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The present paper investigates the interaction of an acoustic Bessel vortex beam centered on a viscoelastic
polyethylene sphere and spherical shells filled with air or water immersed in nonviscous water and mercury, and
the induced axial acoustic radiation torque (ART) resulting from the transfer of angular momentum. Closed-form
series expansions for the axial ART are derived for the case of progressive, standing, and quasistanding waves.
The ART is shown to be the result of acoustic absorption inside the particle’s material. Numerical predictions
shown in the form of two-dimensional (2D) plots illustrate the theory, and reveal new properties related to the
ART of Bessel vortex beams. Potential applications are in particle rotation and manipulation. Other applications,
such as the characterization of fluids from induced angular accelerations (produced by the ART) and containerless
processing, may benefit from the analysis developed here.
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I. INTRODUCTION

Physicists and engineers are familiar with the fact that the
transfer of (linear) momentum from electromagnetic [1] and
acoustical [2] propagating waves upon reflection or absorption
from a particle induces forces that may be used under various
circumstances to accelerate [3], trap [4,5], levitate [6], or
even stretch [7] the particle itself. Furthermore, the transfer of
angular momentum [8] induces a radiation torque responsible
for rotating particles [9,10]. In acoustics, a particular type
of sound beams, known as acoustical vortices [11], have
been realized experimentally [12,13] and correspond to vortex
(or spiral, helicoidal, corkscrew) waves that carry an orbital
angular momentum [13–15] and the induced torque set the
particles into well-controlled rotations [16].

Quantitative theoretical analyses and numerical simulations
allowing the estimation of the acoustic radiation torque exist
in the literature [17–20], which are of particular importance
for experimental design purposes. Numerical simulations
are more practical to build in a shorter amount of time
and predictions can be effective in showing new emergent
phenomena related to particle rotation of any size using a
vortex beam. In those studies [17–20], however, the numerical
predictions for the radiation torque involved the interaction of
an incident plane wave with the target under consideration,
and the torque expression presented in Ref. [20] is only valid
for a scatterer much smaller than the wavelength of the sound
wave. On the other hand, when the acoustic illumination is in
the form of a localized acoustic beam (such as a vortex beam),
it is anticipated that the torque will depend on the beam’s
parameters (order of helicity, and half-conical angle).

An example of a vortex beam includes the Bessel (vortex)
beam of any order (or topological charge) |m| � 1 [21], which
has been investigated from the standpoint of acoustic scattering
[22–24] and radiation force [25–28] theories. Because a Bessel
vortex beam carries orbital angular momentum [29], it can
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induce rotation of a particle depending on its mechanical
properties and position within the acoustic field. Nevertheless,
this phenomenon cannot be achieved using plane waves
because of symmetry considerations.

In view of the prominent applications of vortex beams
and their advantageous features and characteristics, it is of
some importance to work out the theoretical development
from the standpoint of acoustic radiation torque theory, though
preliminary studies have been recently available [30,31]. In
this work a closed-form expression for the radiation torque
experienced by a viscoelastic spherical shell of any size
and centered on the axis of the incident acoustic beam
of quasistanding waves is provided. It is also shown that
additional closed-form expressions for the case of standing and
progressive waves can be obtained with appropriate choice of
the beam’s parameters. Numerical predictions of the axial ra-
diation torque are presented for polyethylene (PE) viscoelastic
shells immersed in nonviscous fluids with particular emphasis
on their relative thickness, the internal fluid that fills their
hollow region, and the outer surrounding fluid. Several features
of these theoretical results can be related to experiments yet to
be designed, and the analytical solution can potentially serve
as a benchmark for comparison to other results obtained using
finite-element models or by strictly numerical or asymptotic
approaches in the applied field of particle manipulation,
mixing, and rotation. It is important to emphasize that the
ability to rotate objects offers a new degree of control in
optics [32] and fluid mechanics [33], and is expected to have
significant applications in the areas of acoustic manipulation
[34] and biotechnology at the microscale. For example, this
could lead to the development of a new type of biological
micromachines using acoustical waves.

II. AXIAL RADIATION TORQUE

Consider a monofrequency acoustical Bessel vortex beam
of quasistanding waves [26] incident upon a spherical scatterer
submerged in a nonviscous (ideal) fluid. In an ideal fluid
there is no absorption of linear and/or angular momentum,
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therefore the acoustic radiation torque can be evaluated from
the integration over a control sphere of surface SR with
large radius enclosing the scatterer (i.e., in the far field from
the scatterer). Physically, this means that the mean angular
momentum change in a unit time which occurs inside the
surface at large radius in the far field entirely goes into the
torque experienced by the particle.

