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Stability and evolution of wave packets in strongly coupled degenerate plasmas
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We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of
strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an
effective temperature associated with their strong coupling, whereas that of electrons is provided by the
relativistic degeneracy pressure. Using a multiple-scale technique, a (3 + 1)-dimensional coupled set of nonlinear
Schrödinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic
model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique
modulational instability of a Stoke’s wave train to a small plane-wave perturbation. We show that the wave
packets, though stable to the parallel modulation, become unstable against oblique modulations. In contrast to
the long-wavelength carrier modes, the wave packets with short wavelengths are shown to be stable in the weakly
relativistic case, whereas they can be stable or unstable in the ultrarelativistic limit. Numerical simulation of the
coupled equations reveals that a steady-state solution of the wave amplitude exists together with the formation of
a localized structure in (2 + 1) dimensions. However, in the (3 + 1)-dimensional evolution, a Gaussian wave beam
self-focuses after interaction and blows up in a finite time. The latter is, however, arrested when the dispersion
predominates over the nonlinearities. This occurs when the Coulomb coupling strength is higher or a choice of
obliqueness of modulation, or a wavelength of excitation is different. Possible application of our results to the
interior as well as in an outer mantle of white dwarfs are discussed.
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I. INTRODUCTION

The nonlinear propagation of electrostatic waves in strongly
coupled plasmas has been of considerable interest in recent
years because of its possible applications in compact astro-
physical objects (e.g., the interior of white dwarfs, neutron
stars, the core of pre-supernova stars), giant planetary interiors
(e.g., Jupiter), and in a laboratory (e.g., ultracold plasmas by
laser compression of matter), as well as in nonideal plasmas
for industrial applications (see, e.g., some recent works [1–3]).
White dwarfs have typically masses approximately between
0.07 and 8–10 M�, where M� is the solar mass. It has been
predicted that the majority of white dwarfs have a core of
carbon-oxygen composition, which itself is surrounded by
a helium layer and, for most known white dwarfs, by an
additional hydrogen layer. However, recent research has also
indicated that there may be several white dwarfs with large
volumes (or low density) primarily composed of carbon with
little or no hydrogen or helium [4]. Furthermore, Koester in
a recent study assumed that the core may be pure C or pure
O [5]. The core of these stars is, however, extremely dense and
consists of a plasma of unbounded nuclei and electrons, i.e.,
positively charged ions providing almost all the mass (inertia)
and the pressure, as well as electrons providing the pressure
(restoring force) but none of the mass (inertialess). In these
plasma environments (typically at high densities ∼1034 cm−3

and low temperatures ∼107 K), the ions form a regular
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lattice structure and electrons are relativistically degenerate
with weak electrostatic interactions [6,7]. Nevertheless, in an
outer mantle, plasmas may be composed of nonrelativistically
degenerate electrons (at low densities ∼1026 cm−3) with
strongly coupled ions. In both these cases, the electron Fermi
energy becomes larger compared to both the thermal energies
kBTe,i of electrons and ions as well as the typical electron-ion
interaction energies. Therefore, the electron density, to a good
approximation, can be assumed to be uniform and unaffected
by the ions.

On the other hand, above a certain mass (M ≈ 1.4 M�),
the internal pressure of white dwarfs becomes high enough
for electrons to have sufficient momenta. In this case the
relativistic effects become significant, and the degenerate
equation of state P ∼ n

5/3
e (weakly relativistic) that keeps the

white dwarf from collapsing under its own gravity changes to
a different form, P ∼ n

4/3
e (ultrarelativistic) [8]. In the latter

case, the white dwarf collapses under self-gravitation into a
denser object such as a neutron star. This change of degeneracy
pressure (of course, there is no sharp transition) will certainly
change the spectrum of collective oscillations of electrons and
ions, which can be used to probe the density profiles and other
characteristics of white dwarfs.

Recent theoretical developments have indicated that strong
correlations of ions significantly modify the dispersion prop-
erties of collective modes as well as the characteristics
of nonlinear localized structures, e.g., solitons or shocks
in strongly coupled degenerate plasmas [1,9]. A number
of works can be found in the literature dealing with the
linear and nonlinear properties of wave modes in strongly
coupled dusty plasmas [2,3,10]. An addition, in a nonlinear
regime, the one-dimensional propagation of wave packets and
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associated modulational instability [11] in strongly coupled
dusty plasmas has been studied by Veeresha et al. [3]. Very
recently Shukla et al. [1] have shown that the localization of ion
modes is also possible in a one-dimensional strongly coupled
relativistically degenerate plasma. It is, therefore, pertinent to
investigate the influence of strongly coupled ions as well as the
relativistic degeneracy pressure of electrons on the propagation
of multidimensional wave packets in collisional electron-ion
plasmas, such as those representative of white dwarfs.

In contrast to (1 + 1)-dimensional evolution of envelope
solitons, the nonlinear Schrödinger equation in multidimen-
sions [(2 + 1) or (3 + 1)] with cubic and/or quadratic nonlocal
nonlinearities may no longer be integrable. In this case the
system often exhibits wave collapse near the singularity
even with a wide range of initial conditions instead of
stable oscillations [12]. A collapsing wave packet with higher
amplitudes thus self-focuses in shorter scales at the singularity
until other physical effects intervene to arrest it. Nevertheless,
nonlocality has been known to give rise to novel phenomena of
generic natures. For example, it may promote the modulational
instability in self-defocusing media or can arrest wave collapse
in multidimensional self-focusing media. Furthermore, nonlo-
cal nonlinearity may affect soliton interactions as well as may
support the formation of stable localized structures [13]. It is
thus of interest to investigate the modulational instability as
well as the localization of wave packets in strongly coupled
relativistically degenerate plasmas.

II. ANALYSIS

A. Basic equations

We consider the nonlinear propagation of low-frequency
(kVT i < ω < kVT e,ωpi) electrostatic waves in an unmagne-
tized collisional plasma consisting of inertial multicharged
strongly coupled classical ions and inertialess relativistically
degenerate electrons with weak interparticle interactions. The
dynamics of such waves can be described by a generalized
hydrodynamic model, which reads [1,3,10,14]

dni

dt
+ ni∇ · vi = 0, (1)

(
1 + τm

d

dt

) (
mini

dvi

dt
+ Zieni∇φ + ∇Pi + miniνinvi

)

= η∇2vi +
(

ζ + η

3

)
∇ (∇ · vi) , (2)

0 = ene∇φ − ∇Pe, (3)

∇2φ = 4πe(ne − Zini), (4)

where nj , vj , and mj , respectively, denote the number density
(with equilibrium value nj0), velocity, and mass of different
species (j = e for electrons and j = i for ions), Zi is the
ion charge number, e is the elementary charge, and νin is
the ion-neutral collision frequency. Furthermore, φ is the
electrostatic scalar potential, Pe (Pi) is the electron (ion)
pressure to be defined later, and d/dt = ∂/∂t + vi · ∇ is
the convective derivative. In equilibrium, the overall charge
neutrality condition gives ne0 = Zini0. In Eq. (2) τm is the

viscoelastic relaxation time given by [10]

τm = ζ + 4η/3

ni0kBTi

[
1 − γiμi + 4

15
u(�i)

]−1

, (5)

where Ti is the ion temperature, kB is the Boltzmann constant,
and ζ + 4η/3 is the coefficient of the effective ion viscosity
in which η and ζ account, respectively, for the shear and bulk
viscosity. Also, γi is the ion adiabatic index and u(�i) is a
measure of the excess internal ion energy. Here �i , the ion
coupling parameter (to be presented more extensively later in
the text), is a measure of the ratio of the Coulomb energy to the
kinetic energy per particle. For values of �i of the order of one
or larger, correlation effects become important, and the plasma
is then called strongly coupled. The expression for u(�i) can
be given for κ → 0 (where κ , to be explained later, is the ratio
of the interparticle distance to the ion Debye length) as [15,16]

u(�i) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 −
√

3
2 �

3/2
i (�i < 1),

−0.90�i + 0.95�
1/4
i

+0.18�
−1/4
i − 0.80 (1 � �i � 160) ,

1.5 − 0.90�i + 2980�−2
i (160 < �i � 300),

1.5 − 0.90�i + 9.6�−1
i

+840�−2
i + 1.1 × 105�−3

i (300 < �i � 2000).

