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The determinant representation of the n-fold Darboux transformation of the Hirota equation is given. Based
on our analysis, the 1-soliton, 2-soliton, and breathers solutions are given explicitly. Further, the first order rogue
wave solutions are given by a Taylor expansion of the breather solutions. In particular, the explicit formula of
the rogue wave has several parameters, which is more general than earlier reported results and thus provides a
systematic way to tune experimentally the rogue waves by choosing different values for them.

DOI: 10.1103/PhysRevE.85.026601 PACS number(s): 42.65.Tg, 47.35.Fg, 05.45.Yv

I. INTRODUCTION

It is well known that the completely integrable nonlinear
Schrödinger equation (NLSE)

iqt + 2|q|2q + qxx = 0 (1)

plays an important role in many branches of physics and
applied mathematics, such as nonlinear optics [1,2], plasma
physics [3], and nonlinear quantum field theory [4]. Especially
in nonlinear optics, the propagation of a picosecond optical
pulse in an optical fiber is governed by the NLSE. After the
theoretical prediction of the existence of solitary waves [5] and
the experimental demonstration of the optical solitons [6], the
research on optical solitons is more and more fascinating since
it may be applied as bit rates in the next generation of optical
communication systems.

The NLSE has been used successfully to describe
the propagation of a picosecond optical pulse. However,
for the propagation of a subpicosecond or femtosecond pulse,
the higher order effects should be taken into account, and one
version of the higher-order nonlinear Schrödinger equation
(HNLSE) is of the form

iqt + α1qxx + α2q|q|2 + iα3q + iα4qxxx + α5q(|q|2)x
+ iα6(q|q|2)x = 0. (2)

This equation was first proposed by Hasegawa and Kodama
[7]. Mathematically, for Eq. (2), many authors have obtained
the following four completely integrable cases:

(1) α1:α2:α3:α4:α6:Im(α5) + α6 = 1
2 :1:0:0:1:1,

(2) α1:α2:α3:α4:α6:Im(α5) + α6 = 1
2 :1:0:0:1:0,

(3) α1:α2:α3:α4:α6:Im(α5) + α6 = 1
2 :1:0:1:6:0, which im-

plies the Hirota equation [8,9],
(4) α1:α2:α3:α4:α6:Im(α5) + α6 = 1

2 :1:0:1:6:3, which im-
plies the Sasa-Satsuma equation [10,11],
by using different approaches like the Painlevé test [12], the
Galilean transformation [13], and the Wahlquist-Estabrook
prolongation method [14]. There are multicomponent exten-
sions [15–17] of the above NLSE.

In recent years, a new wave called a rogue wave has
attracted much attention. It was observed in many fields, such
as oceanics [18–22] and nonlinear optics [23–25]. Though
rogue waves have caused many marine disasters, fortunately,
there are already some achievements in understanding this
natural phenomenon. In [24], a system with an extremely

steep and large wave has been studied, and the observation of
a rogue wave has been reported in an optical fiber. In [25],
a mathematical solution called the Peregrine soliton as a
prototype of an ocean rogue wave has been observed in a
physical system. In [26], the authors have used an experi-
mental setup to observe a Peregrine soliton in a water wave
tank.

The rogue wave of the Hirota equation is given by a very
simple and powerful Darboux transformation (DT) with the
help of the authors’ very rich empirical ideas [27]. However,
there are two unusual points in this work, i.e., (1) the Lax
pair does not contain spectral parameters and (2) the seed
solution ψ = eix is too special, such that its rogue wave
is not universal enough. Considering the wide applicability
of the Hirota equation, we shall try to find a more general
form of the rogue wave of the Hirota equation by the DT
[28–31] from a general seed solution. Specifically, we follow
the Ablowitz-Kaup-Newell-Segur (AKNS) procedure [32] to
construct the Lax pair with spectral parameters, and the
corresponding Hirota equation takes the form

iqt + α(2|q|2q + qxx) + iβ(qxxx + 6|q|2qx) = 0, (3)

with the choice of coefficients α1 : α2 : α3 : α4 : α6 : Im(α5) +
α6 = 1 : 2 : 0 : 1 : 6 : 0. If we let α = 1, β = 0, Eq. (3)
reduces to Eq. (1). Note that Eq. (3) is another equivalent form
of the Hirota equation [27]. This Lax pair is more convenient
for constructing the DT due to its parameters. Furthermore,
solitons are derived from zero seed, and breathers are derived
from a periodic seed with a constant amplitude. At last, the
rogue wave of Eq. (3) is given by the Taylor expansion
of the breather, which implies the rogue wave [18,19] of
NLSE (1).