Based on the conservation law of angular momentum, the
time-averaged acoustic radiation torque (ART) exerted on an
object immersed in an ideal fluid is evaluated by integrating
the moment of the time-averaged (Brillouin) radiation stress
tensor over any spherical surface enclosing it as [17,20]

〈N〉 =
∫∫

SR

r × 〈�〉dSR, (1)

where the symbol 〈·〉 denotes time averaging over a period of
the acoustical waves, r is the vector position from the center
of the control sphere to a point in space, dSR = n dSRis the
differential surface with n the outward normal to it, and the
time-averaged radiation stress tensor is expressed as [35]

〈�〉 = (〈K〉 − 〈V 〉)I − ρ0〈vv〉. (2)

In Eq. (2) I is the second-rank unit tensor in R3, 〈K〉 =
ρ0

2 〈v(1)2〉· is the time-averaged kinetic energy density, 〈V 〉 =
〈p(1)2〉
2ρ0c

2
0

is the time-averaged potential energy density, v = ∇�

is the fluid particle velocity vector where � is the velocity
potential, and p is the pressure. The superscript (1) denotes
quantities in the linear (first order) approximation.

Upon the substitution of Eq. (2) into Eq. (1), the time-
averaged ART can be expressed as

〈N〉=
∫∫

SR

r ×
[(

ρ0

2

〈
v(1)2〉 −

〈
p(1)2〉
2ρ0c

2
0

)
n − ρ0

〈
vv(1)

n

〉]
dSR,

(3)

where v(1)
n = v · n is the normal velocity.

Equation (3) can be further simplified by noticing that
r × n = 0 on the surface of the virtual sphere enclosing the
object. Thus, the expression for the ART in the far field can be
reduced to [17]

〈N〉 = −ρ0

∫∫
SR

〈
v(1)

n (r × v)
〉
dSR. (4)

Using the properties for the time average of the product
of two complex numbers, where the superscript ∗ denotes a
complex conjugate, the axial component (i.e., in the direction
of wave propagation) of the ART can be rewritten in terms of
the total (incident + scattered) velocity potential as

〈Nz〉 = 〈N〉 · ez = ρ0

2
Im

{∫∫
SR

∂�∗

∂r
L̂z� dSR

}
, (5)

where ez is the unitary vector along the axial direction, and
L̂z is the axial component of the angular momentum operator
given by [36]

L̂z = −i
∂

∂φ
. (6)

To further simplify the expression given by Eq. (5), the
asymptotic forms (kr → ∞) of the total velocity potential
�(=�

(inc)
Jm,qst + �

(sc)
Jm,qst) are used. For a spherical target in the

field of an acoustical Bessel vortex beam of quasistanding
waves, the incident velocity potential is expressed as [26]

�
(inc)
Jm,qst = e−iωt 1

kr

∞∑
n=|m|

{
(n − m)!

(n + m)!
(2n + 1)i(n−m)

× sin

(
kr − nπ

2

)
[�0e

ikzh + �1(−1)ne−ikzh]

×P m
n (cos θ )P m

n (cos β)eimφ

}
, (7)

and the scattered field is given by [26]

�
(sc)
Jm,qst = e−i(ωt−kr)

kr

∞∑
n=|m|

{
(n − m)!

(n + m)!
(2n + 1)i−(m+1)

×An(ka)[�0e
ikzh + �1(−1)ne−ikzh]

×P m
n (cos θ )P m

n (cos β)eimφ

}
, (8)

with the assumption that the amplitude |�0| � |�1|. The
parameter kz = k cos β is the axial wave number, k = ω/c =
2π/λ is defined as the wave number of the incident Bessel
vortex beam, ω is the angular frequency, c0 is the speed of
sound in the fluid medium with a density denoted by ρ0, the
parameter λ being the wavelength of the acoustic radiation
making up the beam, β is the half-cone angle formed by the
wave-number k relative the axis of wave propagation, h is
the distance in the z direction from the center of the sphere
to the nearest velocity potential antinode, the angle θ is the
scattering angle relative to the beam axis of wave propagation
z, P m

n (·) are the associated Legendre functions, and m is the
order (or helicity) of the beam. The dimensionless (complex)
scattering coefficients An(ka) = (αn + iβn) in Eq. (8) are de-
termined from appropriate boundary conditions at the surface
of the sphere. Note also that for m = 0 and β = 0 ◦, the case of
plane (standing or quasistanding) waves [37,38] can be
recovered from Eqs. (7) and (8).

