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Spectra of ion density and potential fluctuations in weakly ionized plasmas
in the presence of dust grains
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The spectral densities of ion density and electrostatic potential fluctuations are derived in the framework of a
self-consistent kinetic model of partially ionized dusty plasmas in the low-frequency regime. Neutral gas density
can be responsible for significant modifications of the fluctuation level, hence the inclusion of the effect of neutrals
is essential for a more realistic comparison with experiments, especially if spectral measurements are intended
for dust diagnostic purposes. Comparison with the multicomponent model, attractive due to its simplicity as
compared to the self-consistent one, is carried out to establish its limits of validity. Numerical calculations are
performed for parameters typical of low-temperature plasma discharges. A criterion is derived for the omission
of plasma discreteness in the low-frequency regime.

DOI: 10.1103/PhysRevE.85.026408 PACS number(s): 52.27.Lw, 52.27.Cm, 52.25.Dg

I. INTRODUCTION

Fluctuations in plasmas are omnipresent, even in thermo-
dynamic equilibrium, due to the discrete nature of electrons
and ions [1,2]. In the 1960s it was suggested by Ichimaru
that the spectral densities of fluctuating plasma observables,
if measured, could provide vast information on fundamental
plasma parameters [3]. In ordinary plasmas the level of
fluctuations is low and usually can be detected only in qui-
escent environments. Examples are specially devised plasma
configurations [4–9] and space plasmas where Langmuir
probes and dipole antennas were used for measurements of
the fluctuating plasma density [10] and electric field [11,12],
respectively.

In plasmas seeded with dust particles the spectral densities
of plasma fluctuations can be strongly modified due to the large
number of elementary charges residing on the dust surface and
the dissipative nature of inelastic charging collisions between
dust and plasma particles. Recently it has been pointed out
that such modifications, if detected, can serve both as an
experimental verification of the kinetic model as well as an
in situ dust diagnostic [13–15]. This is due to the fact that
(i) changes of the plasma spectra are dependent on the dust
number density and size (charge) and (ii) the fluctuation level
can be drastically enhanced compared to dust-free plasmas, as
also supported by first experimental tests [14,15].

It has been shown that the contribution of dust to the spectral
densities of plasma quantities, e.g., ion density fluctuations, is
most pronounced in the low-frequency regime, well below
the ion acoustic mode [15]. This is due to the fact that the
dominant frequency dependence is an exponential decay of
the type ∝ exp (− ω2

2k2v2
T γ

), where γ = {i,e,d} refers to both

plasma and dust species, and that for the ion and dust thermal
velocities the inequality vT i � vT d holds. Such a scaling with
the dust thermal velocity implies that the smaller the dust
size, the more extended the range of frequencies where the
enhancement takes place. This can be exploited in experiments
with in situ produced or naturally occurring submicron dust.

In light of the above, targeting regions of strong spectral
modification which can be experimentally assessed justifies

the low-frequency approximation. In such a regime one can
neglect electron and ion natural fluctuations compared to dust
natural fluctuations, and hence treat only electron and ion
fluctuations induced by dust discreteness [16]. This allows
one to derive expressions for evaluation of spectral densities
of plasma fluctuations and to simplify the computations
significantly.

So far theoretical works on the spectral densities have
focused on fully ionized plasmas and constant nonfluctuating
sources. The spectral densities have been explored within the
“full” kinetic model on the low-frequency regime [13], which
treats charge fluctuations and absorption of plasma fluxes on
dust self-consistently, and within the multicomponent model
[15,17], where dust is treated as an additional massive plasma
species with fixed charge over mass ratio. While the latter
has been used for comparison with experiments, the full
model has not been exploited for this purpose. However, its
development is important for more appropriate comparison
with experiments and to establish the limits of validity of the
simplified multicomponent.

