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Instability of ion kinetic waves in a weakly ionized plasma
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The fundamental higher-order Landau plasma modes are known to be generally heavily damped. We show
that these modes for the ion component in a weakly ionized plasma can be substantially modified by ion-neutral
collisions and a dc electric field driving ion flow so that some of them can become unstable. This instability is
expected to naturally occur in presheaths of gas discharges at sufficiently small pressures and thus affect sheaths
and discharge structures.
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I. INTRODUCTION

One of the fundamental kinetic phenomena in plasma
physics is the higher-order Landau modes [1]. They are the
heavily damped solutions of the dispersion relation describing
the electrostatic modes of a one-component collisionless
Maxwellian plasma [2]. (A one-component plasma is the
approximation where only one plasma component oscillates.)
The dispersion relation is
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is the plasma dispersion function, U is any contour in the
complex ξ plane passing from ξ = −∞ to +∞ below the
singular point ξ = x, ω is the complex wave frequency, k is
the real wave number, vt = √

kBT/μ is the thermal velocity, T
is the temperature, μ is the particle mass, kB is the Boltzmann
constant, λD = vt/ωp is the Debye length, and ωp is the plasma
frequency. The transcendental equation (1) with respect to ω

yields the Langmuir mode and an infinite number of the heavily
damped higher modes [1].

Because the higher modes are a fundamental phenomenon,
it is not surprising that they received considerable attention
in the literature despite their strong damping. The first, but
implicit, mention dates back to Landau himself [2], who used
terms “all the poles” and “that of the poles” in relation to the
solutions of Eq. (1). An explicit statement on the existence of
the higher modes was made 14 years later by Jackson, who
demonstrated their presence analytically [3]. Numerical results
were published in the 1960s [1,4,5]. Recently, these modes
have been studied in relativistic plasmas [6,7]. Experimentally,
the higher modes were observed in the 1970s (in the spatially
damped case) [8,9].

Very similar, but nonlinear, kinetic electron waves have
been recently observed in simulations to persist without any
apparent decay over many plasma periods after being excited
by an artificial external driver [10,11]. They were called KEEN
waves, standing for “kinetic electrostatic electron nonlinear”

waves [10,11]. One remarkable similarity between them and
the higher modes is that KEEN waves were obtained even
for frequencies well below the plasma frequency and that
their typical phase velocity was somewhat above the electron
thermal velocity, which is in full accord with the properties
of the higher modes. Another similarity can be seen in the
quasineutral character of KEEN waves (evidenced by Fig. 9 of
Ref. [11]), as the higher modes are quasineutral at small wave
numbers [i.e., the neglect of the vacuum term in Eq. (1) does
not affect the higher solutions ω at small wave numbers, as can
be easily verified]. The heavy Landau damping, characteristic
to the higher modes, was eliminated for KEEN waves by a
population of trapped particles created by the external drive.
Very recently, analogous nonlinear kinetic waves have been
studied for the ion component in the presence of the electron
response using a similar external driver [12].

In this paper, we show that a finite number of the higher
modes can become unstable under a quite natural set of
circumstances, so that kinetic waves can emerge without
excitation by an artificial external driver. Namely, we show
that the higher modes for the ion component in a weakly
ionized plasma can be substantially modified by ion-neutral
collisions and ion flow driven by a dc electric field so that
some of these modes can become unstable. Such flows are an
essential feature of low-pressure gas discharges [13–17], as
they naturally arise to maintain the balance of absorption of
ions and absorption of electrons on the walls and electrodes of
the discharge chamber.

So far, there have been numerous investigations of stream-
ing instabilities triggered due to relative flows of various
plasma components in collisionless plasmas, with perhaps
the most known example being the Buneman instability [18],
but our study is principally different in two important aspects
explained below.

The first aspect is that we include a dc electric field and
collisions with neutrals, and do this self-consistently. The
self-consistency here means two things. First, we find the
steady-state velocity distribution from the model itself, i.e.,
from the balance of ion acceleration in the field and ion-neutral
collisions (instead of assuming a model distribution, e.g., a
shifted Maxwellian distribution). Second, collisions and the dc
field not only define the steady state but are also fully accounted
for in the analysis of perturbations (this is essential to obtain
the instability, as we show in Sec. III C). Of course, such an
approach generally requires extremely cumbersome velocity
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calculations, but we avoid this difficulty by considering the
common case where the dominant mechanism of collisions is
charge transfer, in which the ion and neutral simply exchange
identities and thus velocities [19,20]. Our further approxi-
mation is to assume the collision frequency to be velocity
independent, which allows an elegant solution not only for the
steady state but also for the ion susceptibility [21,22]. As, in
reality, it is not the collision frequency but the cross section that
is characterized by a weak (logarithmic) velocity dependence
[20,23] (in the regime where charge transfer is the dominant
mechanism of collisions), we separately show that the instabil-
ity remains in the constant mean free path case (in Sec. III D).

The second aspect is that we consider only one oscillating
plasma species, i.e., ions. The electron density is assumed to be
fixed, which physically implies that the temperature of the elec-
trons is high enough so that they do not “feel” electric fields,
similar to how ion Langmuir waves are derived in classical
textbooks [24]. This assumption allows us to render a simple
physical picture, while we address the role of the electron
temperature in Secs. III E and IV A (with additional details
given in Appendix C) and provide explicit conditions for
neglecting the electron effects [Eqs. (35), (36), (C4), and (C5)].
As our model involves only one oscillating plasma component,
it is remarkable indeed that our analysis reveals an instability.
This instability is clearly associated with a novel mechanism.

We emphasize that the ion-kinetic instability described
in this paper is not a variation of any known collisionless
instability (e.g., the bump-on-tail instability [25,26]), since
a collisionless one-component plasma with our steady-state
velocity distribution is always stable (Sec. III C). We explain
the instability mechanism in Sec. III C.