(6)

The relaxation time τm represents a characteristic time scale
to describe two classes of wave modes with frequency ω,
namely, the hydrodynamic modes with ωτm � 1 and modes
with ωτm 	 1, i.e., the kinetic modes. The compressibility
parameter μi appearing in Eq. (5) is given by [10]

μi = 1

kBTi

(
∂Pi

∂ni

)
Ti

= 1 + 1

3
u(�i) + �i

9

∂u(�i)

∂�i

. (7)

Since u(�i) is negative for increasing values of �i , μi can
change its sign. It has been shown that for �i within the range
1 < �i < 10 this change of sign can cause the dispersion curve
to turn over with the group velocity going to zero and then
to negative values [10]. In the following subsections we will
define parameters that are relevant in the present theory.

B. Degeneracy parameter

The degeneracy parameter for a particle of species j can be
defined as

χj ≡ TFj

Tj

= 1

2
(3π2)2/3

(
njλ

3
Bj

)2/3
, (8)

where λBj = h̄/
√

kBTjmj is the thermal de Broglie wave-
length, EFj = kBTFj = h̄2(3π2nj )2/3/2mj is the Fermi en-
ergy, and TFj is the Fermi temperature. Thus, depending on
the thermal energy kBTj , particles are said to be degenerate
if the number density nj exceeds the quantum concentra-
tion nqj ≡ (2mjkBTj/h̄

2)3/2/3π2. Typically, for astrophysical
dense plasmas, ne � 1027 cm−3. So χe > 1 for Te � 107 K.
However, in metals (ne ∼ 1023 cm−3) electrons are degenerate
at Te � 105 K. Thus, when the electrons form a degenerate
system and ions are classical, χe > 1 and χi < 1 must be
satisfied.
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C. Coupling parameter

In order to measure the weak or strong interparticle
interactions between electrons or ions we define two coupling
parameters, namely, the quantum coupling and the Coulomb
coupling parameter. The quantum criterion of ideality for
degenerate electrons has the form

�e = 4πe2n1/3
e /EFe ∼ d/a0, (9)

where d denotes the mean interparticle distance (Wigner-Seitz
cell radius) given by (4π/3)d3nj = 1 and a0 is the Bohr radius.
Since EFe ∝ n

2/3
e , the parameter �e decreases below one with

increasing values of the electron density (ne � 1027 cm−3).
This implies that a degenerate electron plasma becomes even
more ideal with thermal compression. Moreover, at higher
densities only electrons represent an ideal Fermi gas, whereas
the ion component is nonideal. Depending on the degree of
its nonideality, one may look for ionic liquids or cellular
or crystalline structures. Thus, one defines the criterion of
ideality or nonideality by the ratio between the average
potential energy of Coulomb interaction and the mean thermal
energy, characterized by the temperature Ti for nondegenerate
multicharged ions as

� ≡ �ie
−κ =

(
Z2

i e
2

kBTid

)
e−κ , (10)

where the factor κ ≡ d/λDi measures the screening of the
ion charge by the plasma over a distance of the ion De-

bye length λDi =
√

kBTi/4πni0Z
2
i e

2. Notice here that in a
two-component electron-ion plasma in which electrons are
degenerate and ions are classical, the screening distance of a
test charge is truly the ion Debye length, i.e.,

λ−2
scr = λ−2

Fe + λ−2
Di ≈ λ−2

Di , (11)

where λFe = (kBTFe/4πnee
2)1/2 is the Thomas-Fermi length

(screening distance by degenerate electrons). Furthermore,
plasma represents a gaseous medium for �i < 1, which
changes to liquid-like (�i � 10) with density growth or with
cooling. This plasma has a short-range order. With further
enhancement of �i , the ion subsystem crystallizes in the range
(170 � �i � 180), and for �i > 180, the plasma behaves like
a solid with long-range order. In the latter, the Coulomb force
completely dominates the dynamics, and the ions arrange
themselves in a periodic lattice structure, which minimizes
the electrostatic interaction energy. Typically, for a density
∼1034 cm−3 and a composition of pure O16 in the interior
of a white dwarf, the resulting temperature for the onset of
crystallization is ∼107 K [17].

D. Degenerate equation of state

For degenerate electrons, the energy distribution is no
longer a thermal distribution, but one governed by the
exclusion principle, i.e., the Fermi energy, which has a pressure
associated with it. The equation of state for relativistically
degenerate electrons is given by [8]

Pe = πm4
ec

5

3h3
[s(2s2 − 3)(1 + s2)1/2 + 3 sinh−1(s)], (12)

where pe = (3h3ne/8π )1/3 is the momentum of electrons
on the Fermi surface, h (=2πh̄) is the Planck’s constant,
and s = pe/mec is the nondimensional parameter. Thus,
in the weakly relativistic (or nonrelativistic) limit (s � 1)
and ultrarelativistic limit (s 	 1) the pressure equation (12)
reduces to two different forms:

Pe =
{

1
5

h̄2

me
(3π2)2/3n

5/3
e = 2

5EFene for s � 1,

h̄c
4 (3π2)1/3n

4/3
e for s 	 1.

(13)

These pressures can be combined to write

Pe = Kγ nγ
e , (14)

where

Kγ = Rγ

3γ
(3π2h̄3)γ−1 (15)

with R5/3 = 1/me and R4/3 = c. Thus, when the Fermi energy
becomes higher than the rest energy of electrons, the weakly
relativistic pressure equation will no longer be valid, and one
must use the ultrarelativistic equation of state. The latter in the
case of massive white dwarf stars (M ≈ 1.4 Msun) gives rise to
a lower degeneracy pressure than the weakly relativistic case,
making them gravitationally unstable.

E. Pressure equation for ions

We now consider the pressure of ions as given by [1]

∇Pi = γikBTif ∇ni, (16)

where Tif = T∗ + μiTi is the effective ion temperature in
which T∗ appears due to electrostatic interactions between
strongly coupled ions and is given by [18,19]

T∗ = Nnn

3
�iTi(1 + κ)e−κ . (17)

Here Nnn is determined by the ion structure and corresponds to
the number of nearest neighbors (e.g., in the crystalline state,
Nnn = 12 for the fcc and hcp lattices, Nnn = 8 for the bcc
lattice). Although the parameter μi can be negative [cf. Eqs. (6)
and (7)] for increasing values of �i , T∗ may be comparable or
even dominate over μiTi for �i 	 1, and so the effective tem-
perature Tif (>0) is most likely due to the strong coupling of
ions. Typically, for ne = 2 × 1026 cm−3, Te = 40Ti = 107 K,
and Zi = 8 (relevant for weakly relativistic regime), we
have �i ≈ 202, T∗ = 2 × 108 K, and μiTi = −2.4 × 107 K.
Similarly, considering parameters in the ultrarelativistic
regime, we find that T∗ is always a few orders of magnitude
higher than the kinetic temperature of ions Ti .

F. Parameter regimes

Our aim is to consider a fully ionized two-component
plasma in which electrons are relativistically degenerate
with weak interaction (almost free) and ions are multiply
charged, forming a classical system (nondegenerate) with
strong electrostatic interaction. Since s ∼ 10−10n

1/3
e , in the

weakly relativistic limit (s � 1) we have ne � 1026 cm−3. In
this regime, the degeneracy condition for electrons [cf. Eq. (8)]
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is satisfied for Te � 107 K. Also satisfied are the coupling pa-
rameters �e < 1, χi � 1, and �i 	 1 for Zi > 1 and Ti < Te.
On the other hand, for ultrarelativistic degenerate electrons,
we have ne � 1035 cm−3 and Te � 108 K in order to satisfy
s 	 1 and the degeneracy condition (8). In this case, ions
are nondegenerate (χi < 1) for Zi > 1 with a mass mi ∼
Zim0, where m0 = 1.66 × 10−24 g is the unit of atomic
mass, and the conditions χe 	 1, �e � 1, �i � 100 are
satisfied.

