (4) is
provided in Appendix A.

In equilibrium, one finds that F′ = −λ. Thus, in the
presence of the constraint, the tension in the loop is not
conserved; the multiplier is identified as the external force
associated with the constraint [18].

The corresponding variation of Hc with respect to Ua(s) is
given by

δUHc = −
∫

ds λ · ea δUa, (5)

where ea , a = 1,2 are the two tangent vectors to the surface
adapted to the parametrization by ua . In equilibrium, λ · ea =
0; in equilibrium, the force on the curve associated with the
constraint always acts orthogonally to the surface. Let us write
λ = λ n, where n is the unit vector normal to �. The combined
result is that

F′ = −λn. (6)

An integrability condition for closed curves follows from
Eq. (6): ∮

ds λ n = 0. (7)

This identity holds whether or not contact is complete.
Using Eq. (4) along with the Frenet-Serret equations, a

straightforward calculation decomposes F′ along the normals

F′ = εNN + εBB, (8)

where the Euler-Lagrange derivatives of the bending energy
εN and εB are given by

εN = κ ′′ + κ

(
κ2

2
− τ 2 − c

)
, (9a)

εB = 2

κ
(κ2τ )′. (9b)

The tangential Euler-Lagrange derivative εT = F′ · T van-
ishes identically, a consequence of the fact that the only
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relevant degrees of freedom are geometrical, whether the curve
is constrained or not.

The surface-bound curve also carries a Darboux frame,
{T,n,l = T × n}. Relevant properties of this frame are sum-
marized in Appendix B. The Frenet normals are related to their
Darboux counterparts by a rotation about the tangent vector:

N = cos ω n + sin ω l; B = − sin ω n + cos ω l. (10)

The relationship T′ = κN permits one to express the angle of
rotation in terms of a curvature ratio: sin ω = κg/κ or cos ω =
κn/κ , where κg and κn are, respectively, the geodesic and
normal curvatures along �� ,

κg = T′ · l, κn = T′ · n. (11)

Using these expressions it is possible to decompose F′ given
by Eq. (8) in a form adapted to the surface,

F′ = (cos ω εN − sin ω εB)n + (sin ω εN + cos ω εB)l. (12)

The projection of Eq. (6) onto l provides the Euler-Lagrange
equation in the remarkably simple form,

εl = sin ω εN + cos ωεB = 0. (13)

The multiplier λ does not appear. The corresponding projection
onto n determines λ,

λ = − cos ω εN + sin ω εB. (14)

In this approach, one sees explicitly how both the Euler-
Lagrange equation (13) and the confining force (14) are
constructed out of the two unconstrained Euler-Lagrange
derivatives. The normal force is completely determined when
the local geometry is known.

The Euler-Lagrange equations for an unconstrained elastic
curve, given by εN = 0 and εB = 0, are replaced by the single
equation, εl = 0. The apparent discrepancy in the number of
equations reflects the fact that a space curve possesses two
independent modes of deformation, whereas a surface curve
has only one. In general, the integrability of the former pair of
equations is surrendered when the constraint is present.

A. Euler-Lagrange equation in terms of surface curvatures

Using the identities (B3) and (B4) the Euler-Lagrange
equation (13) can be expressed completely in terms of surface
curvatures,

εl = κ ′′
g + κg

(
κ2

g + κ2
n

2
− τ 2

g − c

)
−

(
κ2

nτg

)′

κn

= 0. (15)

This agrees with the equation derived in Ref. [12] using a
very different approach. Note that it involves the curvatures
as well as the geodesic torsion and, in general, the curve will
not follow a geodesic with κg = 0. For a geodesic to minimize
bending energy, one requires one of the following to occur:
κ2

nτg is constant; the curve coincides with an asymptotic line
with κn = 0 or a principal curve with τg = 0. Such conditions
typically do not occur unless they do so trivially.

The magnitude of the force λ transmitted to the surface,
given by Eq. (14), assumes the form

−λ = κ ′′
n + κn

(
κ2

g + κ2
n

2
− τ 2

g − c

)
+

(
κ2

gτg

)′

κg

. (16)

Its magnitude will vary along the contact region, even for
confinement by a sphere. This expression is missing in the
framework presented in [12]. A curious consequence of the
symmetric decomposition of the Frenet-Serret curvature in
terms of the geodesic and the normal curvatures is the fact that
λ turns out to be identical to the Euler-Lagrange derivative εl
given by (15) under the interchange of κg with κn and a change
of sign of the last term.

B. Confinement and the loss of rotational invariance

In general, under confinement, one surrenders not only
translational invariance but also rotational invariance. The
torque about the origin per unit length of the curve, M, is
given by

M = Y × F + S, (17)

where S = −κB = κg n − κn l. The first term on the right in
Eq. (17) is the torque due to the force F; the second term is
the bending moment originating in second derivatives in the
bending energy. For a free curve, M′ = 0, which can be cast in
the manifestly translationally invariant form S′ + T × F = 0
[18]. In general, M is not conserved. One has instead

M′ = εl(Y × l) − λ(Y × n). (18)

Thus, in a confined equilibrium with εl = 0, M will not
generally be conserved. The source is given by the moment of
the force associated with the constraint.

If the confining geometry is a sphere centered on the origin,
so that Y is directed along the normal vector, M will be
conserved. If it is symmetric about some axis (say the z axis),
then the conserved quantity is the corresponding projection of
M, that is, M3 = M · ẑ.

III. SPHERICAL CONFINEMENT

Consider a closed curve of length S = 2πR, confined
within a sphere of radius R0. We normalize lengths in terms of
R0. On a sphere, the extrinsic curvature tensor is proportional
to the metric Kab = gab, so that the normal curvature is
constant, κn = −1, and the geodesic torsion vanishes, τg = 0.
Using Eq. (A6), the vector F given by Eq. (4), then reduces to

F =
(

κ2
g

2
+ σ

)
T + κ ′

gl, where σ = 1

2
− c. (19)

F is everywhere tangent to the surface. It is also completely
determined by the intrinsic geometry. However, it is not
conserved.