This ion-kinetic instability should affect a large class of gas
discharges, as it is expected to naturally occur in presheaths
[14,15,27–29] under quite common conditions (Sec. IV B).
In even broader context, our study shows that the often
disregarded higher-order Landau modes can in fact play a
crucial role in the presence of an electric field.

II. METHODS

A. Basic equations

Let us consider a weakly ionized plasma in a dc electric field
E0 driving ion flow. For electrons, we assume a Boltzmann
distribution with a sufficiently large temperature so that we can
consider their number density n0 to be homogeneous and fixed
(note that Boltzmann electron distributions in the presence of
field-driven ion flow are common in discharges [14,15,27–29];
we address the role of the electron temperature in Secs. III E
and IV A). We assume E0 to be homogeneous and use the
kinetic equation for ions with the Bhatnagar-Gross-Krook
(BGK) ion-neutral collision term [21] and Poisson’s equation

∂f

∂t
+ v · ∂f

∂r
+ e

m

(
E0 − ∂φ

∂r

)
· ∂f

∂v

= −νf + ν	M

∫
f (v′) dv′, (3)

− � φ = e

ε0

(∫
f dv − n0

)
, (4)

where f is the ion distribution function, φ is the electric
potential describing the time-space varying field (i.e., the field
apart from E0),

	M(v) = 1(
2πv2

tn

)3/2 exp

(
− v2

2v2
tn

)
(5)

is the normalized Maxwellian velocity distribution of neutrals,
ν is the velocity-independent ion-neutral collision frequency,
vtn = √

kBTn/m is the thermal velocity of neutrals, Tn is
the temperature of neutrals, e is the elementary charge (ions
are assumed to be singly ionized), m is the ion mass, and
ε0 is the permittivity of free space. The BGK term exactly
describes charge transfer collisions under the assumption of
a velocity-independent collision frequency [21].

B. Steady state

The homogeneous steady-state solution f = f0 is found
from Eqs. (3) and (4) by setting φ = 0, ∂f/∂t = 0, ∂f/∂r = 0.
This gives [21,30]

f0(v) = n0(
2πv2

tn

)3/2

∫ ∞

0
exp

(
−ξ − |v − ξvf|2

2v2
tn

)
dξ, (6)

where

vf = eE0

mν
(7)

and the subscript “f” stands for “flow,” as the flow velocity
(1/n0)

∫
vf0 dv can be shown to be equal to vf . It is helpful

to note that Eq. (6) here is simply Eq. (3) of Ref. [21], but
rewritten using another integration variable in order to show
that f0 is an integral superposition of shifted Maxwellian
distributions with exponential weights. At E0 = 0, the velocity
distribution (6) is Maxwellian, with the thermal velocity being
equal to that of neutrals. The solution (6) is shown in Fig. 1.
As Fig. 1 shows, at large fields the solution (1) cannot be
approximated by a shifted Maxwellian distribution, as the
solution (6) becomes highly asymmetric with respect to the
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FIG. 1. Steady-state solution. Shown is the longitudinal velocity
distribution f0,z = ∫ ∞

−∞
∫ ∞

−∞ f0 dvx dvy , where the z axis is in the
direction of the field. Different lines correspond to different values of
the parameter u = vf/vtn.
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position of its maximum. This can also be illustrated by
considering the limit of cold neutrals vtn → 0, where Eq. (6)
becomes

f0(v) = n0

vf
exp

(
−vz

vf

)
δ(vx)δ(vy), vz > 0

(8)
f0(v) = 0, vz < 0

where the z axis is in the direction of E0.

C. Dispersion relation

The dispersion relation is obtained by linearizing Eqs. (3)
and (4) with respect to φ and f − f0 and can be written using
the ion susceptibility derived in Refs. [21,31]. A derivation of
this dispersion relation by solving the initial value problem is
given in Ref. [22]. The dispersion relation is

1 + ω2
pi

ν2

B(ω,k)

1 − A(ω,k)
= 0, (9a)

A(ω,k) =
∫ ∞

0
exp[−�(ω,k,η)] dη, (9b)

B(ω,k) =
∫ ∞

0

η exp[−�(ω,k,η)]

1 + i(k · vf/ν)η
dη, (9c)

�(ω,k,η) =
(

1 − iω

ν

)
η + 1

2

[
ik · vf

ν
+

(
kvtn

ν

)2 ]
η2,

(9d)

where ωpi =
√

n0e2/(ε0m) is the ion plasma frequency, ω is
the complex wave frequency, and k is the real wave number;
the solutions ω of Eq. (9) provide contributions ∝ exp(−iωt +
ik · r) to the asymptotic expression for the solution φ = φ(r,t)
of the initial value problem at large t [22].

The result (9) is different from what one obtains by simply
substituting our steady-state distribution (6) to the classical
expression for the dielectric function of a collisionless plasma
[24]. The difference is due to our accounting for the perturba-
tion term (eE0/m) · ∂(f − f0)/∂v and the perturbation of the
right-hand side of Eq. (3). It is this difference that results in
the instability, as shown in Sec. III C.

D. Analysis

First, we numerically analyze the dispersion relation (9)
(in Sec. III A). The corresponding dimensionless variables are
the flow parameter

u = vf

vtn
, (10)

the collision parameter

ζ = ν

ωpi
, (11)

the dimensionless frequency ω/ωpi, and the dimensionless
wave number kλ, where

λ = vtn

ωpi
. (12)

Note that in the above definition of λ we use the thermal
velocity of neutrals, so at E0 = 0 the length λ becomes the ion
Debye length. For finite E0, the ion thermal velocity and the ion

Debye length are not defined because of the non-Maxwellian
form of the velocity distribution. Also note that the length λ

is not the effective screening length in the presence of the
flow, as evident from Ref. [32]. The dimensionless form of the
dispersion relation (9) is given in Appendix A.