In typical low-temperature laboratory plasmas, the effect
of neutrals cannot be neglected. Here we derive the spectral
densities of fluctuating plasma quantities employing a kinetic
model of partially ionized dusty plasmas in the low-frequency
regime which takes into account in a self-consistent manner
[18,19]; (i) the continuous absorption of plasma fluxes on
dust grains, (ii) the dust charge fluctuations, (iii) the effect
of neutrals via the Bhatnagar-Gross-Krook (BGK) formalism
[20] and their effect in grain charging, (iv) electron impact
ionization of neutrals. Taking into account all these effects
results in very cumbersome expressions and it is reasonable
to expect that in some parameter regime, e.g., “low” dust
density and “small” dust size, some of the effects are negligible
and a multicomponent model can be used. Therefore here
the spectral densities of the multicomponent model, properly
extended to include the presence of neutrals [19], are found to
elucidate its applicability limits.

In addition, the effect of gas pressure and electron impact
ionization is explored for the first time. The spectra of ion
density and electrostatic potential fluctuations derived here
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are valid for both laboratory and space plasmas; however,
they are evaluated numerically for plasma conditions of
laboratory low-temperature discharges. Finally, a condition
for neglecting plasma discreteness is derived which defines the
low-frequency regime (see the Appendix), previously roughly
identified as ω � kvT i .

II. SPECTRAL DENSITIES OF PLASMA FLUCTUATIONS

A. Fluctuating plasma quantities

In weakly coupled plasmas, temporal and spatial scale
considerations enable the decomposition of the distribution
function f α

p into an average continuous part �α
p = 〈f α

p 〉
and a fluctuating part δf α

p = f α
p − 〈�α

p〉, and the evolution
equations for both �α

p and δf α
p can then be found [1,2]. The

latter are the sum of “natural” fluctuations δf
α,(0)
p , related

to particle discreteness, and “induced” fluctuations δf
α,(ind)
p

in the presence of the fluctuating field δE(r,t). Due to the
variability of the dust charge, q can be considered as a new
phase variable, hence the Hamiltonian phase-space (r, p) is
extended to a seven-dimensional phase-space (r, p,q), and the
distribution function of the dust particles is also a function
of q, that is, f d

p′ (q,r,t) [16]. In the low-frequency regime,
where ω

kvT d
< �i,e (with typical �i,e of the order of few, see

Appendix), the natural fluctuations of electrons and ions can
be neglected, and the fluctuating densities of electrons and ions
are then

δnα(r,t) =
∫

δf α,(ind)
p (r,t)

dp
(2π )3

, (1)

only induced by dust discreteness. The fluctuating dust density,
on the other hand, is δnd (r,t) = δnd,(0)(r,t) + δnd,(ind)(r,t),
where

δnd,(0)(r,t) =
∫ ∫

δf
d,(0)
p′ (q,r,t)

dq d3p′

(2π )3
(2)

due to dust discreteness (free streaming particles) starts the
process, and

δnd,(ind)(r,t) =
∫ ∫

δf
d,(ind)
p′ (q,r,t)

dq d3p′

(2π )3
(3)

is induced by the fluctuating field generated in the system
by the fluctuating parts of the distributions via the Poisson
equation,

∇ · δE(r,t)

= 4π

(∑
α

eαδnα(r,t) +
∫

q ′δf d
p′(q ′)

dq ′d3 p′

(2π )3

)
. (4)

The spectral densities of all fluctuating quantities are calcu-
lated as statistical averages of products of fluctuations: Sα

k,ω =
〈δnα

k,ωδnα∗
k,ω〉 for the density fluctuations, SE

k,ω = 〈δEk,ωδE∗
k,ω〉

for the electric field fluctuations, and S
φ

k,ω = 〈δφk,ωδφ∗
k,ω〉

for the electrostatic potential fluctuations. In the present
low-frequency regime the statistical averages are taken over
the dust ensemble, i.e., all fluctuations are induced only by

dust discreteness, and the averages are done using the dust
natural statistical correlator, given by [2,16]〈

δf
d,(0)
p,k,ω(q)δf d,(0)

p′,k′,ω′ (q
′)
〉

= (2π )4�d
p(q)δ( p − p′)δ(ω + ω′)

× δ(k + k′)δ(ω − k · v)δ(q − q ′)δ(q − qeq) . (5)

Note that here, in contrast to earlier works, the Fourier
normalization factor (2π )−4 appears in the inverse transform
following the convention of the textbooks [17].