The substitution of the total field � into Eq. (5) using the
property for the axial component of the angular momentum
operator (Eq. (26) in Ref. [18]),∫∫

SR

f1 L̂zf2 dSR = −
∫∫

SR

f2 L̂zf1 dSR (9)

leads to a simplified expression for the ART in terms of the
incident and scattered velocity potentials such that

〈Nz〉 = ρ0

2
Im

{∫∫
SR

(
∂�

(inc)∗
Jm,qst

∣∣
kr→∞

∂r
− ik�

(inc)∗
Jm,qst

∣∣
kr→∞

− ik�
(sc)∗
Jm,qst

∣∣
kr→∞

)
L̂z�

(sc)
Jm,qst

∣∣
kr→∞ dSR

}
. (10)

After substituting Eqs. (7) and (8) into Eq. (10) and
manipulating the result using the properties of the associated
Legendre functions (see Eqs. (5) and (9) in Ref. [39]), the axial
component of the ART expression can be reduced to

〈Nz〉 = πa3E0τ
qst
z (m,ka,β), (11)
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where a is the radius of the sphere, E0 = ρ0k
2|�0|2
2 is a

characteristic energy density, and the dimensionless axial
component τ

qst
z is found to be

τ qst
z (m,ka,β) = − 4m

(ka)3

∞∑
n=|m|

{
P m

n (cos β)2(2n + 1)

× (n − m)!

(n + m)!

(
αn + α2

n + β2
n

)[
1 + |�1|2

|�0|2

+ 2(−1)n
|�1|
|�0| cos(2kh cos β)

]}
. (12)

Equation (12) is the general closed-form expression for
the dimensionless axial ART in a Bessel vortex beam of
quasistanding waves. When |�1| = |�0|,the incident beam
corresponds to an equiamplitude standing wave field, and the
expression for the axial dimensionless torque τ st

z is given by

τ st
z (m,ka,β) = − 8m

(ka)3

∞∑
n=|m|

{
P m

n (cos β)2(2n + 1)

× (n − m)!

(n + m)!

(
αn + α2

n + β2
n

)
× [1 + (−1)n cos(2kh cos β)]

}
. (13)

Furthermore, when |�1| = 0, the incident beam corre-
sponds to a progressive (or travelling) wave field, and the
expression for the axial dimensionless torque τ

p
z is

τp
z (m,ka,β) = − 4m

(ka)3

∞∑
n=|m|

{
P m

n (cos β)2(2n + 1)

× (n − m)!

(n + m)!

(
αn + α2

n + β2
n

)}
. (14)

From Eqs. (12)–(14) it is important to note the dependence
of the axial dimensionless torque on the order m of the beam;
it can be easily noticed that τz(−m,ka,β) = − τz(m,ka,β) so
that the dimensionless axial ART reverses sign when the beam
reverses its handedness. Furthermore, when m = 0, which
corresponds to the fundamental zeroth-order Bessel beam, the
torque vanishes, as well as in the case of plane waves (i.e.,
m = 0 and β = 0◦).

Moreover, a particular attention is given to the term


n = (
αn + α2

n + β2
n

)
. (15)

After arithmetic manipulation, 
n is rewritten in terms of
the scattering coefficients An(ka) = (αn + iβn) as


n = Re{An(ka)} + |An(ka)|2. (16)

From the formalism of the resonance scattering theory [40],
the scattering coefficients An(ka) may be rewritten in terms of
a scattering function Sn, such that

Sn = 2An(ka) + 1 = (2αn + 1 + 2iβn). (17)

For perfectly rigid, fluid, and elastic materials in which
the assumption of no absorption holds, the modulus of the

scattering function equals unity (see Eq. (21), p. 200, in
Ref. [40]). From Eq. (17) it is straightforward to show that

|Sn| − 1

4
= Re{An(ka)} + |An(ka)|2 = 
n = 0. (18)

Therefore, as shown from Eq. (18), the torque vanishes in
the lack of absorption or attenuation inside the sphere. Note
also that for a perfectly rigid sphere, this result can be antic-
ipated from Eq. (4) by noticing that

∫∫
SR

〈v(1)
n (r × v)〉 dSR =∫∫

Sa
〈v(1)

n (r × v)〉 dSa, where Sa is the surface of the particle
of radius a. At the interface fluid-rigid surface, there is absence
of oscillatory movement because the sphere is considered per-
fectly rigid. Hence, the normal component of the fluid particle
velocity v(1)

n |r=a = 0, and the torque vanishes subsequently.