Second, we provide an analytical proof of the instability
existence using Eq. (9) (in Sec. III B) and explain the instability
mechanism (in Sec. III C). Third, we analyze whether the
instability remains in the constant mean free path case (in
Sec. III D). For this purpose, we replace the right-hand side of
Eq. (3) by [33]

St[f (r,v)] =
∫ |v′ − v|

�
[	M(v)f (r,v′) − 	M(v′)f (r,v)]dv′,

(13)

where � is the collision length. This operator exactly describes
charge transfer collisions under the assumption of a velocity-
independent cross section.

Finally, we numerically study the effect of the electron
response (in Sec. III E). To clarify, there are two effects related
to a finite electron temperature: (i) the electron response to
ion oscillations, and (ii) a finite inhomogeneity length of the
Boltzmann electron distribution in the field E0. Here, we focus
on effect (i) by adding the Boltzmann response term 1/(kλe)2

to the left-hand side of Eq. (9a), where λe = [ε0kBTe/(n0e
2)]1/2

is the electron Debye length and Te is the electron temperature.
Effect (ii) is discussed in Sec. IV A.

III. RESULTS

Let us briefly summarize our results before describing them
in detail:

(i) The instability occurs when u � 8 and ζ � 0.3
(Sec. III A). However, in the limit ζ → 0, u = const [phys-
ically corresponding to a collisionless one-component plasma
with our steady-state velocity distribution (6)] the instability
growth rate tends to zero (Secs. III A and III C).

(ii) It is downstream waves that become unstable at
the above instability boundary (Sec. III A). To clarify, by
“downstream waves” we mean that the phase velocity vector
Re(ω)k/k2 is in the direction of E0.

(iii) When the above instability conditions are met, the
instability occurs in a finite range of wave numbers. Its lower
and upper ends for downstream waves can be estimated as k ∼
ν/vf and k ∼ (ν/vf) min{u2,ζ−4/3}, respectively (Sec. III C).

(iv) The number of unstable modes depends on u and ζ and
can in principle be made arbitrarily high (Sec. III B).

(v) The frequency of the most unstable mode for down-
stream waves is ω ≈ (3.35 + 0.64i)

√
eE0k/m, provided that

the above instability conditions on u, ζ , and k are satisfied by
a considerable margin (Secs. III B and III C).

(vi) The physics of the resulting growing waves is essen-
tially kinetic (Sec. III C).
(vii) The instability remains in the constant mean free path

case (Sec. III D).
(viii) The electron response for typical values of Te does not
shift the above instability thresholds to unrealistic values, as
for Te/Tn = 200 (corresponding to kBTe = 5 eV, Tn = 300 K),
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FIG. 2. Modes in the absence of flow. Shown are the solutions of
Eq. (9) for u = 0. The left column represents the collisionless case
[ζ → 0; in this case the dispersion relation is reduced to Eq. (1)], and
the right column illustrates the effect of collisions for ζ = 0.1. The
ion Langmuir mode and the first two higher modes are denoted by
“L,” “1,” and “2,” respectively. The dashed lines, shown to guide the
eye, correspond to Re(ω)/k = vtn.

the first higher mode remains unstable at, for instance, u = 14
and ζ = 0.05 (Sec. III E).

Let us now describe these findings in detail.

A. Numerical results

This section provides the results of the numerical analysis
of the dispersion relation (9).

No-flow case. At u = 0 and ζ → 0, Eq. (9) is equivalent
to the Landau dispersion relation (1). The solutions in this
case are shown in the left column of Fig. 2. Note that in the
limit k → 0, the higher modes are acoustic, i.e., ω ∝ k, with
the proportionality coefficients being complex numbers with
comparable real and imaginary parts [1].

A finite ζ merely results in that Im(ω) for any given mode
(including the ion Langmuir one) tends to a constant at k → 0,
as shown in the right column of Fig. 2. This constant for
all higher modes is the same and equal to −ν. For the ion
Langmuir mode, this constant differs by a factor of 2 and is
equal to −ν/2, for ν < 2ωpi.

Effect of field. As a detailed discussion of our numerical
results in light of the instability mechanism is given in
Sec. III C, in this section we only provide a brief description
of what happens in the presence of the field.

Let us first consider the dispersion curves for downstream
waves. The left column of Fig. 3 shows that at u = 2 and
ζ = 0.1, the ion Langmuir mode is no longer the least damped
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FIG. 3. Modes in the presence of flow. The left and right columns
correspond to u = 2 and 10, respectively, both are for ζ = 0.1 and
downstream waves. The notation of the modes is the same as in Fig. 2.
The right column illustrates the instability of the first higher mode.
The upper and lower dashed lines, shown to guide the eye, correspond
to Re(ω)/k = vf and Re(ω)/k = vtn, respectively.

mode at large wave numbers, as the first two higher modes
have smaller decay rates. (We determine which mode is the
ion Langmuir mode by looking at the behavior at k → 0:
the ion Langmuir mode is the one that has a finite real part of
the frequency at k → 0.) The right column of Fig. 3 illustrates
that at u = 10 and ζ = 0.1, the first higher mode is unstable
in a range of wave numbers, while the ion Langmuir mode
remains stable at these parameter values. It is not only the
first higher mode that can become unstable, as we found
numerically a large number of unstable modes by increasing u

and decreasing ζ (in accordance with the analytical results of
Sec. III B).

For upstream waves (for which the phase velocity vector
is in the direction opposite to the flow) we did not find any
instability. The general case of arbitrary angle of propagation
can be mathematically reduced to the case of propagation
along or against the flow, as Eq. (9) contains vf only in the
combination k · vf .

We calculated the instability region in the (u,ζ ) space (see
Fig. 4). One can see that the instability region is bound within
u � 8 and ζ � 0.3. Here, two important comments need to
be made. First, we found numerically that in the limit ζ → 0
and u = const within the instability region, the dimensionless
growth rate tends to zero, Im(ω/ωpi) → 0+. Thus, a finite
collision parameter is essential for the instability. Second,
it is always downstream waves that become unstable at the
boundary of the instability region.