In this section the spectral densities are derived for the
full and multicomponent models following the methodology
outlined below [1,2,16]: (i) solution of the Klimontovich equa-
tions and the Poisson equation for the fluctuating quantities, (ii)
expression of all fluctuating quantities in terms of the natural
dust fluctuations δf

d,(0)
p,k,ω(q), and (iii) statistical averaging with

use of the natural dust correlator, given by Eq. (5).
The Klimontovich equations for both models have been

formulated in previous works [18,19]. Hence, below we only
provide final expressions for the fluctuating quantities of
interest and their spectral densities.

B. Spectral densities for the full kinetic model

The definitions of the auxiliary [and
k,ω,γk,ω(q,q ′),βk,ω(q),

χnd
k,ω] and low-frequency responses [χd,eq

k,ω ,χ
d,ch
k,ω ,χi

k,ω,Gk,ω,

q̃i
k,ω(q),β̃i

k,ω(q)] and their expressions for Maxwellian distri-
butions, and also the description of collisions with neutrals
(νn,α for the collision frequency where α = {i,d}), electron
impact ionization [νI (v) for the instantaneous ionization
frequency] and inelastic absorption of plasma on dust [νd,α =
ndvσα(q,v) for the collisional frequency with σα(q,v) the
relevant cross section] are provided in Refs. [18,19].

The solution for the fluctuating ion distribution, Fourier
transformed in space and time, is found in terms of the field and
dust fluctuations, and integrating over the momentum space of
the ions gives the ion density fluctuations

δni
k,ω = −

(
ık

4πe

χi
k,ω

1 + νn,iGk,ω

+ ıeneνe

Tek

Gk,ω

1 + νn,iGk,ω

)
× δEk,ω + 1

e

1

1 + νn,iGk,ω

∫
q̃i

k,ω(q)

× [
δf

d,(ind)
p′,k,ω (q) + δf

d,(0)
p′,k,ω(q)

]d3p′dq

(2π )3
, (6)

where νe = 1
ne

∫
νI (v)�e

p
d3p

(2π)3 is the average part of the ion-
ization frequency and νn,i = nnvT iσn,i is the average velocity-
independent collisional frequency of ions with neutrals.

The equation for the fluctuating part of the dust distribution
function is a first-order inhomogeneous differential equation
with respect to the additional charge phase-space variable.
Knowledge of Green’s function of the equation, under the
assumption of small deviations from the equilibrium charge,
i.e, | q−qeq

qeq
| � 1, so that the average dust distribution function

is assumed to play the role of a δ function in charge
and for any function F (q) we have

∫
F (q)�d

p′(q)dq 	
F (qeq)

∫
�d

p′(q)dq = F (qeq)�d
p′ [21], allows the calculation

of the integrals over the dust-induced fluctuations appearing
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in the Poisson equation and in the equation for the ion density
fluctuations. Here, qeq = −Zde, where Zd is an integer that
can be either positive or negative.

Thus the induced field fluctuations are expressed in terms
of only the natural dust fluctuations δf

d,(0)
p′,k,ω(q):

δEk,ω = 4π

ıkεk,ω

∫
qeff

k,ω(q)δf d,(0)
p′,k,ω(q)

d3p′dq

(2π )3
. (7)

The permittivity and the effective dust charge, defined by
Eq. (7), are given by

qeff
k,ω(q) = q − qeqχ

nd
k,ω + χ

d,ch
k,ω γk,ω(qeq,qeq) + 1

1 + νn,iGk,ω

× [
q̃i

k,ω(q) + χ
d,ch
k,ω γk,ω(qeq,qeq)β̃i

k,ω(qeq)
]
,

(8)

εk,ω = ε
p

k,ω + and
k,ωχ

d,eq
k,ω

[
1 + 1

1 + νn,iGk,ω

q̃i
k,ω(qeq)

qeq

]
, (9)

where

ε
p

k,ω = 1 + 1

k2λ2
De

[
1 + νeGk,ω

1 + νn,iGk,ω

]
+ χi

k,ω

1 + νn,iGk,ω

+ 4πı

k
χ

d,ch
k,ω βk,ω(qeq)

[
1 + β̃i

k,ω(qeq)

1 + νn,iGk,ω

]
. (10)

We also define εeff
k,ω(q) = qeqεk,ω

qeff
k,ω(q)

as the effective permittivity.