II. LAX PAIR OF THE HIROTA EQUATION

The Lax pair assures the complete integrability of a
nonlinear system and is often used to obtain explicit solutions
by the DT. In this section, we use the AKNS procedure [32]
to get the Lax pair with the spectral parameters of the Hirota
equation (3).

By a similar way to the AKNS system, the Lax pair for
Eq. (3) can be expressed as follows:

ϕx = Mϕ,ϕt = Nϕ, (4)
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where ϕ = (ϕ1,ϕ2)T , and

M =
(−iλ q

−q∗ iλ

)
, N = λ3

(−4βi 0
0 4βi

)
+ λ2

( −2αi 4βq

−4βq∗ 2αi

)
+ λ

(
2βi|q|2 2βiqx + 2αq

2βiq∗
x − 2αq∗ −2βi|q|2

)

+
(

iα|q|2 + β(qq∗
x − q∗qx) iαqx − β(qxx + 2|q|2q)

iαq∗
x + β(q∗

xx + 2|q|2q∗) −iα|q|2 − β(qq∗
x − q∗qx)

)
,

λ is a complex spectral parameter, and “*” denotes the complex
conjugate. One can verify that the compatibility condition
Mt − Nx + [M,N ] = 0 gives rise to Eq. (3), where the bracket
represents the usual matrix commutator.

III. DARBOUX TRANSFORMATION

The DT [28–31] is an effective method to construct
solutions, including the n-soliton and breather solutions. In
this section, we would like to introduce a simple gauge
transformation of spectral problems (4) as follows:

ϕ[1] = T ϕ. (5)

It can transform linear problems (4) into new one possessing
the same matrix form, namely,

ϕ[1]
x = M [1]ϕ[1], ϕ[1]

t = N [1]ϕ[1], (6)

where M [1],N [1] have the same forms with M,N except that
of the q,q∗ in the matrices M,N are replaced with q[1],q[1]∗ in
the matrices M [1],N [1]. It is easy to obtain the equations

M [1]T = Tx + T M, (7)

N [1]T = Tt + T N. (8)

In general, if the transformation T is a polynomial of the
parameter λ, according to the Hirota equation (3), we can start
from

T =
(

a1 b1

c1 d1

)
λ +

(
a b

c d

)
, (9)

where a1,b1,c1,d1,a,b,c,d are all functions of the variables x

and t .
From Eqs. (7) and (9), it is easy to have(

a1x b1x

c1x d1x

)
λ +

(
ax bx

cx dx

)

=
(

c1q
[1]λ − ia1λ

2 d1q
[1]λ − ib1λ

2

ic1λ
2 − a1q

[1]∗λ id1λ
2 − b1q

[1]∗λ

)

+
(

cq[1] − iaλ dq[1] − ibλ

icλ − aq[1]∗ idλ − bq[1]∗

)

−
(−ia1λ

2 − b1q
∗λ a1qλ + ib1λ

2

−ic1λ
2 − d1q

∗λ c1qλ + id1λ
2

)

−
(−iaλ − q∗b aq + ibλ

−icλ − q∗d qc + idλ

)
, (10)

and comparing the coefficients of λk(k = 0,1,2) of the above
formula gives

b1 = c1 = 0 for k = 2, (11)

a1x = d1x = 0, −2ib + q[1]d1 − qa1 = 0,
(12)

2ic − q[1]∗a1 + q∗d1 = 0 for k = 1,

ax = q[1]c + q∗b, bx = q[1]d − qa,
(13)

cx = −q[1]∗a + q∗d, dx = −q[1]∗b − qc for k = 0.

By using the calculation above, it is obvious that a1,d1 can
be made into constants and allowed to equal 1 without loss of
generality, so the DT for Eq. (3) could be in the form of

ϕ[1] = T ϕ = (λI − S)ϕ, (14)

where λ is a complex spectral parameter, I is a 2×2 identity
matrix, and S is a nonsingular matrix.