026412-4



INSTABILITY OF ION KINETIC WAVES IN A WEAKLY . . . PHYSICAL REVIEW E 85, 026412 (2012)

0 0.1 0.2 0.3 0.4
0

10

20

30

u 

unstable 

stable 

ζ

FIG. 4. Stability diagram. The instability region is bound within
u � 8 and ζ � 0.3. Note that in the limit ζ → 0, u = const within
the instability region, the growth rate of the instability tends to zero,
so that a finite collision parameter is essential for the instability.

B. Analytical proof of the instability existence

Let us analytically prove the existence of the instability
and show that the number of unstable modes can be made
arbitrarily high by varying parameters u and ζ . We consider
Eq. (9) in the limit vtn → 0, ωpi → ∞ at finite vf , ν, ω, k and
assume that k is in the direction of the flow. Then, the first
term (unity) in Eq. (9a) is negligible so that the dispersion
relation takes the form B = 0. Furthermore, in Eq. (9d) the
second term of the expression inside the square brackets is
negligible as well. In the resulting dispersion relation, let us
consider the limit of large k. This allows us to neglect the
unity in the denominator of Eq. (9c) as well as the unity in
the first term of the right-hand side of Eq. (9d) and yields

ω = C
√

kvfν, (14a)

where the numerical factor C is given by∫ ∞

0
exp

(
iCξ − 1

2
iξ 2

)
dξ = 0. (14b)

Equation (14b) has an infinite number of solutions C, and
they all have positive real and imaginary parts. That is, we
get an infinite number of unstable modes. They correspond to
downstream waves, as Re(ω) > 0 for all solutions. The most
unstable solution, i.e., the one with the largest Im(C), is C ≈
3.35 + 0.64i. The presence of an infinite number of unstable
modes in the above limit means that, by approaching this limit,
one can achieve an arbitrarily large number of unstable modes.
This is consistent with our numerical analysis of the dispersion
relation (9), as we numerically found a large number of
unstable modes at sufficiently large u and sufficiently small ζ

(as noted in Sec. III A). Also, we have numerically verified that
the solutions described by Eq. (14) indeed satisfy Eq. (9) in the
limit considered above. We also provide a derivation of Eq. (14)
starting from our initial equations (3)–(5) (see Sec. III C).

C. Instability mechanism

First of all, let us emphasize that our instability is not
a variation of any known collisionless instability (e.g., the

bump-on-tail instability [25,26]), as we show below that
a collisionless one-component plasma with our steady-state
velocity distribution (6) is always stable. We consider Eq. (9)
in the limit of infinitely small E0 and ν, but keep their ratio
(which determines vf and hence the form of the steady-state
velocity distribution) finite. In this limit, Eq. (9) simplifies to

1 + 1

(kλ)2

∫ ∞

0

ξ exp{i[ω/(kvtn)]ξ − ξ 2/2} dξ

1 + iξ (k · vf )/(kvtn)
= 0. (15)

This equation does not have unstable solutions, as we verified
numerically. Note that this is in accordance with the above
stated fact that in the limit ζ → 0, u = const, the instability
growth rate tends to zero.

To explain the instability mechanism, let us start with the
physics of the higher modes in the case of u = 0 and ζ → 0
and then see how they can become unstable in the presence of
the field and collisions.

For u = 0 and ζ → 0, the higher modes represent quasineu-
tral oscillations at small wave numbers, as mentioned in the
Introduction and explained in more detail below. Let us first
clarify that the term “quasineutral” here means that the neglect
of the �φ term in Poisson’s equation does not affect the higher
modes, or, to put it differently, that contributions from various
velocity domains to the velocity integral determining the
susceptibility compensate for each other. To demonstrate this,
we first note that the �φ term in Poisson’s equation contributes
to Eq. (1) by means of the first term of Eq. (1) (unity), as seen
from the derivation of Ref. [2]. This vacuum term, as seen
directly from Eq. (1), indeed does not affect the higher-order
solutions ω in the limit k → 0, because of the 1/k2 factor
in the second term of Eq. (1) and the acoustic character of
the higher modes (ω ∝ k) at k → 0. Appendix B explicitly
shows how contributions from various velocity domains to the
velocity integral determining the susceptibility compensate for
each other.

These quasineutral waves are heavily Landau damped, as
their phase velocity is of the order of the thermal velocity. One
way to eliminate the damping is, as noted in the Introduction,
to apply an external driver in order to create a population
of trapped particles [10–12]. Another way, which is what is
considered in this paper, is to induce field-driven flow.

Let us now explain how growing quasineutral ion waves
become possible in the presence of field-driven ion flow,
starting from our initial equations (3)–(5). We consider the case
where the flow velocity is much larger than the thermal velocity
of neutrals and focus on the kinetics of ions with velocities in
the range vtn � vz � vf . Mathematically, this is equivalent
to considering the limit of cold neutrals and simplifying the
resulting steady-state distribution (8) by taking its low velocity
part

f0(v) = n0

vf
δ(vx)δ(vy), (vf �)vz(� vtn) > 0

(16)
f0(v) = 0, vz < 0.

By using this expression and considering downstream waves
with f − f0 = fa exp(−iωt + ikz), φ = φa exp(−iωt + ikz)

026412-5



KOMPANEETS, IVLEV, VLADIMIROV, AND MORFILL PHYSICAL REVIEW E 85, 026412 (2012)

(where the subscript “a” stands for “amplitude”), we get the
following linearized kinetic equation:

−iωfa + ikvzfa + eE0

m

∂fa

∂vz

− ikeφa

m

n0

vf
δ(v)

= −νfa + νδ(v)
∫

fa(v′) dv′. (17)

Note that for this consideration to be valid, an additional term
[ikeφan0/(mv2

f )] exp(−vz/vf)δ(vx)δ(vy) (for vz > 0) should
be negligible, as the latter appears when Eq. (8) is used instead
of Eq. (16). We will analyze this condition, as well as other
restrictive conditions imposed below, later in this section.