Again, it has been shown that the viscosity coefficient
Cvis ≡ (ζ + 4η/3)/ni0kBTi in Eq. (5) has a wide minima
(∼1) in 1 < �i < 10, and it tends to increase as ∝�

4/3
i for

�i � 10. Also, it becomes high for �i < 1 [20]. Typical
values of Cvis are ∼45 for �i = 0.1, ∼46.4 for �i = 100,

and ∼�i = 100118.5 for �i = 202. Thus, τm (∝Cvis) becomes
high in the weak coupling (�i < 1) as well as in the high
coupling (�i > 1) regimes. So the kinetic modes exist only
for (�i < 1) or (�i 	 1) where the condition ωτm 	 1 is
satisfied. In the range 1 < �i < 10, τm is typically of the
order of unity, and so the kinetic condition may no longer
be valid. Again, since �i > 100 is more likely in the case
of both weakly relativistic and ultrarelativistic regimes [e.g.,
for parameters relevant to the conditions of white dwarfs (C12

and O16 compositions), we have �i = 125 (Zi = 6) and �i =
202 (Zi = 8) for ne = 2 × 1026 cm−3, Te = 40Ti = 107 K
in the weakly relativistic case. In the ultrarelativistic regime,
we have �i = 165 (Zi = 6) and �i = 267 (Zi = 8) for ne =
1035 cm−3, Te = 2Ti = 3 × 108 K, and the hydrodynamic
modes may not exist in the limit ωτm � 1 for the same reason
as for τm. Thus, in our collisional plasmas we can specify the
following two cases of interest.

Case I: s � 1, χe > 1, χi < 1, �e < 1, �i > 100, and
ωτm 	 1. This represents the propagation of kinetic wave
modes in a plasma, composed of weakly relativistic degenerate
electrons with weak interactions and strongly coupled classical
ions. In this case, the valid regimes for the density and
temperature to be relevant, e.g., in an outer mantle of a white
dwarf, are ne � 1026 cm−3, Ti < Te � 107 K with Zi > 1.

Case II: s 	 1, χe > 1, χi < 1, �e < 1, �i > 100, and
ωτm 	 1. That is, kinetic modes may exist in a plasma in
which degenerate electrons are ultrarelativistic with weak
interaction and ion components form a strongly coupled
classical system. The parameter regimes in this case, to be
relevant in the core of a massive white dwarf, are ne �
1035 cm−3, Ti < Te � 108 K with Zi > 1.

G. Normalized system

It is customary to normalize the physical quantities by
redefining them in terms of new variables: Nj = nj/nj0, Vi ≡
(U,V,W ) = vi/VT , T = tωpi , and (X,Y,Z) = (x,y,z)/λD ,

where λD =
√

γikBTif /4πni0Z
2
i e

2 is the effective Debye

length, VT = √
γikBTif /mi is the effective ion thermal speed,

and ωpi = VT /λD is the ion plasma frequency. We then
recast the basic equations (1), (2), and (4) in the following
nondimensional forms:

dNi

dT
+ Ni∇ · Vi = 0, (18)

(
1 + τ̄m

d

dT

)(
Ni

dVi

dT
+ Dγ Ni∇φγ + ∇Ni + ν̄inNiVi

)

= η̄∇2Vi +
(

ζ̄ + η̄

3

)
∇ (∇ · Vi) , (19)

∇2φγ = (Ne − Ni)/Dγ . (20)

Here d/dT = ∂/∂T + Vi · ∇ with ∇ ≡ ( ∂
∂X

, ∂
∂Y

, ∂
∂Z

), ν̄in =
νin/ωpi , τ̄m = τmωpi , (η̄,ζ̄ ) = (η,ζ )ωpi/ni0γikBTif , and the
constant Dγ is given for weakly relativistic (γ = 5/3) and
ultrarelativistic (γ = 4/3) cases as

Dγ =
{

ZiTFe/γiTif for γ = 5/3,

βZimec
2/γikBTif for γ = 4/3,

(21)

where β = λC(3π2ne0)1/3 is the dimensionless parameter with
λC = h̄/mec denoting the reduced Compton wavelength. We
are then left with Eq. (3), which can be integrated to obtain the
expression for the electron density Ne ≡ ne/ne0 as

Ne = (1 + φγ )
1

γ−1 ≈ 1 + Aγ φγ + Bγ φ2
γ + Cγ φ3

γ , (22)

where φγ (<1) is different for different γ and given by

φγ =
{

eφ/kBTFe for γ = 5/3,

eφ/βmec
2 for γ = 4/3.

(23)

The coefficients appearing in Eq. (22) are

Aγ = 1

γ − 1
, Bγ = 2 − γ

2(γ − 1)2
,

(24)

Cγ = (2 − γ )(3 − 2γ )

6(γ − 1)3
.

III. PERTURBATION METHOD: DERIVATION
OF COUPLED EQUATIONS

We consider the propagation of slowly varying weakly
nonlinear wave envelopes propagating with a group velocity
vg oriented arbitrarily in the xy plane to the direction of
propagation. Then in a coordinate frame moving with the speed
vg , the space and the time variables can be stretched as [12,21]

ξ = ε(x − vgxt), η = ε(y − vgyt), ζ = εz, τ = ε2t,

(25)

where ε is a small parameter representing the strength of the
wave amplitude, and vgx , vgy are the components of the group
velocity along the x and y axes. Since we are interested in
the modulation of a plane wave as the carrier wave with the
wave number k and frequency ω, the dynamical variables can
be expanded as

A = A0 +
∞∑

n=1

εn

∞∑
l=−∞

A
(n)
l (ξ,η,ζ,τ )ei(k·r−ωt)l , (26)

where A0 = 1 for Nj and A0 = 0 for other variables. Also A
(n)
l

satisfies the reality condition A
(n)
−l = A

(n)∗
l with the asterisk

denoting the complex conjugate. We then substitute the
stretched variables from Eq. (25) and the expansion from
Eq. (26) into the normalized equations (18)–(20) and equate

026409-4



STABILITY AND EVOLUTION OF WAVE PACKETS IN . . . PHYSICAL REVIEW E 85, 026409 (2012)

different powers of ε to obtain a set of reduced equations as
given in the following subsections. Until and unless mentioned
we will omit the subscript γ in φγ for simplicity, but we stress
that the corresponding results will be different for different
choice of γ = 5/3 or 4/3.

A. Dispersion relation

In the lowest order of ε with n = 1, l = 1, we obtain the
following equations for the densities and velocities in terms of
φ

(1)
1 :

N
(1)
e1 = Aγ φ

(1)
1 , N

(1)
i1 = K2

γ φ
(1)
1 ,

(27)(
U

(1)
1 ,V

(1)
1

) = ωK2
γ

k2
(kx,ky)φ(1)

1 , W
(1)
i1 = 0,

where K2
γ = Aγ + Dγ k2. Since we are considering the mod-

ulation of a plane wave, A
(n)
l are all set to zero except for

l = ±1. Thus, from Eq. (27) one readily obtains the following
dispersion relation:

1 + 1

k2λ2
pγ

−
(

ω2 − k2 + iωη∗k2

1 − iωτ̄m

)−1

= 0, (28)

where λ2
pγ = Aγ /Dγ and η∗ = ζ̄ + 4η̄/3. The dispersion

equation (28) has a similar form as in Ref. [10] for strongly
coupled dusty plasmas. As said earlier, the relaxation time τm

defines two characteristic time scales to distinguish between
two classes of wave modes, namely, “hydrodynamic modes”
(ωτm � 1) and “kinetic modes” (ωτm 	 1). However, as
discussed in the previous section, the hydrodynamic limit may
not be satisfied for the parameter regimes in the interior of
white dwarfs. So, considering only the kinetic limit ωτm 	 1,
Eq. (28) reduces to

ω2 = k2

(
1 + η∗

τ̄m

+ λ2
pγ

1 + k2λ2
pγ

)
. (29)

Substitution of η∗ from Eq. (5) into Eq. (29) further gives

ω = ±k

[
T∗
Tif

+ Ti

γiTif

(
1 + 4

15
u

)
+ λ2

pγ

1 + k2λ2
pγ

]1/2

. (30)