Substituting the expressions of M,M [1] and T into Eq. (7),
the coefficients of λ become(

0 q[1]

−q[1]∗ 0

)
=

(
0 q

−q∗ 0

)
+ i[S,σ ],

where σ = (1 0
0 −1) ,S = (s11 s12

s21 s22). Therefore, the new solu-
tions are given by

q[1] = q − 2is12, − q[1]∗ = −q∗ + 2is21, (15)

under a constraint

s∗
12 = −s21. (16)

Similar to the case of the NLSE [28,29], to obtain the
explicit formula of S by the solutions of the Lax pair, we
introduce

S = H�H−1, (17)

with

H =
(

f1 g1

f2 g2

)
, � =

(
λ1 0

0 λ2

)
,

where (f1,f2)T is a solution of the eigenvalue equation of the
Lax pair (4) when λ = λ1. It is useful to know that (g1,g2)T =
(−f ∗

2 ,f ∗
1 )T is a solution of (4) when λ = λ∗

1. In order to satisfy
the constraint of S, let λ2 = λ∗

1 and (g1,g2)T = (−f ∗
2 ,f ∗

1 )T ;
then

S = 1

	

(
λ1|f1|2 + λ∗

1|f2|2 (λ1 − λ∗
1)f1f

∗
2

(λ1 − λ∗
1)f ∗

1 f2 λ1|f2|2 + λ∗
1|f1|2

)
, (18)

where 	 = |f1|2 + |f2|2. By a direct calculation, constraint
(16) of the S can be verified. So from (15) and (18), the DT
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generates a new solution of the Hirota equation as

q[1] = q − 2i

	
(λ1 − λ∗

1)f1f
∗
2 . (19)

In fact, as in the case of the NLSE [28,29,33], the DT of the Hirota equation also has determinant representation, which is
convenient for getting the solutions generated by the higher order transformation. Here we rewrite the one-fold DT (19) in the
form of a determinant as

q[1] = q − 2i
S2

W2
= q − 2i

∣∣∣∣f1 λ1f1

g1 λ2g1

∣∣∣∣∣∣∣∣f1 f2

g1 g2

∣∣∣∣
, (20)

under the reductions g1 = −f ∗
2 ,g2 = f ∗

1 ,λ2 = λ∗
1. For the two-fold DT, we obtain

q[2] = q − 2i
S4

W4
, (21)

where

S4 =

∣∣∣∣∣∣∣∣
f1 f2 λ1f1 λ2

1f1

g1 g2 λ2g1 λ2
2g1

f3 f4 λ3f3 λ2
3f3

g3 g4 λ4g3 λ2
4g3

∣∣∣∣∣∣∣∣
, W4 =

∣∣∣∣∣∣∣
f1 f2 λ1f1 λ1f2

g1 g2 λ2g1 λ2g2

f3 f4 λ3f3 λ3f4

g3 g4 λ4g3 λ4g4

∣∣∣∣∣∣∣ ,
and under the reductions g1 = −f ∗

2 ,g2 = f ∗
1 ,g3 = −f ∗

4 ,g4 = f ∗
3 ,λ2 = λ∗

1,λ4 = λ∗
3. Similarly, the n-fold DT could be written in

determinant form as

q[n] = q − 2i
S2n

W2n

, (22)

where

S2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 λ1f1 λ1f2 . . . λn−1
1 f1 λn

1f1

g1 g2 λ2g1 λ2g2 . . . λn−1
2 g1 λn

2g1

f3 f4 λ3f3 λ3g3 . . . λn−1
3 f3 λn

3f3

g3 g4 λ4g3 λ4g4 . . . λn−1
4 g3 λn

4g3
...

...
...

...
. . .

...
...

g2n−1 g2n λ2ng2n−1 λ2ng2n . . . λn−1
2n g2n−1 λn

2ng2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

W2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 λ1f1 λ1f2 . . . λn−1
1 f1 λn−1

1 f2

g1 g2 λ2g1 λ2g2 . . . λn−1
2 g1 λn−1

2 g2

f3 f4 λ3f3 λ3g3 . . . λn−1
3 f3 λn−1

3 f4

g3 g4 λ4g3 λ4g4 . . . λn−1
4 g3 λn−1

4 g4
...

...
...

...
. . .

...
...

g2n−1 g2n λ2ng2n−1 λ2ng2n . . . λn−1
2n g2n−1 λn−1

2n g2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is convenient to calculate the multisolitons, multi-
breathers, and higher order rogue waves of the Hirota equation.
This result under α = 1 and β = 0 is consistent with the
corresponding determinant representation of Refs. [28,29,33].

IV. SOLITON AND BREATHER SOLUTIONS

In this section, we start from a zero seed solution and a
periodic seed solution to construct new solutions (including
soliton and breather solutions) by the DT obtained above;
then the first order rogue wave could be obtained by a Taylor
expansion from the breather solution.