Let us consider the ballistic case, where the right-hand side
of Eq. (17) is negligible. This implies

ν

∣∣∣∣
∫

fa dv

∣∣∣∣ � ke|φa|n0

mvf
(18)

and

ν � max{|ω|,kvz}, (19)

which should be satisfied for the characteristic velocity vz of
the solution fa; Eq. (18) follows from comparison of the terms
containing the delta function [i.e., the fourth and sixths terms
in Eq. (17)], and Eq. (19) follows from comparison of the
terms not containing the delta function [i.e., the first, second,
and fifth terms in Eq. (17); we did not insert the third term
of Eq. (17) into Eqs. (18) and (19), because this term is the
only remaining term, so that its magnitude is determined by
the terms already included in Eqs. (18) and (19)]. The solution
of Eq. (17) with zero right-hand side is

fa = ikφa

E0

n0

vf
exp

[
m

eE0

(
iωvz − ikv2

z

2

)]
δ(vx)δ(vy), vz > 0

fa = 0, vz < 0. (20)

By substituting this solution to Poisson’s equation k2φa =
(e/ε0)

∫
fa dv, we get the dispersion relation

1 − ien0

ε0E0kvf

∫ ∞

0
exp

[
m

eE0

(
iωvz − ikv2

z

2

)]
dvz = 0,

(21)

where the main contribution to the integral should be from
the aforementioned range vtn � vz � vf [see Eq. (16)] for
the consideration to be valid. Note that the vacuum term in
Eq. (21) is the first term (unity), as it comes from the k2φa

term in Poisson’s equation.
Let us consider the case where neglecting the vacuum term

in Eq. (21) does not affect some of its solutions ω (the condition
for this is obtained below). Neglecting the vacuum term, we
get

ω = C

√
eE0k

m
, (22)

where C is given by Eq. (14b). Thus, we obtained exactly
Eq. (14) [Eqs. (22) and (14a) are equivalent] and hence its
infinite set of unstable solutions. The above consideration
explains the instability mechanism, as we identified the
elementary terms and processes essential for the instability
and how they work together.

Let us now show how the restrictive conditions imposed
above determine the instability region in the (u,ζ,k) space.
Namely, in the following, we show that for the most unstable
mode the above restrictive conditions can be summarized as

1 � kvf

ν
� min{u2, ζ−4/3}. (23)

One can immediately see from condition (23) that it can only
be satisfied when

u � 1, ζ � 1, (24)

which explains why the instability occurs at large u and small ζ
(see Fig. 4). As condition (23) is for neglecting the effects that
are not essential for the instability mechanism, the instability
range can be estimated as

1 � kvf

ν
� min{u2, ζ−4/3}. (25)

To derive Eq. (23), let us start with the condition for
neglecting the vacuum term. We rewrite Eq. (21) as

1 − i
(ωpi

ν

)2
(

ν

vfk

)3/2

×
∫ ∞

0
exp

(
i

ω√
eE0k/m

ξ − iξ 2

2

)
dξ = 0, (26)

and note that for the most unstable mode

Re(ω) ∼ Im(ω) ∼
√

eE0k/m. (27)

It follows that the vacuum term does not affect the most
unstable mode when(ωpi

ν

)2
(

ν

vfk

)3/2

� 1. (28)

Let us now consider the condition that the characteristic
velocity vz providing the main contribution to the integral in
Eq. (21) satisfies vtn � vz � vf . By using Eq. (27), we obtain
that this velocity is vz ∼ √

eE0/(mk), which gives

1 � kvf

ν
� u2. (29)

Concerning the remaining conditions [Eqs. (18) and (19)
and the condition of smallness of the term mentioned just after
Eq. (17)], they are automatically satisfied for the most unstable
mode when Eqs. (28) and (29) hold, as can be easily shown.

By combining Eqs. (28) and (29), we get Eq. (23). Note
that another derivation of Eq. (23) [from Eq. (9)] is provided
in Appendix C.

Let us now discuss, in light of the above findings, our
numerical results shown in the right column of Fig. 3. To
do so, we first rewrite Eqs. (22) and (25) in the dimensionless
units used to plot Fig. 3:

ω

ωpi
= C

√
uζkλ, (30)

ζ

u
� kλ � min

{
ζu,

1

uζ 1/3

}
, (31)

where, to remind, C ≈ 3.35 + 0.64i for the most unstable
mode. One immediately sees that the real part of the frequency
shown in the right column of Fig. 3 is in excellent agreement
with Eq. (30) (inside the instability range), as the difference
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is within 15%. Remarkably, the square root dependence of
Re(ω) on k is easily noticeable on the graph. The imaginary
part, however, does not show good agreement, which is
not surprising because the parameter values corresponding
to the right column of Fig. 3 are close to the instability
boundary shown in Fig. 4 [Eq. (22) is derived assuming that all
effects that are not essential to the instability mechanism are
negligible]. To verify this interpretation of the discrepancy, we
run a test comparing Im(ω) given by Eq. (30) with Im(ω)
given by Eq. (9) for parameters u, ζ , and kλ very well
satisfying inequalities (31) and found excellent agreement.
Finally, comparison of Eq. (31) with the right column of Fig. 3
shows reasonable agreement, as Eq. (31) for the parameters of
the right column of Fig. 3 becomes 0.01 � kλ � 0.2.