Finally, also the ion density fluctuations can be ex-
pressed in terms of δf

d,(0)
p′,k,ω(q). Evaluating the integral∫

q̃i
k,ωδf

d,(ind)
p′,k,ω (q) d3p′dq

(2π)3 with Green’s function and substituting
for the electric field fluctuations from Eq. (7), the result is

δni
k,ω =

∫
Ni

k,ω(q)δf d,(0)
p′,k,ω(q)

d3p′dq

(2π )3
, (11)

where Ni
k,ω(q) = 1

1+νn,iGk,ω
( Zd

εeff
k,ω(q)

Mi
k,ω(q) + �i

k,ω(q)) with

Mi
k,ω(q) = χi

k,ω + νe

k2λ2
De

Gk,ω

+ q̃i
k,ω

qeq
and

k,ωχ
d,eq
k,ω + 4πı

k
β̃i

k,ω(qeq)βk,ω(qeq)χd,ch
k,ω ,

(12)

�i
k,ω(q) = q̃i

k,ω(q)

e
+ β̃i

k,ω(qeq)γk,ω(qeq,qeq)χd,ch
k,ω

e

+ ıνn,da
nd
k,ωd

eq
k,ω

q̃i
k,ω(qeq)

e
. (13)

Due to the use of the adiabatic assumption, the relation for
the electron density fluctuations is quite straightforward and is
found to be

δne
k,ω =

∫
Ne

k,ω(q)δf d,(0)
p′,k,ω(q)

d3p′dq

(2π )3
, (14)

with the response Ne
k,ω(q) defined by

Ne
k,ω(q) = − Zd

k2λ2
De

1

εeff
k,ω(q)

. (15)

The above expressions with the aid of the natural correlator
for the dust species can be used to obtain relations for the

spectral densities of the electrostatic potential fluctuations
(Sφ

k,ω) and the ion density fluctuations (Si
k,ω),

S
φ

k,ω = 〈δφk,ωδφ∗
k,ω〉 = 16π2e2

k4|εeff
k,ω(qeq)|2 Z2

dS
d,(0)
k,ω , (16)

Si
k,ω = 〈

δni
k,ωδni∗

k,ω

〉 = |Ni
k,ω(qeq)|2Sd,(0)

k,ω . (17)

Here, the spectral density of the natural dust density fluctua-
tions is defined as

S
d,(0)
k,ω = 〈

δn
d,(0)
k,ω δn

d,(0)∗
k,ω

〉 = 2π

∫
�d (v)δ(ω − k · v)d3v ,

(18)

which for the Maxwellian distribution becomes

S
d,(0)
k,ω = (2π )1/2 nd

kvT d

exp

{
−

(
ω2

2k2v2
T d

)}
. (19)

It is important to note the dependence of S
φ

k,ω on Z2
d .

The same dependence appears also for Si
k,ω, since Mi

k,ω ∝
Zd and �i

k,ω ∝ Zd , the latter through q̃i
k,ω(qeq)/e ∝ Zd and

γk,ω(qeq,qeq)/e ∝ Zd (see the Appendixes of Ref. [19]). Such
a proportionality is also valid in the multicomponent model,
to be analyzed in the next subsection.