(1) Now let the seed q = 0 and λ1 = ξ + iη; then

f1 = e−i(ξ+iη)x−(4βi(ξ+iη)3+2αi(ξ+iη)2)t ,
(23)

f2 = ei(ξ+iη)x+(4βi(ξ+iη)3+2αi(ξ+iη)2)t .

Taking f1,f2 given by Eq. (23) back into the DT (20), we can
get 1-soliton solution (see Fig. 1)

q
[1]
soliton = 2ηe2i(−ξx−4βξ 3t−2αξ 2t+12βξη2t+2αη2t)

× sec h(−2ηx − 24βηξ 2t + 8βη3t − 8αηξt). (24)

(2) Let the seed q = 0 and λ1 = ξ + iη, λ3 = θ + iϑ , by
solving linear problems (4); the eigenfunctions can be obtained
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FIG. 1. (Color online) (Left panel) The 1-soliton solution of the Hirota equation with η = 0.1, ξ = 0.05, α = 1, β = 1 and (Right panel)
its profiles at different times t = 1(red/right), t = 30(green/middle), t = 100 (yellow/left).

as follows:

f1 = e−i(ξ+iη)x−(4βi(ξ+iη)3+2αi(ξ+iη)2)t ,

f2 = ei(ξ+iη)x+(4βi(ξ+iη)3+2αi(ξ+iη)2)t ,

f3 = e−i(θ+iϑ)x−(4βi(θ+iϑ)3+2αi(θ+iϑ)2)t ,

f4 = ei(θ+iϑ)x+(4βi(θ+iϑ)3+2αi(θ+iϑ)2)t .

According to the reductions g1 = −f ∗
2 ,g2 = f ∗

1 ,g3 =
−f ∗

4 ,g4 = f ∗
3 ,λ2 = λ∗

1,λ4 = λ∗
3, the 2-soliton solution is

given explicitly by the DT (21), which is plotted in
Fig. 2.

(3) In order to get non-trivial periodic solutions, we set
seed q = ceiρ with ρ = ax + bt , where a,b,c are all real
constants under a condition b = α(2c2 − a2) + β(a3 − 6ac2).

The corresponding solutions of the eigenvalue equations of the
Lax pair are given by

f1 = cei[( 1
2 a+c1)x+( 1

2 b+2c1c2)t],

f2 = i
(

1
2a + λ1 + c1

)
ei[(− 1

2 a+c1)x+(− 1
2 b+2c1c2)t], (25)

where

c1 = 1
2

√
4c2 + 4λ2

1 + 4λ1a + a2,

c2 = (
αλ1 + 2βλ2

1 − 1
2aα − βc2 + 1

2βa2 − λ1aβ
)
.

FIG. 2. (Color online) (Left panel) The 2-soliton solution of the Hirota equation with η = 0.1, ξ = 0.8, θ = 0, ϑ = 1, α = 1, β = 1 and
(Right panel) its trajectory lines.
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By the principle of the superposition of the linear differential
equation, the new eigenfunctions associated with λ1 can be
expressed by

F1 = f1 − f ∗
2 , F2 = f2 + f ∗

1 ;

then we use them to get following breather solution

q[1] = q − 2i

	
(λ1 − λ∗

1)F1F
∗
2 , (26)

and 	 = |F1|2 + |F2|2 by the DT (20). By a tedious calcula-
tion, we finally get the breather solution under a = −2Re(λ1)
(see Fig. 3):

q
[1]
breather

= eiρ

[
c − 2η[η cosh(2d2) − iσ sinh(2d2) − c cos(2d1)]

c cosh(2d2) − η cos(2d1)

]
,

(27)

where

λ1 = ξ + iη, a = −2ξ, ρ = ax + bt = −2ξx + bt,

d1 = σx + (4σαξ + 12σβξ 2 − 4σβη2 − 2σ 3β − 2σβη2)t,

d2 = (2σαη + 12σβξη)t,

σ =
√

−b − 4αξ 2 − 8βξ 3

−2α − 12βξ
− η2.

V. ROGUE WAVE SOLUTIONS

There are at least two examples—the NLSE [18] and the
derivative NLSE [34] to get a rogue wave by the Taylor
expansion of the breather solutions. Here we shall use this
approach again to get the rogue wave of the Hirota equation
from the breather solution (27).