Let us also briefly discuss the wave number corresponding
to the maximum growth rate as well as the phase velocity of the
most unstable mode. Concerning the former, Eq. (22) shows
that the growth rate increases with k, so the wave number
corresponding to the maximum growth rate can be estimated
as the upper end of the instability wave number range (25).
As regards the phase velocity of the most unstable mode, we
combine Eqs. (22) and (25) and thus obtain that this phase
velocity varies with k in the range

max{vtn,vfζ
2/3} � Re(ω)

k
� vf . (32)

Finally, let us emphasize that the unstable solutions (22) are
quasineutral. This already follows from the derivation itself,
as these solutions are obtained for the case where they are not
affected by the neglect of the vacuum term (see above). Let
us, however, explicitly illustrate how high- and low-velocity
particle contributions to the susceptibility compensate for each
other. The susceptibility is the second term in Eq. (21), and we
consider it as the sum of two parts, one being the contribution
from vz < Re(ω)/k and one from vz > Re(ω)/k. By using
the most unstable solution ω ≈ (3.35 + 0.64i)

√
eE0k/m, we

obtain that the first part normalized by (ωpi/ν)2[ν/(vfk)]3/2 is
≈ 0.1 + 0.04i and that the second part normalized as above is
≈ −0.1 − 0.04i, so that they add up to zero.

D. Constant mean free path case

It is already clear from Sec. III C that the instability
mechanism is generic in the sense that it is not sensitive to
a particular velocity dependence for charge transfer collisions.
Let us, however, explicitly demonstrate that the instability
remains in the constant mean free path case. In the limit of
cold neutrals the operator (13) simplifies to [32]

St[f ] = −vf

�
+ δ(v)

�

∫
f (r,v′)v′ dv′. (33)

Then, the steady-state distribution is

f0(v) = 2n0

πvf,�
exp

(
− v2

z

πv2
f,�

)
δ(vx)δ(vy), vz > 0

f0(v) = 0, vz < 0 (34)

where vf,� = | ∫ vf0 dv|/n0 = √
2eE0�/(πm) is the flow ve-

locity in the constant mean free path case. The subsequent
steps are exactly the same as in Sec. III C, and we come to the

0 0.05 0.1
0.02

0.01

0

0.01

0.02

(a) Im (ω /ωpi)

(c) 

(b) 

kλ 

FIG. 5. Effect of the electron response. (a) No response case: The
unstable mode for u = 10, ζ = 0.1 (i.e., for the same u and ζ as in the
right column of Fig. 3). (b) The same mode for Te/Tn = 200, with u

and ζ as above. (c) The same mode for u = 14, ζ = 0.05 and Te/Tn

as above.

conclusion that the relation (22) exactly applies to the constant
mean free path case as well (in the limit considered).

E. Role of the electron response

Let us numerically show that the electron response for
typical values of Te does not shift the instability thresholds
to unrealistic values. (How the electron response is included is
explained in Sec. II D.) We choose a typical value Te/Tn = 200
corresponding to kBTe = 5 eV and Tn = 300 K. Performing
calculations for u = 10 and ζ = 0.1 (i.e., for the same values
of u and ζ as in the right column of Fig. 3), we find that the
instability disappears (see Fig. 5), but the instability does not
disappear at, for instance, u = 14 and ζ = 0.05 (see Fig. 5).
These values of u and ζ are quite realistic, as will be seen in
light of the discussion of Sec. IV B.

We did not find any other unstable mode in cases (a), (b)
and (c) of Fig. 5. It should also be noted that the classical
expression for the ion-acoustic instability [24] requires a finite
electron-to-ion mass ratio for the instability to occur, while in
our approach the electron mass is effectively zero.

IV. DISCUSSION

A. Applicability limits

The applicability of our model is limited by the following
factors:

(i) electron response to ion oscillations (addressed in
Sec. III E),

(ii) inhomogeneity of the Boltzmann electron density pro-
file in the field E0 (discussed below),

(iii) assumption of a velocity-independent collision fre-
quency for charge transfer collisions (addressed in Sec. III D),
and

(iv) assumption that charge transfer is the dominant mech-
anism of ion scattering on neutrals (discussed below).

Concerning factor (iv), for argon at room temperature,
charge transfer indeed dominates when ion velocities exceed
the thermal velocity of neutrals by a factor of ∼3 or larger [34].
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Thus, for argon at room temperature, factor (iv) should not
substantially influence our instability, as the latter occurs at
u � 8. As regards factor (ii), the corresponding inhomogeneity
length is Le = kBTe/(eE0). Our model can be applied when
this distance is larger than both the ion-neutral collision length,
which is vf/ν (for vf � vtn), and the wavelength 2π/k. This
imposes the following requirement:

Te

Tn
� max

{
u2,

uν

vtnk

}
. (35)

Let us make estimates to find when the instability occurs
in the case of a finite electron temperature. To do so, we need
to find when the instability mechanism explained in Sec. III C
is not substantially influenced by other effects, including the
electron effects, in a range of wave numbers. This means that

(a) condition (24) is satisfied and
(b) in at least a part of the wave number range (23), both

condition (35) is met and the effect of the Boltzmann response
term 1/(kλe)2 on the most unstable mode is negligible.

As shown in Appendix C, conditions (a) and (b) above can
be written as

u � 1, ζ � 1,
Te

Tn
� u2 (36)

[note that the last inequality in Eq. (36) coincides with one of
the two conditions imposed by Eq. (35)]. Here, two comments
need to be made. First, the fact that the last inequality of
Eq. (36) is better satisfied for the stable curve (b) than for
the unstable curve (c) of Fig. 5 does not mean a contradiction
between Eq. (36) and Fig. 5, as the first two inequalities of
Eq. (36) are better satisfied for the curve (c) than for the
curve (b). Second, estimates (36) are for neglecting the
effects that are not essential to the instability mechanism, so
the instability threshold on the electron temperature can be
estimated from Eq. (36) as

Te

Tn
∼ u2 (37)

(for a given u � 1 and a given ζ � 1). Thus, as the instability
thresholds on u and ζ in the absence of the electron effects
are about 8 and 0.3, respectively (as given by the exact
calculation presented in Fig. 4), we can summarize the
instability conditions as

8 � u �
√

Te

Tn
, ζ � 0.3; (38)

Eq. (38) is not very accurate (as seen from Fig. 5) because the
condition on Te in Eq. (38) is merely an estimate and not an
exact result.