For typical plasma parameters, as in Case I or Case II, the first
term (∼1) in Eq. (30) under the square root is larger than the
second term (∼− 0.03); i.e., the contribution of T∗ is always
greater than that from Ti , and hence ω is always real for all
k. However, in the absence of T∗, and since the second term
may be negative, there must exist a critical wave number kc

below which the kinetic modes exist. Furthermore, Eq. (30)
shows that the phase velocity of the carrier modes, ω/k > 1
or ω > kVT (in dimensional form). Again, since the term in
the square root is typically �1 for �i 	 1, the low-frequency
(<ωpi) wave propagation is possible for k < 1. Thus, in both
the weakly and ultrarelativistic regimes as in Cases I and II,
ω approaches unity for k < 1. The latter also ensures that
the wavelength is greater than the effective Debye length
for the collective behaviors of the plasma not to disappear.
Equation (30) also clarifies that the wave frequency increases
with k, and it approaches the plasma frequency ωpi (i.e.,
ω ≈ 1) at k ≈ 0.5. For the behaviors of the modes we plot

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k

ω

Weakly relativistic

Ultra−relativistic

FIG. 1. (Color online) Plot of the normalized wave frequency ω

vs the normalized wave number k [Eq. (30)] for the kinetic modes.
The solid (blue), dashed (black), and dotted (red) lines, respectively,
correspond to �i = 125, 202, and 512 in the weakly relativistic case,
and �i = 165, 267, and 678 in ultrarelativistic regime as indicated in
the figure. The other parameter values are as in Case I and Case II.

ω versus k as in Fig. 1. In both the weakly relativistic and
ultrarelativistic cases, the wave frequency is shown to increase
with increasing coupling parameter �i .

We note that in the kinetic regime, the ion modes do not
experience any viscous damping. The latter can, however,
occur in the hydrodynamic regime. Furthermore, the ion
coupling corrections appear through u(�i), whose estimates
can be obtained from Eq. (6). Since u(�i) can be negative
for increasing values of �i , these corrections can lead to
the turnover effect in which the frequency (and hence the
group velocity) goes to zero and then to negative values [10].
However, this is not the case for the kinetic wave modes,
as is evident from Fig. 1. Such effects can be strong in
the “hydrodynamic limit” [10]. The term ∝ λpγ appears due
to degeneracy pressure of electrons in weakly relativistic
(γ = 5/3) and ultrarelativistic (γ = 4/3) limits. It is clear
from Fig. 1 that the influence of this term on the dispersive
curves is, however, weaker in the ultrarelativistic limit than
that in the weakly relativistic one. There is an additional
correction term (∝T∗) that arises due to electrostatic interaction
of strongly coupled ions. We further note that the kinetic modes
exist only in the strong coupling regime (�i > 100, i.e., close
to crystallization) where the condition ωτm 	 1 is satisfied and
τm can be quite large. Physically the existence of large values of
τm implies strong memory effects in the medium and hence the
predominance of elastic effects [3]. In contrast to the weakly
relativistic case, the dispersion curves (see Fig. 1) of the ion
modes for different values of �i show that the wave frequency
ω typically varies linearly with k < 1 in the ultrarelativistic
limit. We also find that the effect of the ion coupling parameter
�i on the kinetic modes is, however, stronger in the weakly
relativistic limit than the ultrarelativistic case.

B. Group velocity

In the second-order expressions for n = 2, l = 1 we
obtain the corrections for N

(2)
e1 , N

(2)
i1 , etc., in terms of φ

(2)
1

and φ
(1)
1 . After eliminating those N

(2)
e1 , N

(2)
i1 , etc., we obtain

a resulting equation in which the coefficient of φ
(2)
1 vanishes

by the dispersion relation, and the coefficients of ∂φ
(1)
1 /∂ξ
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and ∂φ
(1)
1 /∂η are set to zero to obtain the group velocity

components (compatibility condition) as

∂ω

∂kx,y

≡ vg(x,y) = 2kx,y

ω̃

(
1 − iωη∗

1 − iωτ̄m

+ Aγ Dγ

K4
γ

)
, (31)

where

ω̃ = 2ω + iη∗k2

(1 − iωτ̄m)2
. (32)

The expression for the group velocity can further be simplified
in the limit of ωτm 	 1 and using Eq. (5). For ωτm 	 1, we
have ω̃ = (2k2/ω)[ω2/k2 − i(η∗/τ̄m)/2ωτ̄m]. Since η∗/τ̄m �
1 for �i 	 1, also, ωτm 	 1 (already assumed) and ω/k > 1
from the dispersion relation, and so the imaginary part of ω̃

can be neglected compared to the real part. Thus, we obtain

vg ≈ k

ω

[
T∗
Tif

+ Ti

γiTif

(
1 + 4

15
u

)
+ Aγ Dγ

K4
γ

]
. (33)

From Fig. 2 we find that in the weakly relativistic limit
[Fig. 2(a)], the modes with short wavelengths have greater
group velocity than those with long wavelengths, and this
group velocity is always smaller than the effective ion thermal
speed as well as the phase speed of the carrier wave. Also, in
this case vg increases as the wave number k (<1) increases.
However, as k approaches 0 (i.e., in the long wavelength limit),
vg tends to a steady-state value. This anomalous group velocity
dispersion is an important condition for the modulation
instability of wave packets. In contrast to the weakly relativistic
case, the wave modes with long wavelengths propagate with
higher group velocity than those with short wavelengths in the
ultrarelativistic limit [Fig. 2(b)]. Also, the group velocity in this
case is greater than the ion thermal speed and the phase speed
except for some higher values of �i ∼ 104. The latter may not
be relevant in in the interior of white dwarfs as values of Zi are
not so large there. Furthermore, in the ultrarelativistic limit,
the group velocity tends to decrease with increasing values of
k < 1, and there exists a critical value kc < 1 of k above which

the behaviors of vg remain almost the same even with different
values of the ion coupling parameter �i . In both these weakly
relativistic and ultrarelativistic cases, the higher the coupling
parameter �i , the lower is the group velocity of dispersion.

C. Coupled equations

Considering the zeroth-harmonic modes for n = 2, 3,
l = 0, which appear due to the nonlinear self-interaction of
the carrier waves, we obtain corrections for the densities and
velocities (see for details Appendix B). These expressions are
then used to eliminate the variables to obtain the following
equation for φ

(2)
0 :(

R1
∂2

∂ξ 2
+ R2

∂2

∂η2
+ R3

∂2

∂ζ 2
+ R4

∂2

∂ξ∂η

)
φ

(2)
0

=
(

S1
∂2

∂ξ 2
+ S2

∂2

∂η2
+ S3

∂2

∂ζ 2
+ S4

∂2

∂ξ∂η

) ∣∣φ(1)
1

∣∣2
, (34)

where the coefficients are given by

R1,2 = Aγ

(
v2

g(x,y) − 1
) − Dγ ,

(35)
R3 = −(Aγ + Dγ ), R4 = 2Aγ vgxvgy,

S1,2 = 2Bγ

(
1 − v2

g(x,y)

) + ωK4
γ

k2
kx,y

×
(

vg(x,y) − ωkx,y

k2

)
+ Dγ K2

γ , (36)

S3 = 2Bγ + Dγ K2
γ ,

(37)

S4 = ωK4
γ

k2

(
kxvgy + kyvgx + 2ω

kxky

k2

)
− 4Bγ vgxvgy.

We mention that in the coefficient of ε2 for n = 2, l = 0,
one usually obtains from the momentum balance equation for
ions the relation ν̄in|φ(1)

1 |2 = 0. Since |φ(1)
1 |2 is of the order

of ε2, ν̄in should be at least of the order of ε, and so it will

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

k

v g

(a) (Weakly relativistic)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

k

v g

(b) (Ultra−relativistic)

FIG. 2. (Color online) The normalized group velocity dispersion vg [Eq. (33)] is plotted against the normalized wave number k for the
kinetic modes. The solid (blue), dashed (black), and dotted (red) lines are for different values of �i than in Fig. 1.
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contribute to the coefficient of ε3 of the momentum equation
for n = 3,l = 1.