The torque vector defined by Eq. (17) is given by

M = κ ′
gT −

(
κ2

g

2
+ σ − 1

)
l + κgn. (20)

The rotational invariance of bending energy confined to a
sphere implies that M is a constant vector. In particular, its
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length is a constant. This provides a quadrature for the geodesic
curvature (M2 = M · M):

M2 = (κ ′
g)2 +

(
κ2

g

2
+ σ − 1

)2

+ κ2
g . (21)

It is simple to check that the condition (M2)′ = 0 in Eq. (21)
reproduces the Euler-Lagrange Eq. (15) on a sphere:

εl = κ ′′
g + κg

(
κ2

g

2
+ σ

)
= 0. (22)

This equation is also identical to the one describing an
elastic loop on a sphere with an energy density, κ2

g/2. The
minimization of the constrained three-dimensional bending
energy coincides in this case with that of two-dimensional
spherical bending energy. This is a consequence of the
decomposition of the Frenet-Serret curvature into normal and
geodesic parts, κ2 = κ2

g + κ2
n , as well as the fact that κn is a

constant. Spheres are special in this respect.
Various mathematical properties of elastic curves on

spheres were described by Langer and Singer in the 1980s
[7]; see also [19] for a numerical treatment of the problem.
Recently they have been reexamined in some detail in [20].
The connection to the description of conical defects in
unstretchable flat sheets was developed in [21] and [22].
While the mathematical literature provides a useful point of
departure, the absence of any reference either to energy or to
the transmitted forces limits its usefulness.

Note that in a geodesic, κg = 0 everywhere. Equation (21)
then implies that M2 = (σ − 1)2. Unless R is an integer,
however, geodesics will be inconsistent with the boundary
conditions associated with closure. If κg = 0 is accessible
anywhere along the loop, there will be a nontrivial bound
on M from below:

(σ − 1)2 � M2. (23)

In equilibrium, all confined loops will satisfy this bound.
It is also useful to cast Eq. (21) in the alternative form

(κ ′
g)2 + V (κg) = E2, (24)

where

V (κg) =
(

κ2
g

2
+ σ

)2

, (25)

and E2 = M2 + 2σ − 1 is manifestly positive.2

If κg is identified as the position of a particle and s as time,
then Eq. (24) described the motion of a particle of mass m = 2
and total “energy” E2 in the symmetric quartic potential V (κg).
If σ � 0, V possesses a single minimum at κg = 0; if σ < 0
it possesses two symmetric wells centered at κg = ±√−2σ ,
separated by a local maximum at κg = 0.

While the particle analogy is useful, it does have its
limitations. E2 also is not the energy of the loop and the
potential depends on the constant of integration σ which we

2This is a weaker bound than Eq. (23).

are not free to tune but, like the energy, is itself determined by
the boundary conditions.

The qualitative behavior of the loop will depend on the
turning points of the potential, and thus on the relative values
of σ 2 and E2.

(1) E2 > σ 2 [equivalently, Eq. (23) is satisfied]. In this
parameter regime, there are only two turning points. One has

E2 − V (κg) = 1
4

(
κ2

g + K2
)(

k2
1 − κ2

g

)
, (26)

where K2 = 2(E + σ ) � 0 and k2
1 = 2(E − σ ) � 0. Thus,

κ ′
g = 0 when κg = ±k1. The geodesic curvature thus ranges in

the symmetric interval [−k1,k1]. This will be independent of
the sign of σ . The loop will oscillate symmetrically about the
equator where κg = 0 [see Eq. (29)] so that

∮
dsκg = 0.

(2) E2 < σ 2. This regime is inaccessible physically if the
loop is closed.3

The reconstruction of the loop from its curvature data
involves examining the conserved torque vector M. Without
loss of generality, it is always possible to align M along the ẑ
axis, M = M ẑ (we follow Ref. [22]). The normal vector n is
parametrized in terms of spherical polar coordinates ϑ and ϕ,

n(s) = (sin ϑ(s) cos ϕ(s), sin ϑ(s) sin ϕ(s), cos ϑ(s)). (28)

The projection of M, given by Eq. (20), onto n determines the
polar angle in terms of κg:4

M · n = M cos ϑ = κg; (29)

its projection onto l determines the azimuthal angle ϕ

M · l = −M sin2 ϑϕ′ = −
(

κ2
g

2
+ σ − 1

)
. (30)

Thus the projections of M onto the Darboux frame determine
the embedding functions of the curve on the sphere in terms
of κg and the two constants, σ and M .

ϕ will not generally increase monotonically along the loop.
It will exhibit overhangs with ϕ′ = 0, if σ � 1. Combining
Eqs. (29) and (30) gives

ϕ′ = M

2

(
M2 + 2(σ − 1)

M2 − κ2
g

− 1

)
. (31)

Note that Eq. (29) implies the bound on κg , |κg| � M , already
implicit in the quadrature, Eq. (21).5 As we will see, M will
always be bounded. Thus, κg and with it the geodesic energy

3It can only arise if σ < 0 so that the potential possesses two wells
and the trajectory in κg is confined to oscillate in one of them. One
can write

E2 − V (κg) = 1
4 (κ2

+ − κ2
g )(κ2

g − κ2
−), (27)

where κ2
+ = −2(E + σ ) � 0 and κ2

− = 2(E − σ ) � 0. κg is then
confined to the lie in one of two intervals with a definite sign. It
is thus confined to inhabit a single hemisphere. It is intuitively clear
that any such state will spontaneously unbind into the interior of the
sphere where it may relax into a lower energy bound state.

4The projection onto T = n′ reproduces (the derivative of) Eq. (29).
5A sharper, if less transparent, bound follows from Eq. (24) which

implies, for positive σ , κ2
g � 2

√
M2 + 2σ − 1 − 2σ .

026603-5
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will also be bounded. Equation (29) also implies that the
extremal values of κg occur where the polar angle is turning.
The bound is saturated when the loop passes through the poles.

Using the identification (29) it is possible to recast the
quadrature in terms of θ . One has

θ ′2 + 1

M

(
M2 + 2(σ − 1)

sin θ
− M2 sin θ

)2

= 1. (32)

In this form, it is clear that access to the poles is possible only
when M and σ are tuned so that the coefficient of the divergent
term in the potential appearing in Eq. (32) vanishes:

M2 + 2(σ − 1) = 0. (33)

This will require σ < 1.
When Eq. (33) is satisfied, the evolution of ϕ simplifies.

Equation (31) assumes the form ϕ′ = −M/2 so that ϕ

increases linearly with arclength along the loop. In general,
the dependence of ϕ on s is not monotonic, much less linear.
This identity, in turn, implies the value M = 2/R [and as a
consequence of Eq. (33), σ = 1 − 2/R2 at pole crossing].