The Taylor expansion at η =√
−b−4αξ2−8βξ3

−2α−12βξ
of the breather

solution (27) implies a general form of the first order rogue
wave of the Hirota equation:

qroguewave = kei(−2ξx+bt)

(
1 − 2k1 + 2k2 + ik3t

k1 − k2

)
, (28)

where

k =
√

b + 4αξ 2 + 8βξ 3

2α + 12βξ
,

k1 = v1t
2 + v2xt + v3x

2,

k2 = α3 + 18α2βξ + 108αβ2ξ 2 + 216β3ξ 3,

k3 = 32ξ 2α4 + 864αβ2ξ 2b + 144α2βξb + 13824αβ3ξ 5

+ 13824β4ξ 6 + 1728β3ξ 3b + 8α3b + 4608α2β2ξ 4

+ 640α3βξ 3,

v1 = −79872β3ξ 7α2 − 13824β3ξ 5bα − 832βξ 3α3b

− 4α3b2 − 22528β2ξ 6α3 − 92160β5ξ 9 − 216β2b2αξ 2

− 13824β4ξ 6b − 432β3ξ 3b2 − 3200βξ 5α4

−138240β4ξ 8α − 64bα4ξ 2 − 24α2ξβb2 − 192α5ξ 4

− 18β2b3 − 4992β2ξ 4α2b,

v2 = −9216β4ξ 7 − 144α2βξ 2b − 64α4ξ 3 − 576β3ξ 4b

− 384αβ2ξ 3b + 12αβb2 − 10752β3ξ 6α − 896α3ξ 4β

− 16α3ξb − 4608α2β2ξ 5 + 72β2ξb2,

v3 = −8α3ξ 2 − 576β3ξ 5 − 72β2ξ 2b − 2α2b − 24αβξb

− 480αβ2ξ 4 − 112α2βξ 3.

It is not difficult to verify the validity of this solution.
Obviously, this form of the rogue wave qroguewave is more
general than the known result [27] because of the appearance
of several parameters related to the background and the
eigenvalue of the Lax pair; and thus it also provides a possible

FIG. 3. (Color online) (Left panel) Breather solution (27) of the Hirota equation with α = 1, β = 1, ξ = −0.5, η = 0.1, b = 1 and (Right
panel) its density plot.
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FIG. 4. (Color online) (Left panel) Rogue wave (29) of the Hirota equation with α = 1, β = 1, b = 0.08 and (Right panel) its density plot.

way to tune experimentally the rogue wave by choosing
different values of them. Moreover, this controllability of the

rogue wave highly improves the possibility of observing it in
a laboratory. Set ξ = 0 in (28), then a simple rogue wave

q[1]
roguewave = eibt

√
b

2α
(−2bα2x2 + 12b2αβxt − 18b3β2t2 − 4b2α3t2 + 8ibα3t + 3α3)

4b2α3t2 + 2bα2x2 − 12b2αβxt + 18b3β2t2 + α3
(29)

is obtained, which is plotted in Fig. 4. Furthermore, the above
rogue wave (29) reduces to the known result given by Ref. [27].
Moreover, setting α = 1, β = 0, our rogue wave (29) reduces
to the simplest form

q[11]
roguewave = eibt

√
b
2 (−2bx2 − 4b2t2 + 8ibt + 3)

4b2t2 + 2bx2 + 1
, (30)

which is an equivalent formula of the rogue wave [18] of the
NLSE (1) as expected and plotted in Fig. 5. As a final remark
of this paper, we would like to stress that the higher order
rogue wave of the Hirota equation can be calculated from the
determinant representation (22) of the DT, which will be done
in a separate paper soon.

FIG. 5. (Color online) (Left panel) Rogue wave (30) of the NLSE (1) with b = 0.2 and (Right panel) its density plot.

026601-6



MULTISOLITONS, BREATHERS, AND ROGUE WAVES FOR . . . PHYSICAL REVIEW E 85, 026601 (2012)

ACKNOWLEDGMENTS

This work is supported by the NSF of China under Grant
No. 10971109 and the K. C. Wong Magna Fund in Ningbo
University. J.H. is also supported by the Program for NCET

under Grant No. NCET-08-0515 and the Natural Science
Foundation of Ningbo under Grant No. 2011A610179. We
thank Professor Yishen Li (USTC, Hefei, China) for his useful
suggestions on the rogue wave.

[1] G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York,
1995).

[2] A. Hesegawa and Y. Kodama, Solitons in Optical Communica-
tion (Oxford University Press, Oxford, 1995).

[3] P. K. Shukla and B. Eliasson, Phys. Usp. 53, 51 (2010).
[4] F. Smirnov, Form Factors in Completely Integrable Models of

Quantum Field Theory (World Scientific, Singapore, 1992).
[5] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[6] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett.