C. Spectral densities for the multicomponent kinetic model

In the multicomponent model the dust species is treated as a
massive ion species; the dust charge is fixed at the equilibrium
value qeq, absorption of plasma fluxes on the grains is not
considered and hence there is no need for a plasma source. For
the electron species the adiabatic assumption is used again,
while the fluctuating part of the Poisson equation will now
read as

∇ · δE = 4π (eδni − eδne + qeqδnd ) . (20)

After the standard decomposition, the permittivity and the

effective charge defined through δEk,ω = 4πq
eff,MC
k,ω

ıkεMC
k,ω

δn
d,(0)
k,ω are

found:

q
eff,MC
k,ω = qeqa

nd
k,ω,

(21)

εMC
k,ω = 1 + 1

k2λ2
De

+ χ
i,MC
k,ω

1 + νn,iG
MC
k,ω

+ and
k,ωχ

d,eq
k,ω ,

where the responses χ
i,MC
k,ω ,GMC

k,ω are altered from the full
kinetic model ones due to the absence of the νd,i term in
the denominator.

The fluctuating parts of the densities will be

δni
k,ω = − ık

4πe

[
χ

i,MC
k,ω

1 + νn,iG
MC
k,ω

]
δEk,ω,

δnd
k,ω = − ık

4πqeq
χ

d,eq
k,ω and

k,ωδEk,ω + and
k,ωδn

d,(0)
k,ω , (22)

δne
k,ω = ık

4πe

1

k2λ2
De

δEk,ω,
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which result in expressions of all the density fluctuations as
linear functions of the natural dust fluctuations,

δni
k,ω =

{
Zd

and
k,ω

1 + νn,iG
MC
k,ω

χ
i,MC
k,ω

εMC
k,ω

}
δn

d,(0)
k,ω ,

δnd
k,ω =

{
and

k,ω

[
1 − and

k,ωχ
d,eq
k,ω

εMC
k,ω

] }
δn

d,(0)
k,ω , (23)

δne
k,ω =

{
− Zd

k2λ2
De

and
k,ω

εMC
k,ω

}
δn

d,(0)
k,ω .

The above relations enable us to find the spectral densities of all
fluctuating quantities as a linear function of the spectral density
of the natural dust density fluctuations. For the quantities of
interest we obtain

S
φ,MC
k,ω = 〈δφk,ωδφ∗

k,ω〉 = 16π2e2

k4

∣∣∣∣∣and
k,ω

εMC
k,ω

∣∣∣∣∣
2

Z2
dS

d,(0)
k,ω , (24)

S
i,MC
k,ω = 〈δni

k,ωδni∗
k,ω〉 = Z2

d

∣∣∣∣∣ and
k,ω

1 + νn,iG
MC
k,ω

∣∣∣∣∣
2 ∣∣∣∣∣χ

i,MC
k,ω

εMC
k,ω

∣∣∣∣∣
2

S
d,(0)
k,ω .

(25)

Note that apart from the changes neutrals inflict in χ
i,MC
k,ω , εMC

k,ω ,
and Zd , their effect stems mainly from the explicit terms and

k,ω

and νn,iG
MC
k,ω that tend to unity and zero, respectively, for a

fully ionized plasma.

D. Spectral densities in absence of dust particles

To quantify the spectral modifications due to the presence
of dust, a comparison with theoretical results for ordinary
plasmas is necessary. Several simplifications can be made
here for the low-frequency regime of interest: (i) ions are
considered as the only source of discreteness, i.e., δni(r,t) =
δni,(0)(r,t) + δni,(ind)(r,t), (ii) electrons are described as con-
tinuous Vlasov fluids under the adiabatic assumption, and
(iii) collisions with neutrals are treated under the BGK
description.

Following the aforementioned methodology, but now ex-
pressing all fluctuating quantities via δf

i,(0)
p,k,ω, which is the only

source of discreteness, the fluctuating parts of the densities are

δni
k,ω = 1

1 + νn,iG
MC
k,0

(
1 − χ

i,MC
k,0

ε
eff,i
k,0

)
δn

i,(0)
k,ω , (26)

δne
k,ω = 1

k2λ2
De

1

ε
eff,i
k,0

δn
i,(0)
k,ω , (27)

where the effective permittivity is given by ε
eff,i
k,0 = eεi

k,0

q
eff,i
k,0

and defined through δEk,ω = 4πe

ıkε
eff,i
k,0

δn
i,(0)
k,ω , with the permit-

tivity given by εi
k,0 = 1 + 1

k2λ2
De

+ χ
i,MC
k,0

1+νn,iG
MC
k,0

and the effective

charge by q
eff,i
k,0 = e

1+νn,iG
MC
k,0

. Note that owing to ω � kvT i ,

the frequency can be neglected in all the low-frequency
responses.