Let us first suppose that the loop is sufficiently small so that
neither self-contact nor self-intersections occur. The periodic
motion in the potential V (κg) implies an n-fold dihedral
symmetry: The loop closes upon completing n periods of θ

in one revolution of the polar axis so that θ (s + 2πR/n) =
θ (s) and ϕ(s + 2πR/n) = ϕ(s) + 2π/n, where n � 2 is an
integer.6 Closure provides a quantization of physical states.7

In equilibrium, the number of circuits of the polar axis, p,
will increase with loop length, so that the boundary condition
on ϕ is replaced with ϕ(s + 2πR/n) = ϕ(s) + 2πp/n. Using
Eqs. (29) and (31), and the quadrature (24) it is possible to cast
the boundary conditions in the form

2πR

4n
=

∫ k1

0

dκg√
E2 − V (κg)

, (34)

and

2πp

4n
= M

2

∫ k1

0

dκg√
E2 − V (κg)

κ2
g + 2(σ − 1)

M2 − κ2
g

, (35)

where k1 is the turning point of the potential, defined by
Eq. (26). Equation (34) is independent of p, whereas Eq. (35) is
independent of R. Together, they determine the two constants
of integration σ and M in terms of the loop radius R and the
two integers n and p.

IV. WEAK CONFINEMENT BY SPHERES

While Eq. (21) can be integrated exactly in terms of elliptic
functions [7,9,20]), a perturbative approach to the problem
is instructive. Let us thus suppose that �R := R − 1 � 1.
Such a loop is sufficiently small that neither self-contact nor
self-intersections occur. We thus expand the function κg as

6The identity (29) implies that the former is equivalent to κg(s +
2πR/n) = κg(s). The quadrature then implies that closure is smooth.

7A onefold n = 1 is incompatible with the four-vertex theorem for
a sphere so does not occur.

well as the constants σ and M in powers of ε = √
�R, the

small dimensionless parameter in the problem:

κg = κ1 + κ3 + · · · ; M = M0 + M2 + · · · ;
(36)

σ = σ0 + σ2 + · · · .
The equilibrium states are described by small oscillations
about a geodesic circle on the sphere with κg = 0. The
harmonic approximation of the quadrature (21) about κg = 0
reads

(κ ′
1)2 + σ0κ

2
1 = M2

0 − (σ0 − 1)2 + 2M0M2 − 2σ0σ2 . (37)

At lowest order, the arclength coincides with the azimuthal
angle, ϕ, and the geodesic curvature along a closed loop is
given by

κ1(s) ≈ A1 cos nϕ, (38)

where n is an integer and A1 is a constant. �R is determined
by the amplitude A1 and the n (see Appendix C).

The quadrature implies that σ0 = n2 and M0 = n2 − 1. It
also implies the constraint

2

n2
(n2 − 1)(M2 − σ2) = A2

1 (39)

on the difference of their second order corrections.
Equation (38) implements the boundary conditions at

lowest order. To complete the specification of σ2 and M2

in terms of �R, it is necessary to examine the boundary
conditions (34) and (35) correct at next to leading order. One
finds that, for n � 2, Eqs. (34) and (35) together imply

�R = − 1

4n4
(σ2 − M2) − 1

4n2
(σ2 + M2) − 1

16n2
A2

1, (40)

and

�R = − 1

n2 − 1
(σ2 − M2) − 1

4(n2 − 1)

n2 + 1

n2 − 1
A2

1. (41)

The details of the derivation are provided in Appendix C. Using
Eqs. (39) in (41) one reproduces the relationship [Eq. (C4)]
between A1 and �R, A2

1 = 4(n2 − 1)�R. It then follows that,
for n �= 1,

σ2 = 1
2 (3 − 7n2)�R, M2 = 3

2 (1 − n2)�R. (42)

A. Energy and transmitted force

The bending energy of the loop confined by the sphere
decomposes into a sum of geodesic and normal parts, reflecting
the decomposition of the Frenet curvature, κ2 = κ2

g + 1,

H = 1

2

∮
ds

(
κ2

g + 1
)

:= Hg + Hn. (43)

Hn = πR is the energy associated with an elastic rod that been
wound into a circular coil of radius R0 = 1. It grows linearly
with loop length 2πR and is state independent. For a weakly
confined loop

H/Hloop ≈ 1 + 2n2�R, (44)

where Hloop = π/R is the bending energy of a circular loop
of radius R. The energy increases linearly with loop size. This
will not be true in longer loops.
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For a fixed value of �R, the energy increases quadratically
with n. The ground state, as one would have predicted, is the
completely attached n = 2 state. As we show, all states with
n � 3 are unstable.

The force transmitted to the sphere at any point, given in
Eq. (16), takes the particularly simple form

λ = 1
2 κ2

g + σ. (45)

It differs from the local energy density [compare Eqs. (43) and
(45)]. Its spatial dependence is completely determined by the
geodesic curvature. It is bounded from below by σ . This lends
a direct physical interpretation of σ . For small �R and each
n � 2, the force is given by

λn ≈ n2 + �R

2
[3 − 7n2 + 4(n2 − 1) cos2 nϕ]; (46)

while it oscillates along the loop, it remains positive every-
where. λn does not vanish in the limit �R → 0. This is
interpreted as an Euler instability. The buckling of the circular
loop into an n-fold involves a critical compression in the loop
provided by this normal force. Thereafter, λn decreases linearly
with �R. This may appear counterintuitive. This behavior
will be put in context when we examine loops outside of
perturbation theory.

B. Stability

Here we examine the stability of the weakly confined n-
folds that have been described. To do this we require the second
variation of the energy with respect to small deformations of
the loop. This is expressed in the form [23]

δ2H =
∫

dϕ �L�, (47)

where � is the deformation along l, and the self-adjoint
operator L is given by

L = ∂4

∂ϕ4
+ (n2 + 1)

∂2

∂ϕ2
+ n2. (48)

The fixed length constraint along the spherical surface implies
a global constraint on the normal deformation,∮

dsκg� = 0. (49)

Periodicity implies that the modes of deformation are rep-
resented by a constant (m = 0), sin mϕ and cos mϕ, m =
1,2,3, . . .. For fixed n, the eigenvalues of L are then labeled
by the integer m = 0,1,2, . . ., given by

Cm = (m2 − n2)(m2 − 1). (50)

The constant mode with m = 0 has positive C0 = n2. All
eigenvalues with m � 1 possess a twofold degeneracy.