III. NUMERICAL RESULTS AND DISCUSSION

The theoretical analysis performed in the previous section
in a nonviscous fluid reveals the lack of the axial radiation
torque in the ideal case of no absorption inside the spherical
target [i.e., Eq. (18)]. In practice, common materials absorb a
portion of the acoustic energy differently, and this is sufficient
to produce an axial radiation torque and spin the particle.

For example, plastics and polymers, such as polyethy-
lene (PE), phenolic polymer (PP), or polymethyl-metacrylate
(PMMA) absorb a significant portion of the acoustic energy
[41,42]. For the purpose of this study, a viscoelastic PE
spherical shell of outer radius a and inner radius b is chosen
to illustrate the theory, though other types of viscoelastic
materials may be selected. The shell’s material parameters are
the mass density ρ = 957 kg/m3, the longitudinal and shear
wave velocities cL = 2430 m/s and cS = 950 m/s, and their
corresponding normalized absorption coefficients γL = 0.0074
and γS = 0.022. The relative thickness b/a corresponds to the
ratio of the inner-to-outer radii. It is used here to identify the
scatterer as a sphere (i.e., b/a = 0), or thick (i.e., b/a = 0.5),
thin (i.e., b/a = 0.9), and very thin (i.e., b/a = 0.99)
shell. The expressions for the scattering coefficients An(ka) =
(αn + iβn) for spherical shells are well-known from earlier
reports on sound scattering [43,44]. Absorption is included by
the standard method of introducing complex wave numbers
into the theory [45]. Incorporating complex wave numbers
into the acoustic scattering theory holds only for linear
viscoelasticity. Here the normalized absorption coefficients
of compressional and shear waves are considered constant
quantities independent of frequency, an assumption that holds
for PE and various other polymers [41,42].

Figure 1 shows the computations for the dimensionless axial
ART resulting from the interaction of a first-order (m = 1)
Bessel vortex beam of progressive waves with a viscoelastic
PE shell filled with air (ρair = 1.23 kg/m3, cair = 340 m/s) in
nonviscous water (ρwater = 1000 kg/m3, cwater = 1500 m/s),
based on Eq. (14). The relative thickness b/a is varied from 0
to 0.99 as noted in Figs. 1(a)–1(d). The 2D plots are evaluated
in the bandwidths 0 < ka � 5 and 0◦ � β � 90◦. As noted
from those plots, the dimensionless axial ART exhibits positive
variations determined by the value of b/a. As it increases, the
region corresponding to resonance peaks of high amplitudes
[i.e. the “island” around ka ∼ 1.23 and 30◦ � β � 60◦ for the
sphere case in Fig. 1(a)] appears to shift to lower ka values.
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FIG. 1. (Color online) The 2D plots of the dimensionless axial
ART for a first-order (m = 1) Bessel vortex beam of progressive
waves. In this example, the viscoelastic PE shell is filled with air. In
(a), (b), (c), and (d) the relative shell’s thickness b/a takes the values
of 0, 0.5, 0.9, and 0.99, respectively.

Differences in the dimensionless axial ART amplitude
occur when the interior fluid filling the hollow core of the
viscoelastic PE shell is changed to water, as shown in Fig. 2.
Visual comparison of those figures shows that the torque is
affected by the type of fluid filling the inner core, especially
for thin (c) and very thin (d) shells.

The effect of varying the order of the Bessel vortex beam
is also investigated and the results for the dimensionless axial
torque for a second-order (m = 2) Bessel vortex beam are
shown in Figs. 3 and 4 for shells filled with air or water,
respectively. Comparison of Figs. 3 and 4 with Figs. 1 and
2 reveals that the torque is also affected by the order of the
beam. As shown therein, the amplitude of the dimensionless
axial ART is not necessarily smaller as the order of the beam
increases. Those plots suggest that beams with a higher order
may be more efficient for generating torques on spheres and

FIG. 2. (Color online) The same as in Fig. 1 but the inner core
fluid is water. In (a), (b), (c), and (d) the relative shell’s thickness b/a

takes the values of 0, 0.5, 0.9, and 0.99, respectively.