Next, the second-order harmonic modes for n = 2,l = 2
are obtained as

U
(2)
2 = A22

[
φ

(1)
1

]2
, V

(2)
2 = B22

[
φ

(1)
1

]2
, W

(2)
2 = 0, (38)

N
(2)
e2 = Aγ φ

(2)
2 + Bγ

[
φ

(1)
1

]2
, (39)

N
(2)
i2 = N

(2)
e2 + 4k2Dγ φ

(2)
2 , φ

(2)
2 = D22

[
φ

(1)
1

]2
, (40)

where the coefficients are given in Appendix C. Finally, for
n = 3, l = 1 we obtain expressions for the third-order first-
harmonic modes. Here the coefficients of φ

(3)
1 and φ

(2)
1 vanish

by the dispersion relation. Thus, we obtain after a few steps
the following nonlocal nonlinear Schrödinger equation:

i
∂φ

(1)
1

∂τ
+ P1

∂2φ
(1)
1

∂ξ 2
+ P2

∂2φ
(1)
1

∂η2
+ P3

∂2φ
(1)
1

∂ζ 2
+ P4

∂2φ
(1)
1

∂ξ∂η

+ Q1

∣∣φ(1)
1

∣∣2
φ

(1)
1 + Q2φ

(2)
0 φ

(1)
1 + iQ3φ

(1)
1 = 0. (41)

In deriving Eq. (41), we have neglected a small contribution
from the term (kxU

(2)
0 + kyV

(2)
0 )φ(1)

1 compared to ∂φ
(1)
1 /∂τ

because from the dispersion relation we find that the phase
speed of the wave is larger than the ion thermal speed. Also,
the modes U

(2)
0 and V

(2)
0 , which arise due to the mean motion

of ions, can even be smaller than the ion thermal speed,
since they appear as small (higher order of ε) corrections.
So ω 	 kxU

(2)
0 + kyV

(2)
0 can be a good approximation to the

present case.
The terms with coefficients P1, P2 appear due to wave

group dispersion, those with P3 and P4 are, respectively, due
to the departure from the two-dimensional formalism and due
to the oblique modulation. The cubic nonlinearity (Kerr) is
due to the carrier wave self-interaction originating from the
zeroth-harmonic modes (or slow modes), and the nonlocal
nonlinear (quadratic) one appears due to the coupling between
the dynamical field associated with the first harmonic (with
a “cascade effect” from the second harmonic) and a static
field generated due to the mean motion (zeroth harmonic) in
plasmas.

Now, Eq. (41) is coupled to Eq. (34), and we recast the two
equations [considering now that φ

(1)
1 , φ

(2)
0 are dependent on γ ,

i.e., rewriting �γ ≡ φ
(1)
1 and �γ ≡ φ

(2)
0 for weakly relativistic

(γ = 5/3) and ultrarelativistic (γ = 4/3) cases] as follows:

i
∂�γ

∂τ
+ P1

∂2�γ

∂ξ 2
+ P2

∂2�γ

∂η2
+ P3

∂2�γ

∂ζ 2
+ P4

∂2�γ

∂ξ∂η

+ Q1|�γ |2�γ + Q2�γ �γ + iQ3�γ = 0, (42)

R1
∂2�γ

∂ξ 2
+ R2

∂2�γ

∂η2
+ R3

∂2�γ

∂ζ 2
+ R4

∂2�γ

∂ξ∂η
= S1

∂2�γ

∂ξ 2

+ S2
∂2�γ

∂η2
+ S3

∂2�γ

∂ζ 2
+ S4

∂2�γ

∂ξ∂η
, (43)

in which the coefficients are different for different values
of γ = 5/3, 4/3 (according as the degenerate electrons
are weakly relativistic or ultrarelativistic) and are given in
Appendix D.

IV. MODULATIONAL INSTABILITY

The modulation of slowly varying wave amplitudes may
occur due to, e.g., parametric wave coupling, nonlinear
interaction between high- and low-frequency modes, or self-
interaction of the carrier wave modes. These phenomena, how-
ever, are relevant to the modulational instability (MI), which
constitutes one of the most fundamental effects associated
with the wave propagation in nonlinear media. Such instability
basically signifies the exponential growth or decay of a small
perturbation of the wave as it propagates in plasmas. The
gain leads to amplification of sidebands, which break up the
otherwise uniform wave and lead to energy localization via
the formation of localized structures. Thus, the MI may act
as a precursor for the formation of bright envelope solitons.
On the other hand, the formation of dark solitons requires the
absence of MI in the constant intensity background. The MI
can, however, be affected by the obliqueness of modulation
and the electron degeneracy as well as the strong coupling
effects of ions, which we will discuss shortly.

Let us consider the modulation of a plane-wave solution
of Eqs. (42) and (43) of the form (omitting the subscript
γ once again for simplicity) � = �0e

−i�0τ , � = 0, so that
�0 = −Q1�

2
0 − iQ3, where �0 is a constant. Here the choice

of � is immaterial as the stability condition does not depend on
it, and the solution for � is not unique. We then modulate the
wave amplitude as a plane-wave perturbation with frequency
� and wave number K , i.e., � = (�0 + �1e

iK·R−i�τ +
�2e

−iK·R+i�τ )e−i�0τ and � = �1e
iK·R−i�τ + �2e

−iK·R+i�τ ,
where �1,2, �1,2 are all real constants, K ≡ (K1,K2,K3),
and R ≡ (ξ,η,ζ ). Looking for the nonzero solution of the
small-amplitude perturbations, we obtain from Eqs. (42) and
(43) the following dispersion relation for the modulated wave
packet:

�2 = f 2
1

[
1 − 2�2

0

f1

(
Q1 + Q2f3

f2

)]
, (44)

where f1, f2, and f3 are given by

f1,2,3 = (P1,R1,S1)K2
1 + (P2,R2,S2)K2

2

+ (P3,R3,S3)K2
3 + (P4,R4,S4)K1K2. (45)

In the limit of ωτm 	 1, all the coefficients in Eqs. (42) and
(43) are real, and so Eq. (44) can be rewritten as

�2 = f 2
1

(
1 − K2

c

K2

)
, (46)

where Kc is the critical wave number given by

K2
c = 2�2

0

f̃1f̃2
(Q1f̃2 + Q2f̃3)

(
1 + α2

1 + α2
2

)
. (47)

Here f̃1,2,3 = f1,2,3/K
2
1 and α1,2 = K2,3/K1 define the

obliqueness of perturbation of the wave numbers. As we will
see later, those perturbations can change the stable and unstable
regions for wave packets. Equation (46) shows that the MI
sets in for K < Kc, and the right-hand side of Eq. (47) is
positive, i.e., ϒ ≡ (Q1f̃2 + Q2f̃3)/f̃1f̃2 > 0. In this case the
perturbations grow or decay exponentially during propagation
of waves. On the other hand, for K > Kc, the wave packet is
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said to be stable under the modulation. The instability growth
or decay rate (letting � = i�inst) can be obtained as

�inst = K2f̃1

1 + α2
1 + α2

2

√
K2

c

K2
− 1, (48)

where the maximum value is achieved at K = Kc/
√

2 and is
given by

�
(max)
inst = �2

0

f̃2
(Q1f̃2 + Q2f̃3). (49)

We numerically investigate the stable and unstable regions for
the plane-wave solution relying on the above condition and
with different coupling parameters �i as applicable for weakly
relativistic as well as ultrarelativistic regimes (cf. Case I and
Case II). We consider the parameter values that are relevant
to the conditions of white dwarfs. For example, in the weakly
relativistic case, ne = 2 × 1026 cm−3, Te = 40Ti = 107 K and
here varies Zi = 6 (�i = 125), 8 (�i = 202). In the ultrarela-
tivistic case, we take ne = 1035 cm−3, Te = 2Ti = 3 × 108 K,
with Zi = 6 (�i = 165) and 8 (�i = 267) for C12 and O16

compositions. Due to highly efficient thermal conductivity
properties of the degenerate electron gas, the interior of a white
dwarf is nearly isothermal with a temperature ∼107 or 108 K.