There are four zero modes satisfying L� = 0; two occur at
m = 1 and two at m = n. The mode sin nϕ ∝ κ ′

g corresponds
to rotation of the loop about the axis of symmetry. The two
modes with m = 1 correspond to rotations about an orthogonal
axis. These three modes are the zero modes anticipated by the
rotational invariance of the bending energy. The fourth zero
mode cos nϕ is inconsistent with the fixed length constraint

(49) and, so, is unphysical. It is also the only mode of
deformation inconsistent with this constraint in this regime.

The twofold ground state with n = 2 is stable. There are no
modes of deformation with negative eigenvalue.

All excited confined states are unstable. There will be
2(n − 2) unstable modes of deformation corresponding to
m = 2, . . . ,n − 1 lying between the zero modes at m = 1 and
m = n. All modes of deformations with m > n contribute
a positive energy. The first excited state with n = 3 has
two modes of decay, of equal energy, into the ground state.
The dominant mode of instability in higher energy states is
not directly toward the ground state involving a cascade of
instabilities.

V. STRONG SPHERICAL CONFINEMENT

Let us now examine the shape adopted by a loop of finite
R confined by the sphere.

Equation (22) can be integrated in terms of elliptic functions
to give κg as a function of s [7,9,20]

κg(s) = κ0 cn [qs,m], κ0 = 2
√

mq. (51)

The function cn[x,m] is the Jacobi elliptic cosine [24]. The
angular wave number q is given in terms of the constant E

defined below Eq. (25) by q = √
E; the modulus m is defined

by

m = 1

2

(
1 − σ

q2

)
. (52)

The curvature depends on the two parameters σ and M through
the parameters q and m.8 These parameters will be determined
explicitly in terms of R and n using the boundary conditions
associated with the closure of the loop. Using the fact that the
period of cn is given by 4K[m], where K[m] is the complete
elliptic integral of the first kind [24], it is possible to cast the
boundary condition on κg , given by Eq. (34), in the form

q = 4nK[m]/(2πR). (54)

Integration of Eq. (30) gives

ϕ(s) = M

2

(
q2 + 1

q(q2 − 1)
�

[
− 4mq2

(q2 − 1)2
, am [q s,m] ,m

]
−s

)
,

(55)

where �[η,am[x,m],m] is the incomplete elliptic integral of
the third kind and am [x,m] is the Jacobi amplitude [24].
Closure of the loop after p circuits of the polar axis, ϕ(2πR) =
2πp, then reads

2πMR

2

(
q2 + 1

K[m](q2 − 1)
�

[
− 4mq2

(q2 − 1)2
,m

]
−1

)
= 2πp.

(56)

8Definitions of q and M are inverted to give

σ = q2 (1 − 2m), M2 = (q2 − 1)2 + 4mq2. (53)

The modulus m will lie in the interval [0,1]; this bounds σ in terms
of q: |σ | � q2, changing sign when m = 1/2.
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(a) Ground States n = 2, p = 1 and descendants (b) Ground States n = 3, p = 2 and descendants

FIG. 2. Trajectories in parameter space (σ − 1,M2). (a) States with n = 2 are represented by the solid curve L1 for R in the interval [1,3].
This curve originates at the point P1 = (3,9) when R = 1 (geodesic circle) and terminates at the point Q1 = (−5/9,25/81) when R3 (a triply
covered geodesic circle). Both lie on the boundary parabola �. The straight line L indicates loops passing through the poles. The descendant
states with n = 4 (n = 6) which occur for R in the interval [3,5] ([5,7]) are represented by the dashed curve L3 (dotted curve L5) in (a), where
they are also shown with zoom in the inset. The counterpart of (a) for the state n = 3, p = 2 and its descendants is represented in (b). States
with n = 3 for R in the interval [2,4], as well as the descendants with n = 5 and n = 7 for R in the intervals [4,6] and [6,8], respectively, are
represented by the solid, dashed, and dotted curves, L2, L4, and L6, respectively.

Modulo Eq. (54), Eq. (56) determines m implicitly as a
function of R. This completes the formal construction of the
confined loops.

A. Ground state n = 2, p = 1 and its descendants

The twofold state with n = 2 is illustrated in Fig. 1 for
values of R in the interval [1,3]. When �R is small, it consists
of a small oscillation about a geodesic circle [see Fig. 1(a)]
consistent with the perturbative description. As R is increased
the oscillations about this circle initially increase in amplitude
as more of the surface of the sphere is explored [Figs. 1(b)
and 1(c)]. In Fig. 1(c) overhangs with ϕ′ = 0 occur on the
increasingly crowded loop. At a critical value R2 = 2.127, the
loop makes self-contacts at the two poles [Fig. 1(d)].9

For values of R above R2, one needs to look more carefully
at the boundary conditions. If, as we assume, the microscopic
physics accommodates self-intersections on the surface and
they occur without costing energy, the mathematical curve
described by the elliptic function continues to represent the
physical loop.10

There is a qualitative change in the behavior as R is
increased through R2. On crossing the poles, the loop makes
two additional revolutions about the polar axis so that p = 1

9For each n there will be a critical value Rn where this occurs,
whose magnitude increases with n. As pointed out in [22], this value
saturates. Beyond some critical loop length, all equilibrium states are
self-intersecting.
10If self-intersection is prohibited, the physics will be very different.

It has been described in the conical context in Ref. [22] and explored
numerically in detail in Ref. [25]. As the loop crowds itself on
the sphere, there will be a steep rise in the energy associated with
this self-confinement. Beyond some point, partially attached loop
conformations would be expected to become energetically favored.

must be replaced by p = 3 in the boundary condition Eq. (35).
To see this, note that the loop will cross the poles four times,
twice at each pole. A discontinuity of −2π is introduced
in ϕ at each crossing. These discontinuities contribute to its
period; thus, the period of 2π describing a single revolution
gets replaced by 2π − 4(2π ) = −6π . The orientation is also
reversed.11 As Fig. 1 illustrates, this discontinuity marks a
transition from oscillatory to orbital behavior.

As R is increased further the two regions bounded by
the self-intersections grow [Fig. 1(e)]. When R = 3 the loop
degenerates into a triple cover of a geodesic circle [Fig. 1(f)].

1. States as trajectories in parameter space

Each equilibrium state can be represented as a point on the
parameter space (σ,M). As R increases, the state will follow
a trajectory R → (σ (R),M(R)) labeled by the two integers n

and p.12

To facilitate the interpretation of trajectories in parameter
space, it is useful to first locate relevant geometrical land-
marks. Various significant parameter curves are represented in
Fig. 2.