The spectral densities of interest will be

S
φ

k,ω = 16π2e2

k4

1

|εeff,i
k,0 |2 S

i,(0)
k,ω ,

Si
k,ω =

∣∣∣∣∣ 1

1 + νn,iG
MC
k,0

∣∣∣∣∣
2∣∣∣∣∣1 − χ

i,MC
k,0

ε
eff,i
k,0

∣∣∣∣∣
2

S
i,(0)
k,ω .

Finally, S
i,(0)
k,ω = (2π )1/2 ni

kvT i
exp {−( ω2

2k2v2
T i

)} 	 (2π )1/2 ni

kvT i
,

for ω � kvT i , which yields the frequency-independent
expressions

S
φ

k,0 = 16
√

2π5/2e2ni

k5vT i

1∣∣εeff,i
k,0

∣∣2 , (28)

Si
k,0 = (2π )1/2 ni

kvT i

∣∣∣∣∣ 1

1 + νn,iG
MC
k,0

∣∣∣∣∣
2 ∣∣∣∣∣1 − χ

i,MC
k,0

ε
eff,i
k,0

∣∣∣∣∣
2

. (29)

III. NUMERICAL RESULTS

Quiescent laboratory plasmas are characterized by large
ion densities, e.g., for the cusp device [9] ni ∼ 1011 cm−3,
and for the brush cathode [4] and its variants ni ∼ 1010–1012

cm−3. The electron temperatures can vary substantially from
Te ∼ 3 eV (cusp device, reflex brush cathode [5]) to Te ∼ 0.1
eV (brush cathode, inverse brush cathode [6], large V-groove
cathode discharge [7]). The gas pressure can vary up to
Pn ∼ 100 Pa.

In the calculations below we will use the typical set
of parameters: ni = 1011 cm−3, Ti ∼ Tn ∼ Td ∼ 0.03 eV,
Te ∼ 3 eV, Pn = 10 Pa, and argon as the operating gas. In
addition the electron temperature and pressure dependence
are investigated. As a typical in situ dust size we consider
a = 50 nm (in accordance with a commonly observed value
of the dust radius after the agglomeration phase) and for the
dust density nd ∼ 106 cm−3, for these values the dust density
parameter is P = ndZd/ne ∼ 0.01.

In the numerical results presented below the normalized
wave numbers kλDi and the normalized frequencies ω/kvT d

are used. The condition for the omission of plasma discreetness
(see Appendix) is ω/kvT d < �i,�e, thus with the latter
normalization the same frequency interval can be used for
all the parameters investigated. The spectral densities of ion

fluctuations are plotted as
Si

k,ω

ni
(s) and the spectral densities of

electrostatic potential fluctuations as
S

φ

k,ω

e2 (cm s). Moreover, the
level of fluctuations in dust-free plasmas is indicated for every
set of parameters in order to manifest the spectral enhancement
due to the presence of dust.

To motivate the choice of wave numbers we point out that
due to the finite probe size, not all k’s are resolved [15]. The
density measured at the probe position is the uniform average
of the density over its collecting volume [22]. Therefore,
wavelengths shorter than the probe’s largest dimension will be
averaged out. For a cylindrical probe (with length L, diameter
d, and L � d), typical lengths are 1–0.1 mm and the wave
numbers of interest will be kλDi < 2π

L
λDi or kλDi < 0.1.
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FIG. 1. (Color online) Spectral density of the ion density fluc-
tuations as a function of the normalized frequency ω/kvT d for
the full (red bottom line) and the multicomponent (blue top line)
kinetic models for different wave numbers kλDi . The plasma and dust
parameters are ni = 1011 cm−3, Pn = 10 Pa, Te = 3 eV, a = 50 nm,
and P = 0.01. The levels of fluctuations in a dust-free plasma for
increasing kλDi are Si

k,ω/ni = 1.5 × 10−7, 1 × 10−8, 2.6 × 10−10,

and 2.2 × 10−10 s, respectively.