FIG. 3. (Color online) The same as in Fig. 1 but the Bessel
vortex beam is of second order (m = 2). In (a), (b), (c), and (d)
the relative shell’s thickness b/a takes the values of 0, 0.5, 0.9, and
0.99, respectively.

shells should some conditions related to the frequency and the
half-cone angle are met. Those conditions may be anticipated
from the analytical model presented in this paper.

Additional computations have been performed to investi-
gate the fluid-loading effect on the dimensionless axial ART
for a first-order (m = 1) Bessel vortex beam. Figures 5 and 6
show the results for viscoelastic PE spheres (a) and shells
[(b)–(d)] immersed in mercury (ρmercury = 13600 kg/m3,
cmercury = 1407 m/s), a fluid with high density, and filled with
air or water, respectively. From those plots it appears that the
surrounding fluid with high density strongly affects the ART
amplitude. A shift in the resonance peaks to lower ka values
is noted for the case of spheres, thick and thin shells [(a)–(c)].
For thin shells it appears that the positions of the resonance
peaks are not strongly affected by the loading effect of the

FIG. 4. (Color online) The same as in Fig. 2 but the Bessel
vortex beam is of second order (m = 2). In (a), (b), (c), and (d)
the relative shell’s thickness b/a takes the values of 0, 0.5, 0.9, and
0.99, respectively.
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FIG. 5. (Color online) The same as in Fig. 1 but the outer fluid
surrounding the spherical target is mercury. In (a), (b), (c), and (d)
the relative shell’s thickness b/a takes the values of 0, 0.5, 0.9, and
0.99, respectively.

surrounding fluid, however, one notices the reduction in the
ART amplitude [especially Figs. 1 and 2(d) versus Figs. 5 and
6(d)].

The transition behavior of a first-order (m = 1) Bessel
vortex beam from a progressive to a pure standing wave
field is investigated by varying the ratio 0 � ( |�1|

|�0| ) � 1 in
Eq. (12). Figure 7 shows the plots for a viscoelastic PE sphere
at β = 50◦ in the range 0 � ka � 2 placed at an antinode
in the sonic field (i.e., h = 0). It is interesting to note the
variation in the dimensionless axial ART amplitude for each
resonance peak shown in that ka bandwidth; for the resonance
peak centered around ka ∼ 1.23, the amplitude increases for
the quasistanding wave behavior, to reach a maximum when
the acoustic field corresponds to a pure standing wave, that
is, ( |�1|

|�0| = 1). This is not the case for the resonance peak

FIG. 6. (Color online) The same as in Fig. 2 but the outer fluid
surrounding the spherical target is mercury. In (a), (b), (c), and (d)
the relative shell’s thickness b/a takes the values of 0, 0.5, 0.9, and
0.99, respectively.

FIG. 7. (Color online) The transition behavior of a first-order
(m = 1) Bessel vortex beam from a progressive (|�1|/|�0| = 0;
solid line) to a pure standing wave field (|�1|/|�0| = 1; blue square)
for a viscoelastic PE sphere (i.e., b/a = 0) in water. The half-cone
angle is β = 50◦.

centered around ka ∼ 1.83 for which the dimensionless axial
ART amplitude reaches a maximum when the acoustic field
corresponds to a progressive wave, that is, ( |�1|

|�0| = 0).
In recent works, a new type of Bessel beams has been

introduced and termed therein as a higher-order Bessel
trigonometric beam [46,47], in contrast to its vortex counter-
part. Such a beam does not induce a radiation torque because
it has an azimuthal dependency in the form of cos(mφ). The
surface integration according to Eq. (10) for this type of beams
leads to a zero radiation torque as required by symmetry.

Previous studies on spherical and cylindrical targets [48,49]
have shown that the effect of superimposing two waves propa-
gating in perpendicular directions can produce a time-averaged
ART on the particle. Balanced by the drag torque, the particle
rotates with a uniform angular velocity. The mechanism for
creating the ART in that case is closely connected with
thermoviscous effects and absorption occurring inside the
viscous boundary layer. However, the mechanism of ART
production in that case differs from the case here where
the ART of Bessel vortex beams is independent from the
boundary layer thickness, and is present because of the effect of
viscoelasticity inside the material, though the spherical particle
is immersed in an ideal (nonviscous) fluid.