(1) The parabola � given by M2 = (σ − 1)2 [saturating the
inequality (23)] provides a boundary on parameter space.13

Points on the boundary describe geodesic loops, with κg = 0
and κ ′

g = 0, covering the equator an integer number of times.
Points below the parabola do not describe confined loops.

11For an n-fold, the corresponding number of revolutions is p =
2n − 1.
12The boundary condition on ϕ, Eq. (35), does not involve R

explicitly. It thus identifies the trajectories on the (σ,M) parameter
space without locating the position along these trajectories. The latter
is provided by Eq. (34).
13For graphical purposes we plot M2 vs σ ; hence “parabola.”
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(a) R = 3.05 (b) R = 4.06 (c) R = 4.99

FIG. 3. (Color online) States with fourfold symmetry, n = 4, p = 3 for R in the interval [3,5]. (a) Increasingly deformed triple covering
of the equator; (b) pole crossing, four points at a time; (c) state making five orbits of sphere before it becomes a quintuple covering of equator.
As in Fig. 1 colors represent the normalized local confining force.

(2) Points on the straight line L, given by M2 = 2(1 − σ ),
describe loops that pass through the poles. Points above this
line represent loops that display oscillatory behavior; those
below it display orbital behavior.

(3) Overhangs occur to the left of the vertical line, σ = 1.
The solid curve, L1 in Fig. 2 represents the trajectory

of the state with n = 2 and p = 1 as R is increased in the
interval [1,3]. The initial state with R = 1—a single geodesic
circle—is represented by the point P1 = (4,3) lying on the
boundary parabola �. In this interval, both σ and M decrease
monotonically with R. The trajectory terminates in the point
Q1 = (4/9,5/9) on the boundary parabola, where the loop
degenerates into a triple covering of a geodesic circle.14

More generally, whenever R = p, where p is an integer,
loops may form p-fold coverings of a geodesic circle. As R is
raised above R = p, it is possible to examine the state pertur-
batively in a manner analogous to that of small loops. Suppose
that the loop oscillates with an n-fold symmetry, so that κg ≈
cos nϕ/p. Consistency with R > p places a lower bound on n:
n > p. Thus, one must have n = p + 1,p + 2, . . ..15 The state
with p + 1-fold dihedral symmetry will minimize the energy
among these states. It is thus identified as the ground state. In
particular, when R passes through R = 3, the symmetry of the
ground state changes from n = 2 to n = 4 (see Fig. 3).

It is straightforward to determine the values of σ and M in
the ground state with n = p + 1 as R passes through R = p:

14Prior to crossing L, the trajectory L1 is approximated accurately
by the straight line, M2 = 9 [1 + 6/25 (σ − 4)], with a slope 54/25,
predicted in perturbation theory. Perturbation theory thus provides
an accurate description of the problem outside its expected range of
validity.
15Note that the analog of Eq. (C3) for p revolutions implies

R/p ≈ 1 + 1

4

k2
1

M2
0

(
n2

p2
− 1

)
. (57)

σ (p) = (p + 1)2/p2, and M(p) = (2p + 1)/p2, representing
a point lying on the boundary parabola �.

As R is increased the amplitude of oscillation increases.
At some point the loop will (re)cross the poles where the
number of revolutions changes by two. As R = p + 2 is
approached, the loop morphs continuously into a p + 2 cover
of a geodesic circle. In this region, the ground state can also be
treated perturbatively. Now κg ≈ cos[(p + 1)/(p + 2)ϕ]. The
corresponding end point in parameter space as R approaches
R = p + 2 is given by σ = (p + 1)2/(p + 2)2, M = (2p +
3)/(p + 2)2, which also lies on the boundary parabola �.

The trajectory in the parameter plane representing the
n = 2, p = 1 ground state loop and its minimum energy
descendants is illustrated in Fig. 2. It consists of a num-
ber of disconnected curve segments, Lp, p = 1,3,5, . . .

with end points Pp = [(p + 1)2/p2,(2p + 1)/p2] and Qp =
[(p + 1)2/(p + 2)2,(2p + 3)/(p + 2)2] lying on the boundary
parabola �. The points Qp and Pp+2 describe loops with
R = p as it is approached from below and above, respectively.

There are discontinuities in σ and M2 at R = p =
3,5,7, . . . and the loop passes through a p-fold covering
of a geodesic circle. These discontinuities are identified
analytically using perturbation theory. Their origin is the
transition from orbital back to oscillatory behavior with a
change from p − 1-fold to p + 1-fold symmetry.

As p → ∞, Pp,Qp → (1,0) so that σ → 1 and M → 0.
In Fig. 4 σ and M2 are plotted as functions of R.

B. Ground state n = 3, p = 2 and its descendants

The n-fold symmetry states with p = 1 and their descen-
dants do not exhaust all possible self-intersecting states. If
R = 2, a set of states consisting of a double covering of a
geodesic circle (p = 2) comes into existence with symmetry
n = 3,5,7, . . .. The sequence L2 with n = 3 is illustrated in
Fig. 5 for values of R in the interval [2,4]. As R is increased,
the state with n = 3 has least energy. As before, one can show
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(a) (b)

FIG. 4. σ (a) and M (b) vs R for n = 2,p = 1 and its descendants in the interval [1,7], as described in the text represented by the trajectories
L1, L3, and L5 in Fig. 2. Asymptotically, σ → 1 and M → 0.

that it is the only stable member among these states. It also
has a lower energy than its counterpart with n = 2, and p = 1
illustrated in Fig. 1.

The trajectory L2 representing these states in parameter
space as R is varied in the interval [2,4], is represented

in Fig. 2(b) by a solid curve. When R = 4 a transition
occurs to a state with a fivefold symmetry. The sequence
of trajectories L2,L4,L6, . . . is generated. Their end points
converge to the same point P∞ = (1,0) as those of the sequence
L1,L3,L5, . . . .