Since K represents the wave number of perturbation, it
should not be higher than the carrier wave number k. However,
α1 and α2 can even be larger than unity and thereby can change
the sign of ϒ , and hence the stable and unstable regions.
For example, for a fixed �i = 125 as in Fig. 3(a), the wave
is stable in the regimes, namely, 0 � α1 � 0.5 and α2 � 0;
0 � α1 � 0.6 and α2 � 0.2; 0 � α1 � 0.7 and α2 � 0.4; etc.
In the other regimes of α1 and α2, the wave can be unstable.
Figure 3 shows different stable (white or blank) and unstable
(colored or shaded) regions in which panels (a) and (b) are

for the weakly relativistic case with different �i = 125 and
202, respectively, and panels (c) and (d) for �i = 165 and
267 in the ultrarelativistic regime. From Figs. 3(a) and 3(b)
we find that when the ion coupling strength is relatively small
(e.g., �i = 125 in the liquid state), the long-wavelength kinetic
modes exhibit instability against an oblique modulational per-
turbation in strongly coupled plasmas with weakly relativistic
degenerate electrons (e.g., in an outer mantle of white dwarfs).
However, as �i increases (e.g., �i = 202 in the crystallized
state), the instability domain for the wave number expands, and
the system can exhibit oblique modulational instability for a
wide range of values of k. From Figs. 3(a) and 3(b) we can also
conclude that the plane waves during propagation in plasmas,
e.g., in an outer mantle of a white dwarf, exhibit stability
against small perturbations and for a wide range of values of α

(where α is the angle the wave vector k makes with the x axis)
as well as the wavelength. Furthermore, when the modulation
takes place along the direction of propagation of waves
(i.e., for α = 0) in strongly coupled plasmas with weakly or
ultrarelativistic degenerate electrons, the system always shows
stability regardless of the values of �i . From Figs. 3(c) and 3(d)
we find that the instability of plane waves in strongly coupled
plasmas with ultrarelativistic degenerate electrons (e.g., in the
interior of white dwarfs) depends strongly on the scale length
of excitation of the wave modes, the angle of modulation, and
the ion coupling parameter as well as the degeneracy pressure
of electrons. Thus, strong coupling of ions (�i > 100) as well
as the ultrarelativistic degeneracy pressure of electrons favor
the instability of plane waves against the oblique modulation.

The instability rate �inst is calculated, and the developments
of the instability growth or decay are shown in Fig. 4. We
find that the maximum value of the instability rate typically
depends on the cubic as well as the nonlocal nonlinearity
through the coefficients Q1 and Q2, respectively. It is clear that
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FIG. 3. (Color online) The stable (blank or white) and unstable (shaded or colored) regions are shown in the plane of normalized wave
number k and the obliqueness of modulation α, corresponding to the conditions ϒ < 0 and ϒ >, respectively, as in the text. Subplots (a) and
(b) are for �i = 125 and 202 (weakly relativistic), and (c) and (d) (ultrarelativistic) are for �i = 165 and 267, respectively. Other parameter
values are as in Case I and Case II, and K = 0.001, α1 = 2, α2 = 0.1, φ0 = 0.01.
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FIG. 4. (Color online) The growth (case of weakly relativistic,
see upper panel) and decay (ultrarelativistic case; see lower panel)
rates Eq. (48) are shown at α = 2 and 1.7, respectively. The solid
(blue), dashed (black), and dotted (red) lines are for different values
of �i than in Fig. 1. The other parameters are as in Case I and Case II,
and k = 0.2, α1 = 2, α2 = 0.1, φ0 = 0.01.

the electron degeneracy has an important effect for the change
of sign of the instability rate �inst. For the waves propagating in
strongly coupled plasmas with weakly relativistic degenerate
electrons, the plane-wave perturbation grows exponentially
with the wave number leading to the instability growth as in
Fig. 4 (upper panel). However, a lower value of �i (when
ions are in the liquid state) tends to suppress the instability,
decreasing the growth rate at a lower value of the wave
number k. This means that the plane waves in plasmas with
crystallized ions and weakly relativistic degenerate electrons
exhibit long-wave MI. On the other hand, for the propagation
of waves in strongly coupled plasmas with ultrarelativistic
degenerate electrons, the instability rate becomes negative by
the electron degeneracy. In this case, the contribution from the
nonlocal nonlinearity becomes larger than the cubic nonlinear
term, leading to exponential decay of the perturbations, and
the decay rate cannot be suppressed by the strong coupling
of ions, i.e., whenever ions are in liquid or crystallized
states. Thus, while the growth rate can be suppressed (i.e.,
�inst < 1) by lowering the coupling parameter �i in the range
100 < �i � 200 (in the weakly relativistic case; see the upper
panel of Fig. 4) with a cutoff at K < 1, the decay rate remains
unbounded within K < 1 and cannot be controlled with a
considerable range of values of �i . As an example, the dotted
line in the lower panel of Fig. 4 has the cutoff at K = 7.4
for �i = 512 corresponding to Zi = 14. The other lines (solid
and dashed) corresponding to �i = 125 and 202 have cutoffs
at higher K > 7.4.

V. EVOLUTION OF WAVE PACKETS

In order to examine a long-time evolution of the wave
packets, we perform a numerical simulation of Eqs. (42)
and (43) in the weakly relativistic regimes. To this end, we
discretize the derivatives using a finite difference scheme,
and we use the domain size 25 � ξ,η � 25 with 150 × 150
grid points and time step dτ = 10−3 for (2 + 1)-dimensional
evolution. In the case of (3 + 1)-dimensional evolution, we
use the domain size 15 � ξ,η, ζ � 15 with 60 × 60 × 60
grid points and time step dτ = 10−3. A symmetric Gaussian

wave beam is chosen as an initial condition of the form
�γ = √

2I/πab exp(−ξ 2/a2 − η2/b2) in (2 + 1) dimensions
[similar for (3 + 1) dimensions], where I is the wave action.
Notwithstanding, we have made simulations with other initial
beam profiles; however, the qualitative results remain almost
the same. Similar analysis can also be done in the case of
ultrarelativistic limit (γ = 4/3); however, one has to be careful
about the coefficients, which become larger in magnitude, and
one might have to rescale those in order to perform numerical
analysis with a smaller step size for the space and/or time.

A. (2 + 1)-dimensional evolution

We neglect the z dependence of the physical quantities.
Then the coefficients P3, R3, and S3 are all zero, and Eqs. (42)
and (43) reduce to Davey-Stewartson-like equations in a
more generalized form. The latter, in particular, has been
investigated by a number of authors (see, e.g., some references
in Refs. [12,21]) not only in the context of plasmas, but also in
some other nonlinear media. Such equations may eventually
give rise to unstable solutions other than localization or the
formation of a singularity at which the solution blows up
with higher amplitudes in a shorter scale. This means that
system’s validity breaks down near the singularity, implying
that an additional physical mechanism might be necessary
in order to arrest such a blow up. Here we show that
no singularity is formed for a wide range of parameters
appropriate for the model; i.e., the model that we have
considered is self-consistent in (2 + 1) dimensions and does
not give any unbounded solution.

Figure 5 shows the time evolution of the wave amplitude
with two different values of the coupling parameter �i = 125
(blue or dashed line) and 202 (black dotted line) with (solid
or red line) and without (dotted and dashed lines) collisional
effects. The solid or red line represents the curve with weak
collisional effects and with the same �i = 125 as the dashed
line. A steady-state oscillation (see the inset; even when the
wave action is well above the critical power) is found, which
is called driven damped oscillations. Usually, due to the the
collisional term, which acts like a frictional force, the wave
amplitude dies away. However, in this case, the nonlocal
nonlinearity always feeds the energy into the system so as
to offset the frictional losses. Since the collision frequency
is smaller than the ion plasma frequency and ν̄in ∼ ε, i.e.,
Q3 ∼ ε/2, higher values of ν̄in are inadmissible, and we still
have a stable solution.