45, 1095 (1980).
[7] Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23,

510 (1987).
[8] R. Hirota, J. Math. Phys. 14, 805 (1973).
[9] A. Mahalingam and K. Porsezian, Phys. Rev. E 64, 046608

(2001).
[10] N. Sasa and J. Satsuma, J. Phys. Soc. Jpn. 60, 409 (1991).
[11] Y. S. Li and W. T. Han, Chin. Ann. Math. B 22, 171 (2001).
[12] S. Y. Sakovich, J. Phys. Soc. Jpn. 66, 2527 (1997).
[13] V. I. Karpman, Eur. Phys. J. B 39, 341 (2004).
[14] J. H. B. Nijhof and G. H. M. Roelofs, J. Phys. A 25, 2403 (1992).
[15] K. Nakkeeran, Phys. Rev. E 62, 1313 (2000).
[16] K. Nakkeeran, Phys. Rev. E 64, 046611 (2001).
[17] K. Nakkeeran, K. Porsezian, P. S. Sundaram, and A.

Mahalingam, Phys. Rev. Lett. 80, 1425 (1998).
[18] N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, Phys.

Lett. A 373, 2137 (2009).
[19] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys.

Rev. E 80, 026601 (2009).

[20] P. Müller, Ch. Garrett, and A. Osborne, Oceanogr. 18, 66 (2005).
[21] A. R. Osborne, Nonlinear Ocean Waves and the Inverse

Scattering Transform (Academic Press, New York, 2009).
[22] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the

Ocean (Springer, New York, 2009).
[23] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London)

450, 1054 (2007).
[24] D-Il. Yeom and B. Eggleton, Nature (London) 450, 953 (2007).
[25] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty,

N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[26] A. Chabchoub, N. P. Hoffmann, and N. Akmediev, Phys. Rev.

Lett. 106, 204502 (2011).
[27] A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Phys.

Rev. E 81, 046602 (2010).
[28] G. Neugebauer and R. Meinel, Phys. Lett. 100, 467 (1984).
[29] V. B. Matveev and M. A. Salle, Darboux Transformations and

Solitons (Springer, Berlin-Heidelberg, 1991).
[30] Y. S. Li, Soliton and Integrable System (Shanghai Sci.-Tech.

Edu., Publishing House, Shanghai, 1991).
[31] C. H. Gu, Darboux Transformation in Soliton Theory and its

Geometric Applications (Shanghai Sci.-Tech. Edu., Publishing
House, Shanghai, 2005).

[32] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys.
Rev. Lett. 31, 125 (1973).

[33] J. S. He, L. Zhang, Y. Cheng, and Y. S. Li, Sci. China Series A
49, 1867 (2006).

[34] S. W. Xu, J. S. He, and L. H. Wang, J. Phys. A 44, 305203
(2011).

026601-7

http://dx.doi.org/10.3367/UFNe.0180.201001b.0055
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1109/JQE.1987.1073392
http://dx.doi.org/10.1109/JQE.1987.1073392
http://dx.doi.org/10.1063/1.1666399
http://dx.doi.org/10.1103/PhysRevE.64.046608
http://dx.doi.org/10.1103/PhysRevE.64.046608
http://dx.doi.org/10.1143/JPSJ.60.409
http://dx.doi.org/10.1142/S0252959901000164
http://dx.doi.org/10.1143/JPSJ.66.2527
http://dx.doi.org/10.1140/epjb/e2004-00199-4
http://dx.doi.org/10.1088/0305-4470/25/8/047
http://dx.doi.org/10.1103/PhysRevE.62.1313
http://dx.doi.org/10.1103/PhysRevE.64.046611
http://dx.doi.org/10.1103/PhysRevLett.80.1425
http://dx.doi.org/10.1016/j.physleta.2009.04.023
http://dx.doi.org/10.1016/j.physleta.2009.04.023
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.5670/oceanog.2005.30
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/450953a
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevE.81.046602
http://dx.doi.org/10.1103/PhysRevE.81.046602
http://dx.doi.org/10.1016/0375-9601(84)90827-2
http://dx.doi.org/10.1103/PhysRevLett.31.125
http://dx.doi.org/10.1103/PhysRevLett.31.125
http://dx.doi.org/10.1007/s11425-006-2025-1
http://dx.doi.org/10.1007/s11425-006-2025-1
http://dx.doi.org/10.1088/1751-8113/44/30/305203
http://dx.doi.org/10.1088/1751-8113/44/30/305203