Concerning the question of the ART when the sphere is
placed off the axis of a Bessel vortex beam, it is important to
note the quantitative analyses in which the scattering on and
off axis is investigated in both the near- and far-field regions
for various half-cone angle and beam order values, both in
acoustics [23] and optics [50]. The analyses for the off-axial
scattering are important and will be used in a forthcoming
investigation for the analysis of the off-axial ART.

Adding to this, is the case of the Rayleigh torque that
may occur on an asymmetric object [51]. The analysis to
evaluate the ART in this case requires first solving for
the arbitrary acoustic scattering of a Bessel vortex beam
incident upon a particle of arbitrary shape. A seminal work in
electromagnetism exists [52] and could be extended to the field
of acoustics, and will be the subject of a future investigation.

Similarly to the sphere’s rotation driven by the optical
axial radiation torque [53], the axial ART induces angular
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acceleration of the absorbing spherical target. From Newton’s
second-law of motion, the angular acceleration is given by

ω̇z = 15E0

8ρa2
τz. (19)

When the surrounding fluid is considered viscous, the axial
component of the angular velocity ωst

z reaches a steady value
when the axial ART is balanced by an axial viscous drag torque
(p. 65 in Ref. [54]),

Nd
z = −8πηa3ωst

z , (20)

where η is the viscosity of the fluid, such that

ω̇z + Nd
z = 0. (21)

Upon the substitution of Eqs. (19) and (20) into Eq. (21),
the axial component of the angular velocity is found to be

ωst
z = E0

8ηM
τz, (22)

where M is the moment of inertia of the sphere.
An important application of the present theory follows im-

mediately from Eq. (22), which is the inverse characterization
of the fluid viscosity from the sphere’s rotation.

After submission of this manuscript for publication, another
paper on the angular momentum flux of nonparaxial acoustic
vortex beams and torques on axisymmetric objects has been
published [55]. The axial ART on an axisymmetric object
caused by a vortex wave is given by Eq. (10) in Ref. [55] as

〈Nz〉 = m

ω
P

pr
abs, (23)

where P
pr
abs is the absorbed power by the object. For the case

of a progressive wave acoustical Bessel vortex beam incident
on a sphere, as explained in Ref. [55], P pr

abs is given by Eq. (18)
of [56] in terms of the scattering function Sn [i.e., Eq. (17) of
the present paper] as

P
pr
abs = πc0E0

1

k2

∞∑
n=|m|

{
(1 − |Sn|2)(2n + 1)

× (n − m)!

(n + m)!
P m

n (cos β)2

}
. (24)

Upon the substitution of Eq. (24) into Eq. (23) using
Eq. (17), it can be easily verified that the final result for the
dimensionless axial ART is equivalent to the one given by
Eq. (14).

Following a similar procedure based on Eq. (9) in Ref. [55],
one can derive the absorbed power by the spherical target

placed in the field of an acoustical Bessel vortex beam of
quasistanding waves, such that

P
qst
abs = πc0E0

1

k2

∞∑
n=|m|

{[
1 + |�1|2

|�0|2 + 2(−1)n
|�1|
|�0|

× cos(2kh cos β )

]
(1 − |Sn|2)(2n + 1)

× (n − m)!

(n + m)!
P m

n (cos β)2

}
,

= −4πc0E0

k2

∞∑
n=|m|

{[
1 + |�1|2

|�0|2 + 2(−1)n

× |�1|
|�0| cos(2kh cos β)

](
αn + α2

n + β2
n

)
× (2n + 1)

(n − m)!

(n + m)!
P m

n (cos β)2

}
. (25)

The standing wave case for the absorbed power P
pr
abs follows

immediately from Eq. (25) by allowing �1 = �0.

IV. CONCLUSIONS

The present analysis shows that an acoustical Bessel vortex
beam induces an axial ART on viscoelastic spheres and
shells centered on its axis of wave propagation. The analysis
uses closed-form series expansions of the scattering [26] and
scattering coefficients [44] for spheres and shells in Bessel
vortex beams. The axial ART is caused because of sound
absorption inside the particle’s material and vanishes in the
absence of attenuation, consistent with previous studies of
electromagnetic beams [53,57]. The ART is also proportional
to the order of the beam and the type of acoustic field
(progressive, quasistanding, or standing wave field). Moreover,
the axial ART reverses sign when the beam reverses its
handedness (or helicity). Potential applications are in particle
rotation and manipulation. Other applications, such as the
characterization of fluids by remote measurement of angular
acceleration or velocity from radiation torque induced rotation
of particles and containerless processing may benefit from the
analysis developed here.
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