For a different set of values of the coefficients P1, P2, etc.,
with a higher �i = 202, the wave amplitude oscillates in an
irregular manner (see the dotted line in Fig. 5), implying that
the perturbations are not stable, and the wave packets may not
be localized. This is because, in contrast to the case of the solid
or dashed curves (in which P1, P2, P4 ∼ Q1 and Q2 < Q1), the
dispersion coefficients become larger than the nonlinear terms,
and either the cubic or quadratic nonlinearity is not enough to
balance the higher dispersive effects. Thus, the localization
of wave packets may be possible in plasmas with ions in
liquid state, and degenerate electrons are weakly relativistic.
However, for plasmas in which ions are in crystallized state
and degenerate electrons weakly or ultrarelativistic, the wave
packets may not be localized with higher values of �i ∼ 200.
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FIG. 5. (Color online) Time evolution of [numerical solution of Eqs. (42) and (43)] the wave amplitude �γ (γ = 5/3) for different �i .
The solid (red) and dashed (blue) (see the inset) lines represent stable oscillations and correspond to ν̄in = 0.1 and ν̄in = 0, respectively (with
k = 0.5, α = 2, �i = 125). The dotted line shows irregular oscillations for a different set of parameters, i.e., ν̄in = 0, k = 0.2, α = 1.6, and
�i = 202.

This is expected, as we have seen in the previous section
that the MI growth rate of plane waves can be suppressed
by lowering the coupling parameter �i instead of its higher
values in the weakly relativistic strongly coupled regimes. The
higher values of �i give rise to the enhancement of the growth
rate, leading to an exponential growth of perturbation with no
cutoffs at a finite k < 1.

Figure 6 shows examples of time evolution of wave packets
in the case of stable oscillations of wave amplitude. We find
that the wave is localized and propagates with a permanent
profile. The parameter values are considered as the same as for
the solid line in Fig. 5. Initially, the wave amplitude decays (and

the symmetric Gaussian form breaks down) into a different
shape until the wave gets modulated. The wave amplitude
then starts growing until the maximum modulation is achieved.
After some time, the wave gets stabilized and propagates with
a permanent profile due to a good balance of the dispersion
and nonlinearity. Thus, we conclude that the localization of
wave packets having kinetic ion modes as carrier modes in
plasmas where strongly coupled ions are in liquid state and
degenerate electrons are weakly relativistic such as those in an
outer mantle of white dwarfs is possible through the MI. These
packets propagate in such plasmas with a permanent profile
for a long time. On the other hand, plasmas with crystallized
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FIG. 6. (Color online) Contour plots of a numerical solution of Eqs. (42) and (43) at different times as in the figure. The initial wave form
decays due to dispersion until it gets modulated. The amplitude then grows until it takes the maximum modulation and then propagates with a
permanent profile. The parameter values are the same as for the stable solution, i.e., the solid line in Fig. 5.
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FIG. 7. (Color online) Time evolution of [numerical solution of Eqs. (42) and (43)] the wave amplitude �γ (γ = 5/3) for ν̄in = 0. The
dash-dotted line shows that the solution blows up in a finite time corresponding to the same parameters, i.e., k = 0.5, α = 2, and �i = 125 as
for the dashed line (stable solution) in Fig. 5. The solid (blue) and dashed (red) lines show that the collapse is arrested with unstable or irregular
oscillations (bounded) corresponding to k = 0.2, α = 1.6, �i = 202 (same parameters as for the dotted line in Fig. 5), and a different set, i.e.,
k = 0.2, α = 2, �i = 125, respectively. The inset shows a profile for �γ corresponding to the dashed (red) line for �γ . No stable solution is
found.

ions and relativistically degenerate electrons, such as those in
the core of white dwarfs, cannot support the propagation of
such wave packets with a permanent profile.

B. (3 + 1)-dimensional evolution

We examine the effects of additional dispersive and
nonlinear effects that are due to the z dependence of the
physical variables. We find that a singularity is formed at
which the wave amplitude blows up in a short time (see the
dash-dotted line in Fig. 7) for the same set of parameters as
the case of a steady-state solution in the (2 + 1) dimension
[see dashed (blue) line in the inset of Fig. 5]. In this case, the
coefficients are P1 = 1.59, P2 = 1.3, P3 = 1.68, P4 = 0.9,
Q1 = −1.4, Q2 = 0.35, Q3 = 0.0, R1 = −1.8, R2 = −1.16,
R3 = −1.97, R4 = −0.74, S1 = 0.75, S2 = −2.1, S3 = 1.5,
and S4 = −8.0. That is, additional effects due to the dispersion
(P3, R3) and nonlinearity (S3) are responsible for the formation
of singularity. It turns out that the validity of Eqs. (42) and (43)
in (3 + 1) dimensions breaks down near this singular point.
Since a physical quantity cannot be infinite, some of these
dispersive and/or nonlinear effects, which were initially small,
become important in order to prevent such collapse.

We find that when the dispersive effects are more pro-
nounced than the nonlinearities, which occurs for a different
set of parameters, i.e., of k and/or the obliqueness α or by
increasing the coupling parameter �i [e.g., k = 0.2, α = 2,
�i = 125 (dashed line in Fig. 7) or k = 0.2, α = 1.6, �i = 202
(solid line in Fig. 7)], the collapse is arrested with an unstable
oscillation. We do not find any steady-state solution for a
wide range of parameters. The latter, however, requires further
investigation for conclusive evidence and is limited to the
present study. The weak ion-neutral collision has no effect

other than a weak damping of oscillations (not shown in the
figure) of the wave amplitude.

VI. DISCUSSION AND CONCLUSION

Results of the previous sections demonstrate that plasmas
with strongly coupled ions and weakly or ultrarelativistically
degenerate electrons can support the excitation of low-
frequency kinetic ion wave modes. The latter with short
wavelengths travel with a higher or lower group velocity
than those with longer wavelengths depending on whether
the electrons are weakly relativistic or ultrarelativistically
degenerate. This anomalous group velocity dispersion is one of
the most important conditions for the modulational instability
of wave packets in nonlinear media. We have discussed the
parameter regimes in two cases in which the present model
is valid. These regimes are, in particular, representative of the
interior (e.g., carbon-oxygen composition) or an outer mantle
of white dwarfs.

In the present model, the equilibrium of electrons has been
considered to be maintained by two pressure equations as per
Chandrasekhar [8], whereas that of ions is associated with
the strong coupling effects [18,19]. We find that the dominant
contribution of the effective ion temperature is mainly due to
the strong interaction of ions. In absence of the latter, the wave
modes propagate with wavelengths above a critical value, and
its contribution in the wave group dispersion is higher than
the kinetic temperature of ions. Since the relaxation time has
been found to increase highly with the ion coupling parameter
�i > 10 [20], only kinetic wave modes (ωτm 	 1) exist in
plasmas where ions form a liquid state or a crystallized one.
In the latter, the elasticity will dominate over the viscosity
effects. The hydrodynamic modes, on the other hand, may be
relevant in other regimes where �i is not so large, e.g., in
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1 < �i < 100. In this case the medium behaves like a liquid
where the viscosity effects become important, and the wave
frequency ω has to be well below the ion plasma frequency
in order to satisfy the hydrodynamic limit. Also, for lower
values of ω where the dispersion is weak, the soliton (e.g.,
Korteweg-de Vries soliton) formation of the carrier waves is
a lower-order process than the modulational instability of the
wave envelopes discussed here.