B. Presheaths

Based on the above, we expect the instability to naturally
occur in presheaths at sufficiently small, but still quite
common, pressures, as explained in the following. Let us see
how the instability conditions (38) can be met in presheaths.

We first analyze the condition ζ � 0.3. By replacing ν by
vfσnn, where σ is the ion-neutral cross section and nn is the

neutral number density, we can rewrite the condition ζ � 0.3
as

P �
√

kBTn

30σ

√
n0e2

ε0
, (39)

where P is the gas pressure (here we took the condition u � 8
into account, i.e., we substituted vf ∼ 8vtn, because at larger vf

the restriction on P is stronger). By substituting Tn = 300 K
and σ = 6.5 × 10−15 cm2 (this value of σ is derived in
Ref. [32] for argon from the data of Ref. [35]), we get

P � (2 Pa) ×
√

n0

1014 m−3
. (40)

The obtained condition can be easily satisfied in gas dis-
charges, as there have been many experiments with pressures
below 2 Pa and plasma densities about or greater than
1014m−3 [36–40]. (Note that here n0 denotes the local density
in the presheath and not the density in the bulk of the
discharge, but for a rough estimate one can use the latter;
see measurements on the presheath structure [14,15].)

Let us now discuss the condition 8 � u �
√

Te/Tn in light
of the Bohm criterion [27]. First of all, we note that the Bohm
criterion applies when the ion-neutral collision length is larger
than the electron Debye length [28]. This condition can be
written as

P � 1

σ

√
n0e2kBT 2

n

ε0Te
. (41)

This is a weaker condition than Eq. (39) because they differ by
the factor 30

√
Tn/Te, which is typically larger than unity, so the

Bohm criterion applies when Eq. (39) is satisfied. According
to the Bohm criterion, the ion flow velocity reaches at least
the Bohm speed

√
kBTe/m at the sheath-presheath edge [27].

Then, the condition 8 � u �
√

Te/Tn is met in a certain space
region within the presheath if√

Te

Tn
� 8. (42)

For Tn = 300 K, this means kBTe � 1.6 eV, which is often
satisfied.

The instability may have significant implications, as
presheaths and sheaths are important to plasma physics and
technology [20,29]. First, the instability may result in a flow
turbulence or various dynamic structures and thus lead to the
appearance of strong electric fields varying on the ion time
scale. An alternative is the formation of a static structure
that suppresses the instability. In an extreme scenario, the
instability may significantly affect the whole discharge or even
switch it off. The above effects cannot be modeled using the
hydrodynamic approach since the latter ignores the higher
modes. (Inaccuracy of hydrodynamic modeling of plasma
boundary layers is illustrated in, e.g., Ref. [41].)

C. Presheath instability experiments

Instabilities in presheaths have been observed in the
presence of two ion species [14,42]. The ion-kinetic instability
described in this paper, in contrast, can occur even for a single
ion species plasma. Interestingly, measurements of Ref. [42]
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indicate that the presheath instability did not disappear when
only one ion species was present (although in this case the
instability amplitude was reduced; see Fig. 10 of Ref. [42]).
To explain this, the presence of unidentified impurity ions was
suggested [42]. We suggest that these results might also be
explained by the instability of the higher modes.

Let us explicitly suggest experimental conditions to observe
the instability described in this paper. Concerning the choice
of gas, argon is an excellent candidate, as in this gas at
room temperature, charge transfer is indeed the dominant
mechanism of ion scattering when ion velocities exceed the
thermal velocity of neutrals by a factor of ∼ 3 or larger [34]. In
addition, an argon plasma well represents a single ion species
plasma, as the impurity degree due to ions other than Ar+
(e.g., Ar++ and Ar+2 ) is usually quite small [43]. Concerning
the gas pressure, it should satisfy Eq. (40). An example of an
experiment well satisfying this condition is Ref. [44]. [Note,
however, that at extremely small pressures, the instability
may not be detectable, as its growth rate tends to zero at
ζ → 0 (Secs. III A and III C).] It may be also necessary to
take measures to increase the electron temperature, as our
estimate of the instability threshold on the electron temperature
yields kBTe ∼ 1.6 eV [Eq. (42)] so that the actual threshold
may differ by a factor of a few. These measures can be as
follows: (i) decreasing the gas pressure [36], (ii) decreasing
the rf peak-to-peak voltage [36], and (iii) using a Maxwell
demon [42,45].

D. Dusty plasmas

Another implication of the instability described in this paper
is that this instability may affect the interparticle interaction
[32,46] and ion drag force [21] in dusty plasmas [47–50].
In particular, our results imply that the expression for the
shielding of a dust particle in the presence of ion flow given
by Eq. (6) of Ref. [32] is only valid when the ratio of the
“field-induced Debye length” (defined in Ref. [32]) to the
collision length is larger than a certain threshold, which is
supposedly close to 0.3, i.e., to that in the BGK case (otherwise,
the linear response formalism does not apply because of
the instability of the steady state). The results of Ref. [46]
are unaffected because, in that work, the subthermal flow
regime was considered. The resulting change in the interaction
between dust particles may affect their self-organization and
dynamics [51–62].

V. CONCLUSION

We found a remarkable type of instability, which can be
triggered in a weakly ionized plasma in the presence of ion
flow driven by a dc electric field. We showed that the dc field
and ion-neutral collisions can substantially modify the physics
of the ion higher-order Landau modes so that some of them can
become unstable. The instability is of broad relevance to gas
discharge physics, as dc fields are common in gas discharges.
In particular, the instability is expected to naturally occur in
presheaths under quite common conditions [Eqs. (40) and
(42)] and thus affect sheaths and discharge structures. In even
broader context, our study shows that the often disregarded
higher-order Landau modes can in fact play a crucial role in
the presence of an electric field.
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APPENDIX A: DIMENSIONLESS FORM OF EQ. (9)

The dispersion relation (9) can be written in our dimension-
less units for a numerical analysis as

1 + 1

(kλ)2

(
1 − ζ

kλ

∫ ∞

0
exp(−H ) dξ

)−1

×
∫ ∞

0

ξ exp(−H ) dξ

1 + iuξ cos θ
= 0,

(A1)

H = 1

kλ

(
ζ ξ − iωξ

ωpi
+ 1

2
iuζ ξ 2 cos θ

)
+ ξ 2

2
,

where θ is the angle between k and E0.