(a) R = 2.05 (b) R = 2.5 (c) R = 3.0

(d) R = 3.08 (e) R = 3.5 (f) R = 3.99

FIG. 5. (Color online) State with threefold symmetry for R in the interval [2,4]. (a),(b),(c) Increasingly deformed double covering of the
equator; (d) pole crossing, three points at a time; (e) state making four orbits of sphere; (f) quadruple covering of equator. As in Fig. 1, colors
represent the normalized local confining force.
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FIG. 6. The total energy of the n = 2 ground state and its
descendants as a function of R is represented by a solid curve. It is the
sum of geodesic and normal parts which are plotted separately as a
dashed curve and a dotted line. The normal energy grows linearly and
dominates in large loops. By contrast, the geodesic energy is bounded,
vanishing at odd integers where its derivative is discontinuous. Its
maxima between zeros decrease inversely with R.

C. Loop energy

The bending energy Eq. (43) can be recast explicitly as a
function of R:

H = 16 n2

πR
K[m] (E[m] + (m − 1)K[m]) + πR, (58)

where E[m] is the complete elliptic integral of the second
kind [24], and m is determined by solving Eq. (56).

H is plotted as a function of R for the ground state with
n = 2 and p = 1 and its descendants in Fig. 6. Expanding
expression (58) to second order in �R = R − 1 we reproduce
Eq. (44).

The normal energy, represented by the last term, grows
linearly with R and is state independent. In contrast, the energy
associated with geodesic curvature, represented by the first two
terms in Eq. (58), depends sensitively on the state. It is bounded
and its maxima fall monotonically as the loop becomes large.
It is simple to place a crude upper bound on this falloff: One
has M ≈ 2/R, so that the Hg � 2/R. Thus, in a large loop,
the geodesic contribution to the energy is negligible compared
to its state independent normal counterpart.

The geodesic energy vanishes when R = 1,3,5, . . ., where
the loop collapses to a multiple covering of a geodesic circle.
The discontinuities in the derivative of H with respect to
R at R = 3,5, . . ., are directly associated with the change
of symmetry at these values of R. In the intervals between
consecutive values, H increases linearly from zero and rises
to a maximum value before falling to zero, again linearly.16

Behavior is not symmetrical in these intervals. The slopes are
different at the two ends and the maximum is not centered.
While the maxima are not exactly periodic, they do migrate
to the center of their respective intervals as R increases. The

16The initial linear behavior was described in perturbation theory.
The existence of a local maximum was not.

existence of these maxima can be understood as a consequence
of the incommensurability of the loop with geodesic behavior.
The strongly asymmetrical initial maximum is associated with
the development of overhangs on the loop before it crosses the
poles. As the loop becomes longer this incommensurability
plays a diminishing role.

This qualitative behavior is repeated for the odd ground
states n = 3, p = 2 and its descendants, as well as the excited
counterparts of these states. Strikingly, the energy of any
closed equilibrium loop tends to a common value in the limit,
independent of the state, that completely dominated by the
normal energy. The finite gap between the ground state and
excited states state disappears.

If R − 1 is not small, the stability analysis is rather more
complicated than the one presented in the context of weak
confinement. The results of Ref. [23] in another context
implies that, although the details differ, the conclusions for
weak confinement continue to hold for values of R before the
onset of self-intersection and only the state n = 2,3,4, . . . ,
p = 1 are excited. A detailed analysis of stability has yet to
be performed beyond this point. One would, however, expect
that the instabilities persist.

The stability of the n = 2, p = 1 ground state and its
descendants needs to be reassessed when R � 2. For now one
has to accommodate the existence of a set of states described
by n = 3,4,5, . . . p = 2 and their descendants. In particular,
within a finite interval of values of R above R = 2, the state
n = 3, p = 2, represented in Fig. 5 has lower energy than the
state with n = 2 and p = 1 represented in Fig. 1 (see Fig. 7).
The difference in energy is associated with the significant
geodesic curvature of the latter when R ≈ 2. Its descendants
with n = 5,7, . . . also will have lower energy than their even
counterparts when R ≈ 4,6, . . . .

There are, of course, no smooth deformations taking one
from a loop with p = 1 to one with p = 2 that remain attached
to the sphere. A hairpin costing an infinite bending energy will
necessarily always form. However, it is possible to sidestep
this topological obstruction by permitting the loop to detach

FIG. 7. Comparing the geodesic energies of the states with two-
and threefold symmetries in an interval of R in the neighborhood of
R = 2 (solid and dashed lines, respectively). The geodesic energy,
and thus the total energy, of the threefold is lower than that of the
twofold in a finite interval of R beginning at R = 2.
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(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1

FIG. 8. (Color online) Homotopy connecting the two states n = 2,p = 1 and n = 3,p = 2 with R = 2.

into the interior. While a rigorous stability analysis is beyond
the scope of this paper, we will argue that a finite energy
barrier will always separate the two surface-bound states. This
involves the construction of a natural homotopy connecting
these states. Let

Yt = (1 − t)Y0 + (1 − t)R(ω)Y1, (59)

where we represent by Y0 the initial state with n = 2,p = 1
and by Y1 the final state with n = 3,p = 2. These interpolating
nonequilibrium states will also be confined within the sphere
due to the convexity of the latter. The two boundary states
have R = 2.17 A rotation R(ω) of the final state about the axis
of symmetry is introduced in order to initialize the pointwise
sum so as to avoid the development of cusps. Intermediates
in this homotopic sequence are illustrated in Fig. 8 with the
constant choice ω = π/6. The bending energy is plotted in
Fig. 9 as a function of t . It exhibits a finite potential barrier
separating the two states. While this does not prove that the
n = 2 state is stable in this regime, it does suggest that it is.

One cannot rule out the existence of semiattached equilib-
rium states of the loop. We were, however, unable to construct

17As written down, the homotopy does not preserve length. This can
be achieved by stretching Y0 and Y1 appropriately at intermediate
values of t .

any such states. If they do exist, one would expect them to be
unstable.

D. Transmitted forces

Using Eq. (51), the local force per unit length transmitted
to the sphere is given explicitly as the following function of s,

λ(s) = 1
2κ2

g + σ = q2[2 dn2(q s,m) − 1], (60)

0.0 0.2 0.4 0.6 0.8 1.0

20

40
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FIG. 9. Total energy along a homotopy interpolating between two
stable ground states. An energy barrier always exists between the two.
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Transmitted force
 R

FIG. 10. Maximum (solid line) and minimum (dashed line) values
of λ as a function of �R in the twofold ground state with n = 2, p =
1, λ in the twofold ground state and its minimum energy descendants.

where dn2[u,m] = 1 − m sn2 [u,m] [24]. Whereas the trans-
mitted force depends on the local value of κg , both κg and σ

depend on the boundary conditions associated with closure.
Thus, λ does depend on the global loop geometry. Note
that the expansion of the expression in (60) to second order
in �R = R − 1 reproduces the result for weak confinement
[Eq. (46)].