A. Spectral densities for varying wave numbers

In Figs. 1 and 2 the spectral densities of the ion density
fluctuations and the electrostatic potential fluctuations are
plotted for a range of normalized wave numbers kλDi . The
spectral densities are both proportional to the spectral density
of natural dust fluctuations S

d,(0)
k,ω , which bears an exponential

∝ exp (− ω2

2k2vT d
) dependence and decays much faster than all

the other responses (that are not purely exponential). Thus,
the spectral densities are rapidly decaying functions of the
normalized frequency, especially in the ω/kvT d > 1 range.
When examining the dependence of the spectral density
magnitude on the wave number, we notice that they decrease
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FIG. 2. (Color online) Spectral density of the electrostatic poten-
tial fluctuations as a function of the normalized frequency ω/kvT d

for the full (red top line) and the multicomponent (blue bottom line)
kinetic models for different wave numbers kλDi and the parameters
of Fig. 1. The levels of fluctuations in a dust-free plasma for
increasing kλDi are S

φ

k,ω/e2 = 6 × 10−4 , 4 × 10−5 , 7 × 10−7, and
2.4 × 10−7 cm s, respectively.
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FIG. 3. (Color online) Spectral density of the ion density fluc-
tuations as a function of the normalized frequency ω/kvT d for the
full (red bottom line) and the multicomponent (blue top line) kinetic
models for varying dust radii. The parameters are ni = 1011 cm−3,
Pn = 10 Pa, Te = 3 eV, P = 0.01, and kλDi = 0.05. For increasing
radius the dust densities are nd = 4.8 × 106 , 2.3 × 106 , 4.3 × 105,

and 2.1 × 105 cm−3. The level of fluctuations in a dust-free plasma
is Si

k,ω/ni = 2.6 × 10−10 s.

as kλDi increases. This is due to the scaling of the normalized
frequency with k.

In the range kλDi < 0.01 the deviations between the models
are always very large, even when considering low densities
of nano-dust. Such spatial scales are not only relevant to
absorption length scales, kabs = ν̄di/vT i where ν̄di is the
average absorption frequency, but also to the low-frequency
roots of the permittivity. As kλDi increases, the deviation
between the models decreases and in the short wavelength limit
they eventually overlap. Similar behavior has been observed in
the real parts of the permittivity and the static permittivity of the
models [19]. In light of the above, a length scale kλDi ∼ 0.05
can be regarded as representative of the deviations between
the models and will be thereafter used in Figs. 3–6.

Finally, we notice that for Si
k,ω the full model predicts lower

values than the multicomponent one, whereas the behavior is
inverse for S

φ

k,ω; also, the deviations are always larger for

Si
k,ω. While the formulas for S

φ

k,ω differ only in the effective
permittivities in the denominator [compare Eqs. (16) and
(24)], the formulas for Si

k,ω are completely different [compare
Eqs. (17) and (25)].

B. Ion spectral density for varying dust parameters

In Fig. 3, the ion fluctuation spectral densities of the full
kinetic model are compared to the multicomponent kinetic
model for varying grain radii from 50 nm to 1 μm. For the
comparison, the dust density parameter P is kept constant and
hence the dust density is varying. The reason for this choice is
that in order to isolate the effect of plasma absorption, the effect
of dust in the quasineutrality condition (the physical meaning
of P ) should be kept constant. Moreover, this leads to more
realistic dust densities, i.e., ∼106 cm−3 for small nano-dust
and ∼105 cm−3 for larger dust. Nevertheless, the conclusions
below are valid also for nd constant.
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FIG. 4. (Color online) Spectral density of the ion density fluc-
tuations as a function of the normalized frequency ω/kvT d for the
full (red bottom line) and the multicomponent (blue top line) kinetic
models for varying dust densities. The parameters are ni = 1011 cm−3,
Pn = 10 Pa, Te = 3 eV, a = 50 nm, and kλDi = 0.05. For increasing
P the dust densities are nd = 4.8 × 105, 2.4 × 106, 4.8 × 106, and
2.3 × 107 cm−3. The level of fluctuations in a dust-free plasma is
Si

k,ω/ni = 2.6 × 10−10 s.