We have studied the modulation of a wave form with
constant power by perturbing its amplitude with a plane-
wave disturbance in multidimensional form. It shows that
the obliqueness of modulation in the xy plane destabi-
lizes the wave packet, whereas it remains stable under the
parallel modulation (α = 0) in both the weakly relativistic
and ultrarelativistic regimes. Furthermore, in contrast to the
(1 + 1) dimension, the wave number of perturbations in
multidimensional propagation changes the domain of stable
and unstable wave numbers significantly. This implies that
what is stable in the (1 + 1) dimension could become unstable
in a more general situation. For the parameters as in Case I,
the wave packet is shown to be stable within a wide range of
the carrier wave number k and the obliqueness parameter α.
The region of instability may be increased in the kα plane with
higher values of �i . In these higher values, the growth rate of
instability remains positive and high, which, however, can be
suppressed by a lower value of �i with a lower cutoff of the
wave number of perturbation K < 1. On the other hand, the
results corresponding to Case II show that the wave envelope
is modulationally unstable for a wide range of k and α. In this
case, though the decay rate can be lowered by increasing �i , it
remains outside the considerable range of K < 1. Thus, for the
propagation of wave packets in plasmas with ions in liquid or
crystallized states as in the core of white dwarfs, the decay rate
of instability may not be controlled. However, in plasmas with
a liquid state of ions and nonrelativistic degenerate electrons
(as in an outer mantle of white dwarfs), the waves are mostly
stable to modulational perturbation, and the instability can
even be suppressed with a lower value of �i . This implies that
the localization of wave packets having kinetic ion modes as
the carrier waves associated with the MI may be possible in
plasmas (e.g., in an outer mantle of white dwarfs) in which
ions are in liquid state and degenerate electrons are weakly
relativistic. Since the growth or decay rate of instability cannot
be suppressed by higher values of �i , the MI does not give rise
to localization of wave envelopes in plasmas where ions are in
crystallized states and electrons are relativistically degenerate
(e.g., in the core of white dwarfs).

Next, we examine whether the localization of wave packets
is possible though the MI in some regimes where the instability
growth rate is suppressed, and in some other regimes in
which the time evolution of the wave amplitude exhibits
irregular oscillations leading to delocalization of the wave
envelopes. The time evolution of the (2 + 1)-dimensional
wave packets shows that the wave amplitude stabilizes for
a long time with a lower value of the coupling parameter
�i ∼ 125. However, for a higher value of �i ∼ 202, it shows
irregular oscillations (see Fig. 5), i.e., is unstable. In the
case of stable wave oscillations, we find that for an initial
Gaussian wave beam, the amplitude initially decays, and the
beam loses its shape before it gets modulated by the nonlinear

self-interactions. The amplitude then starts increasing until the
maximum modulation is reached. As the time progresses, the
wave amplitude reaches a steady-state value, and the initial
beam transforms into another with a permanent profile (see
Fig. 6). We have included a phenomenological ion-neutral
collision term, which appears in the third-order corrections
as a linear term with the first-order perturbation and remains
weaker than the nonlinear (Kerr and nonlocal) contributions.
It has no effect on the stability or instability of wave modes
under modulation; rather, it changes the oscillation pattern
with a higher amplitude like a steady-state damped harmonic
oscillation (see solid line in Fig. 5). The frictional force due
to the collision, which usually damps the wave amplitude,
does not diminish the amplitude of oscillation as the nonlocal
nonlinearity feeds up the sufficient energy in order to offset
the decay.

On the other hand, the results in the (3 + 1)-dimensional
evolution indicate that a wave singularity can be formed,
leading to wave collapse in a finite time when the dispersive
effects are not in balance with the nonlinearities, or the
additional dispersion (due to z coordinate) dominates over
the group velocity dispersion. This collapse can, however, be
arrested for a different choice of k and/or α, or by increasing the
coupling strength �i where the dispersion is more pronounced
than the nonlinearities. The numerical simulation reveals that
the present model in (3 + 1) dimensions does not support the
formation of localized structure with stable oscillations. In
order to obtain such a steady-state solution, one way could
be to consider vg in an arbitrary direction of space or along a
fixed axis. However, one needs further investigation in order
to confirm it, which is limited to the present study.

To conclude, in strongly coupled plasmas with relativis-
tically degenerate electrons, one should carefully consider
the parameter regimes as discussed in Case I and Case II.
In high coupling regimes (�i 	 1), the effective temperature
associated with the strong electrostatic interactions of ions is
much more pronounced than the kinetic (Ti) one. The mod-
ulation of plane waves and their nonlinear evolution depend
strongly on the system parameters including the obliqueness
α and the Coulomb coupling �i , as well as the extra
dimension (geometry) of the system. We find that the
localization of wave packets in (2 + 1) dimensions having
kinetic ion modes as carrier waves is possible in plasmas
with ions in liquid state and degenerate electrons are weakly
relativistic. In other plasma regimes, e.g., in the core of white
dwarfs where ions are in crystallized state and degenerate
electrons are ultrarelativistic, the MI of plane waves gives rise
to an unbounded growth or decay of instability, leading to
delocalization of wave envelopes. Since �i can be controlled
by heating or cooling the ion components, it would be
interesting to look for the excitation of ion wave modes and
their localization as wave packets in laboratory experiments.
Our model is more general than those available in the literature
[1,3] and could be applicable to other nonideal systems, e.g.,
metal plasmas.
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APPENDIX A: SECOND-ORDER
FIRST-HARMONIC MODES

For n = 2, l = 1 we have

N
(2)
e1 = Aγ φ

(2)
1 , W

(2)
1 = c12

∂φ
(1)
1

∂ζ
, (A1)

N
(2)
i1 = K2

γ φ
(2)
1 − i2Dγ

(
kx

∂φ
(1)
1

∂ξ
+ ky

∂φ
(1)
1

∂η

)
, (A2)

α
(
U

(2)
1 ,V

(2)
1

) = αu,vφ
(2)
1 + αuξ,vξ

∂φ
(1)
1

∂ξ
+ αuη,vη

∂φ
(1)
1

∂η
, (A3)

where

α = B2
12 − A12xA12y, B12 = (ζ̄ + η̄/3)kxky

1 − iωτ̄m

, (A4)

A12(x,y) = −iω + η̄k2 + (ζ̄ + η̄/3)k2
(x,y)

1 − iωτ̄m

, (A5)

α(u,v) = C12(x,y)A12(y,x) − C12(y,x)B12, (A6)

(αuξ ,αuη) = B12(E12y,D12y) − A12y(D12x,E12x), (A7)

(αvξ ,αvη) = B12(D12x,E12x) − A12x(E12y,D12y), (A8)

C12(x,y) = ik(x,y)
(
Dγ + K2

γ

)
, (A9)

C12 = − i
(
Dγ + K2

γ

) + ωK2
γ

(
ζ̄ + η̄/3

)
/(1 − iωτ̄m)

ω + iη̄k2/(1 − iωτ̄m)
,

(A10)

D12(x,y) = ωK2
γ k(x,y)

k2(1 − iωτ̄m)
[(1 − i2ωτ̄m)vg(x,y) + i2η∗k(x,y)]

− Dγ + K2
γ

1 − iωτ̄m

[1 − iτ̄m(ω + k(x,y)vg(x,y))]
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(ζ̄ + η̄/3)K2

γ ωk2
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k2(1 − iωτ̄m)
− 2Dγ k2
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E12(x,y) = ωK2
γ k(x,y)

k2(1 − iωτ̄m)
[(1 − i2ωτ̄m)vg(y,x) + i2η̄k(y,x)]
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(
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(ζ̄ + η̄/3)K2

γ ωkxky

k2(1 − iωτ̄m)
− 2Dγ kxky. (A12)

APPENDIX B: ZEROTH-HARMONIC MODES

For l = 0 we obtain the zeroth-harmonic modes from the
coefficients of ε2 and ε3 in terms of φ

(2)
0 and |φ(1)

1 |2:
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∂
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where � ≡ vgx∂ξ + vgy∂η and Bx,y , Cx,y are given by

Bx,y = 2Bγ + Dγ K2
γ − ωK4

γ

k2
kx,y

(
vg(x,y) − ωkx,y

k2

)
, (B6)

Cx,y = ωK4
γ

k2
kx,y

(
vg(y,x) − ωky,x

k2

)
. (B7)

We use the operator � once in Eq. (B2), and eliminate N
(2)
i0 ,

U
(2)
0 , V (2)

0 , and W
(2)
0 by using Eqs. (B1) and (B3)–(B5) to obtain

Eq. (34).

APPENDIX C: COEFFICIENTS OF SECOND-ORDER SECOND-HARMONIC MODES

The coefficients of the second-order harmonic modes for n = 2, l = 2 are given as follows:

θx,y = ω + 2i
[
η̄k2 + (ζ̄ + η̄/3)k2

x,y

]
1 − i2ωτ̄m

, (C1)
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2
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ϑ1 = 2
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APPENDIX D: COEFFICIENTS OF EQ. (42)

Here we give the coefficients P1, P2, etc., as follows:
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