In Fig. 10 the maximum and minimum values of λ have been
plotted as a function of R for the twofold “ground” state and its
descendants. It is positive everywhere with the minimum given
by σ . One observes that λ does not behave in a monotonic way,
suffering a positive discontinuity whenever R = p, where p

is an odd integer. This is associated with the transition from
orbital to oscillatory behavior at these values and is the analog
of the Euler instability described in the discussion of a weakly
confined loop. If the unstretchability constraint is relaxed the

discontinuity will be smoothed but the jump will persist.
Within the individual intervals between discontinuities both
the maximum and minimum values decrease monotonically
with R; this is associated with the reduction in the force once
buckling into a state of oscillation has occurred. Curiously,
whereas the maxima within these intervals decrease with R,
the corresponding minima increase. This occurs in such a way
that the mean of their values increases monotonically. Both
maxima and minima approach the value σ = 1 asymptotically.

Recall that the transmitted force is bounded from below by
σ [see Eq. (45)]. Thus, if σ > 0, then λ is also; the confined
loop will then push on the sphere everywhere. If, however,
σ < 0 then λ may change sign along the curve. While σ is
positive in the ground state and its descendants, it may become
negative in the excited states of sufficiently long loops. In
particular, we find that all states with n � 5 and p = 1 exhibit
regions in which λ turns negative at values of R below the onset
of self-contact. When n = 5 and p = 1, this occurs when R �
2.536 [see Fig. 11(a)]. Such states are, however, unstable. It
may appear counterintuitive that λ can be negative. It has to be
remembered, however, that while λ depends only on the local
geometry, this geometry is determined by the global behavior
of the loop through the boundary conditions. If one cuts a loop
somewhere, the state will immediately relax into a geodesic
state with constant positive λ everywhere. The existence of
regions along the loop where λ < 0 does not necessarily signal
a tendency to detach. This will depend on details of the energy
landscape.

The states examined here are those consistent with the
bound Eq. (23). As was pointed out, states that violate this
bound are always unstable with respect to the unbinding of the
loop into the interior. Such a state is illustrated in Fig. 11(b),
making two self-intersecting orbits in the northern hemisphere.
The curvature is high within the two orbits so that this state is
evidently an excited state of the loop. The transmitted force λ

is negative everywhere below the circle with κg = √−2σ [see

(a) Oscillatory State n = 5, p = 1 (b) Orbital State n = 2, p = 1

FIG. 11. (Color online) (a) The state n = 5, p = 1 with R = 2.536. Above this value of R, λ may be negative in places. (b) The state n = 2,
p = 1 with R = 1.85 inhabits a single hemisphere. These orbital states always have intervals where λ is negative. As in Fig. 1 colors represent
the normalized local confining force.
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FIG. 12. � vs R (solid line). The dashed line indicates the
contribution from geodesic curvature �g. The dotted line is the
contribution �σ = 2πRσ (R).

Fig. 11(b)]. This suggests that the likely mode of instability
will involve the loop unbinding along regions where λ is
negative, allowing the loop to relax toward the ground state n =
2, p = 1 through the unwinding of the high curvature orbits.

Intuitively, one might have expected the total force trans-
mitted to the sphere, � = ∫

dsλ to increase with loop size.
This is not generally the case, except in the limit of large
loops, where � increases linearly with R, a consequence of
the asymptotic behavior of σ . Notice also that � is not the
same as the energy H (divided by the radius of the sphere) for
finite values of R. One has � = H − 2πR[1 − c(R)]. In the
limit, however, the two do coincide. � is plotted as a function
of R in Fig. 12.

VI. DISCUSSION

The confinement of a closed semiflexible loop by a
surface has been examined. The constraint on the spatial
degrees of freedom of the loop is enforced in the variational
principle using the method of Lagrange multipliers. The loss of
Euclidean invariance of the energy of the unconstrained loop
under confinement is quantified by the Lagrange multiplier
which, in equilibrium, gets identified as the force transmitted
to the surface by the confined loop.

We have focused on a description of the ground state
of a confined loop. If the loop is short this consists of
an oscillation about a geodesic circle, exhibiting a twofold
dihedral symmetry. This is the only stable state of the loop
in this regime. The description of the ground state and its
excitations gets more complicated when the loop length is
increased. When R is increased above 2R0, a new set of states
comes into existence that oscillates about a double covering
of a geodesic circle. Among these the state with threefold
symmetry has lowest energy; within a finite band of values of
R, this state also replaces the twofold as the ground state.
The two states remain separated by an energy barrier so
that the twofold remains stable. As the loop size increases
these states get replaced by descendants with higher n-fold
symmetries which alternate as ground states. Both the energy
and the transmitted force suffer discontinuities associated
with changes of symmetry. They do not generally increase

monotonically with loop size except asymptotically. In this
limit the energy gap between the ground state and excited
states disappears.

Our examination of the confinement of a loop within a
spherical cavity might lead one to expect that the equilibrium
states of a confined loop will always attach. However,
other confining geometries display very different behavior.
Consider, for example, the confinement of a loop by a cylinder
of smaller radius. Analogs of the n-folds exist but, in general,
they do not provide the ground state as one can easily verify by
playing with metal rings in a wastepaper basket. The details are
surprisingly complicated. In this context, it would be interest-
ing to understand how the spherical equilibrium states “evolve”
under elliptical deformations of the sphere, or what effect
surface irregularities or pores have on the confinement process.

When contact with the confining surface is incomplete, one
needs to address the issue of boundary conditions at points of
contact. If the contact is due entirely to geometric hindrance,
the boundary conditions at isolated points of contact are
simple: The tangent vector to the curve is tangent to the surface
at these points. If contact extends over a finite region, however,
in addition to the tangent vectors the curvatures will also be
continuous at the boundary of the region of contact. There
may also be a tendency to either promote or inhibit adhesion
to the confining surface. A simple way to accommodate such
interactions is to introduce a local contact energy, proportional
to the length of the contact interval. The boundary conditions
will reflect this additional energy. While the curvature will
suffer a discontinuity analogous to the discontinuity associated
with the contact line bounding the region of contact between
a fluid membrane and an attractive substrate [26–29], this is
not the full story. The normals may rotate about the tangent
vector, aligning themselves with some preferred direction on
the confining geometry. The extension of our framework to
accommodate contact energies will be presented elsewhere.