APPENDIX B: QUASINEUTRALITY
OF THE HIGHER MODES

This appendix illustrates, for u = 0 and ζ → 0, the
quasineutral character of the higher modes at small wave
numbers. Namely, we explicitly show how contributions from
various velocity domains to the velocity integral determining
the susceptibility compensate for each other. The susceptibil-
ity, i.e., the second term in Eq. (1), can be written as [2]

χ = − e2

mε0k2

∫
U

df0,z(vz)

dvz

dvz

vz − ω/k
, (B1)

where the wave number is in the direction of the z axis,
f0,z(vz) = (2π )−1/2(n0/vtn) exp[−v2

z /(2v2
tn)] is the velocity

distribution integrated over vx and vy , and U is any contour in
the complex vz plane passing from vz = −∞ to +∞ below
the singular point vz = ω/k. This integral can be written as the
sum of the integral on the real axis and the contribution from
the pole of the integrand [for Im(ω) < 0]. Dividing the integral
on the real axis into two parts, one over vz smaller than the
phase velocity Re(ω)/k and one over the remaining interval,
we can write

χ = 1

(kλ)2
(J1 + J2 + J3), (B2)

where

J1 = −v2
tn

n0

∫ Re(ω)/k

−∞

df0,z(vz)

dvz

dvz

vz − ω/k
, (B3)

J2 = −v2
tn

n0

∫ ∞

Re(ω)/k

df0,z(vz)

dvz

dvz

vz − ω/k
, (B4)

J3 = −2πiv2
tn

n0

df0,z(vz)

dvz

∣∣∣∣
vz=ω/k

, (B5)
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the integration in the expressions for J1 and J2 is performed
on the real axis and J3 is the contribution from the pole. By
substituting here the first higher-mode solution ω/(kvtn) ≈
3.60 − 1.73i (at k → 0), we get J1 ≈ −0.032 − 0.06i, J2 ≈
5 × 10−5 − 3 × 10−4i, J3 ≈ 0.032 + 0.06i, so that it is ex-
plicitly seen that they add up to zero and that, as a side
note, J2 is almost unimportant here. For the second mode, we
have ω/(kvtn) ≈ 4.47 − 2.87i, J1 ≈ −0.012 − 0.035i, J2 ≈
5 × 10−7 − 6 × 10−6i, J3 ≈ 0.012 + 0.035i.

APPENDIX C: ESTIMATES

This appendix provides estimates for the instability region
and thus derives Eqs. (23) and (36). We first consider the
“pure” case where all terms that are not essential for the
instability are neglected. This allows us to obtain estimates for
the magnitudes of the essential terms. We then compare them
with the neglected terms to obtain conditions under which the
neglected terms are indeed negligible.

The “pure” case can be considered by omitting all terms in
Eq. (9) that were neglected in Sec. III B. These terms are (i) the
unity in round brackets in Eq. (9d), (ii) the second term of the
expression inside the square brackets in Eq. (9d), (iii) the unity
in the denominator in Eq. (9c), and (iv) the first term (unity)
in Eq. (9a). Therefore, the main contribution to the integral in
Eq. (9c) is from

η ∼ ν

|ω| ∼
√

ν

kvf
. (C1)

To derive this, we expressed ω via k using Eq. (14); we assume
Re(C) ∼ Im(C) ∼ 1, as we consider the most unstable mode;
we also assume that k is in the direction of E0. The above
estimate of η yields

|B| ∼
(

ν

kvf

)3/2

. (C2)

This result is obtained by replacing η and dη by the estimate
(C1) and substituting unity for the exponent. Analogously, for

the second term in Eq. (9a), we get

ω2
pi

ν2

∣∣∣∣ B

1 − A

∣∣∣∣ ∼ ω2
pi√

νk3v3
f

min

{
1,

√
kvf

ν

}
. (C3)

Let us now make a comparison with the magnitudes of the
nonessential terms (i)–(iv). The term (i) is negligible when
|ω| � ν. This is equivalent to k � ν/vf . The term (ii) can be
omitted when k � vfν/v2

tn. The term (iii) does not play any
role when it is smaller than the other term in the denominator of
Eq. (9c) with η replaced by estimate (C1). This gives k � ν/vf ,
which coincides with the condition for the neglect of the term
(i). Finally, the term (iv) can be neglected when it is smaller
than the right-hand side of Eq. (C3). The right-hand side of
Eq. (C3) can be simplified using the condition k � ν/vf for
the neglect of the term (i). The result is that the term (iv)
is negligible when k � (ν/vf)(ωpi/ν)4/3. By combining the
above conditions, we get Eq. (23).

Analogously, we obtain that the electron response term
1/(kλe)2, added to the left-hand side of Eq. (9a), is unimportant
when

k � v3
f νm2

(kBTe)2
. (C4)

Let us now see when conditions (C4) and (35) are met in
at least a part of the wave number range (23) assuming that
condition (24) is satisfied. As conditions (C4) and (35) impose
lower (and not upper) limits on the wave number, we only need
to find when conditions (C4) and (35) are met at the upper end
of the wave number range (23). Concerning Eq. (C4), it is met
at the upper end of the wave number range (23) when

Te

Tn
� max{u,u2ζ 2/3}. (C5)

As regards Eq. (35), it is met at the upper end of the wave
number range (23) when Te/Tn � u2. This inequality is a
stronger condition than Eq. (C5). Thus, we arrive at Eq. (36).
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