In this paper the role played by the confining surface has
been passive: We have not considered the possibility that it may
deform in reaction to the presence of the confined polymer.
Surface deformations due to membrane bound polymers may
also play a role in shaping the morphologies of biological
membranes. The forces transmitted to the membrane will
now provide a source for the surface stress. Understanding
this coupling poses technical challenges. What is clear is that
there will be interesting physics associated with the competing
elastic energies [30].
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APPENDIX A: TENSION IN AN UNCONSTRAINED
ELASTIC SPACE CURVE

There are various derivations of Eq. (19). The approach
adopted here involves treating the tangent vector to the curve
T = Y′ as an independent variable. If the curve is also
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parametrized by arc length, T is a unit vector, T2 = 1. Thus,
consider the energy functional (κ2 = T′2),

H1[Y,T,�,F] =
∫

ds

(
1

2
T′2− 1

2
�(T2 − 1) + F · (T − Y′)

)
;

(A1)

the presence of the two constraints liberates T to be varied
independently. Now the variation of H1 with respect to Y is
given by

δYH1 =
∫

ds F′ · δY, (A2)

whereas its counterpart with respect to T is

δTH1 =
∫

ds (F − T′′ − � T) · δT. (A3)

Modulo the Frenet-Serret equations for the curve, δTH1 = 0
in Eq. (A3) implies

F = (−κ2 + �) T + κ ′ N + κτ B. (A4)

For an isolated elastic curve, F′ = 0. If the curve is constrained
to lie on a surface, it was seen in Sec. II that F′ = λn. Thus, the
tangential equation t · F′ = 0 continues to hold. This equation
can be integrated to determine the Lagrange multiplier �

associated with the parametrization by arclength

� = 3
2κ2 − c, (A5)

where c is a constant of integration. Equation (4) follows.
With respect to the Darboux frame, F is given by

F =
(

κ2
g + κ2

n

2
− c

)
T + (κ ′

n + κgτg)n + (κ ′
g − κnτg)l,

(A6)

where we have used the relations (B4) derived below.

APPENDIX B: DARBOUX FRAME FOR SURFACE CURVES

The structure equations (analogous to the Frenet-Serret
equations) describing the Darboux frame are given by

T′ = κnn + κgl, (B1a)

n′ = −κnT − τgl, (B1b)

l′ = −κgT + τgn. (B1c)

The normal curvature, the geodesic curvature, and torsion
are given, respectively, by

κn = T′ · n = −Kabt
atb, κg = T′ · l = latb∇bta,

(B2)
τg = l′ · n = −Kabt

alb.

Here ta and la are the components of the vectors T and l
with respect to a basis of surface tangent vectors adapted to
the parametrization, ea , a = 1,2: T = taea , l = laea . Kab =
ea · ∂bn is the extrinsic curvature tensor defined on M and
∇a is the covariant derivative compatible with the induced
surface metric gab = ea · eb. Whereas κn and τg depend on the
extrinsic curvature, κg is defined intrinsically; it depends only

on the surface metric gab. The Frenet curvatures are related to
their Darboux counterparts by

κg = κ sin ω, κn = κ cos ω, τ = ω′ − τg, (B3)

so that κ2 = κ2
g + κ2

n . Thus, the Frenet curvature can be
decomposed into its intrinsic and extrinsic parts. The Frenet
torsion τ is the sum of the derivative of the angle connecting
both frames and the geodesic torsion. Note that τg involves two
derivatives, whereas τ involves three. The extra derivative is
associated with ω′, the rotation rate of one frame with respect
to the other.

The identities Eqs. (B3) imply the following:

κ ′
g = κ ′

κ
κg + κn(τ + τg), κ ′

n = κ ′

κ
κn − κg(τ + τg). (B4)

These relations are used in Sec. II to express the Euler-
Lagrange derivatives for the curve in terms of κg , κn, and
τg and their derivatives.

APPENDIX C: IDENTITIES FOR WEAK
SPHERICAL CONFINEMENT

We first derive the relationship between arc-length and the
angle ϕ correct to second order. One has

s =
∫

dϕ

[(
dϑ

dϕ

)2

+ sin2 ϑ

]1/2

. (C1)

Using Eq. (29) and the harmonic approximation for κg given
by Eq. (38), one obtains

sin2 ϑ ≈ 1 − A2
1

M2
0

cos2 nϕ, and

dϑ

dϕ
≈ 1

M0

dκ1

dϕ
= nA1

M0
sin nϕ. (C2)

Thus, in this approximation,

s ≈ ϕ + 1

4

A2
1

(n2 − 1)2

(
(n2 − 1)ϕ − (n2 + 1)

2n
sin 2nϕ

)
.

(C3)

This implies that18

�R = 1

4(n2 − 1)
A2

1. (C4)

We now derive Eqs. (40) and (41). To do this one needs to
examine the boundary conditions (34) and (35) correct to
second order in ε = √

�R. At this order, the turning point
k1 of the potential V (κg), defined by Eq. (25), coincides with
A1 given in the harmonic approximation by Eq. (39). Thus,
the roots in the factorization of E2 − V (κ) given in Eq. (26),
where E is is the constant defined below Eq. (25) are

k2
1 = 2(E − σ ) ≈ A2

1 ,

K2 = 2(E + σ ) ≈ −4n2 − 2

n2
(σ2−M2)−2(σ2 + M2) .

(C5)

18A1 vanishes when n = 1, a solution which is identified as a trivial
rotation of the equatorial loop about an axis in the equatorial plane.
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One thus has, correct to second order,

1√
E2 − V (κg)

≈ 1

n

1√
A2

1 − κ2
g

(
1 − 1

4n4
(σ2 − M2)

− 1

4n2
(σ2 + M2) − 1

8n2
κ2

g

)
. (C6)

Equation (34) then implies that

�R = − 1

4n4
(σ2 − M2) − 1

4n2
(σ2 + M2) − 1

16n2
A2

1. (C7)

Furthermore, to second order,

M

1
2κ2

g + σ − 1

M2 − κ2
g

≈ 1 + 1

n2 − 1
(σ2 − M2)

+ 1

2(n2 − 1)

n2 + 1

n2 − 1
κ2

g . (C8)

Equation (35) then implies that for n �= 1,

�R = − 1

n2 − 1
(σ2 − M2) − 1

4(n2 − 1)

n2 + 1

n2 − 1
A2

1. (C9)
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