As the radius increases, (i) absorption of plasma fluxes on
the grains becomes more significant and dust cannot be treated
adequately as an additional ion species, and the differences
between the models increases monotonically from 20% to
orders of magnitude, (ii) for both models the spectral densities
are greatly increasing in magnitude, and (iii) the dust thermal
velocity is decreasing, hence the (ω) frequency interval of
significant enhancement noticeably reduces.

In Fig. 4, the comparison of the ion fluctuation spectral
densities is carried out for varying dust density (through
control of the dust density parameter P ). For both kinetic
models, Si

k,ω is not a monotonic growing function of P .
Increase of the dust density initially leads to an increase of Si

k,ω,
which reaches a maximum and then decreases. This behavior
has been discussed and analytically investigated in Ref. [15].
We also notice that as P increases, the deviation becomes more
significant. This is to be expected since larger nd implies larger
absorption frequencies on dust.

C. Effect of neutrals and electron temperature

The effect of neutrals can be very important, especially for
low-temperature discharges operating at elevated pressures.
The presence of neutrals affects the permittivity and density
fluctuations due to (i) additional fluctuations induced by
collisions with neutrals, (ii) electron impact ionization and the
fluctuations it induces, and (iii) the change in absorption cross
sections of ions on dust (which also affect the equilibrium dust
charge).

In Fig. 5, we investigate the sensitivity of the full kinetic
model Si

k,ω on pressure. Notice that increase of the pressure
leads to a significant monotonic enhancement of the spectral
density by orders of magnitude, despite the monotonic dust
charge depletion.

The electron temperature variation can be of major impor-
tance in partially ionized dusty plasmas, since Te controls the
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FIG. 5. (Color online) Spectral density of the ion density fluc-
tuations as a function of the normalized frequency ω/kvT d for
the full kinetic model for varying pressure. The parameters are
ni = 1011 cm−3, Te = 3 eV, a = 50 nm, P = 0.01, and kλDi = 0.05.
The level of fluctuations in a dust-free plasma for increasing pres-
sure is Si

k,ω/ni = 1.2 × 10−10, 5.3 × 10−10, 1.8 × 10−9, 5 × 10−9,

1 × 10−8, and 2.3 × 10−8 s, respectively.

value of the dust equilibrium charge and also the strength
of the ionization frequency. In Fig. 6, Si

k,ω is plotted for
different electron temperatures. For Te < 3 eV electron impact
ionization is not important; as Te increases, more electrons
obtain kinetic energies large enough to overcome the repulsive
potential barrier of the dust grains and therefore the dust charge
number also increases, Zd = zaTe

e2 with z weakly dependent
on Te. Taking into account the rough proportionality of both
spectral densities on Z2

d [see Eqs. (17) and (25)], it is expected
that increase of Te will lead to an increase of the spectral den-
sities in all frequency ranges. For Te � 3 eV electron impact
ionization becomes important; as Te increases, more electrons
from the tail of the Maxwellian distribution obtain enough

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

ω/kvTd

S k
,ωi

/ n  
  i 

 (
s)

Te=6eV
Te=5eV
Te=4eV
Te=3eV
Te=1eV
Te=0.5eV
Te=0.1eV

FIG. 6. (Color online) Spectral density of the ion density fluc-
tuations as a function of the normalized frequency ω/kvT d for the
full kinetic model for varying electron temperature. The parameters
are ni = 1011 cm−3, Pn = 10 Pa, a = 50 nm, P = 0.01, and kλDi =
0.05. For increasing Te the dust charge number is Zd = 12, 50, 87,
207, 257, 303, and 346. The level of fluctuations in a dust-free plasma
for increasing Te is Si

k,ω/ni = 9 × 10−8, 6 × 10−9, 1.7 × 10−9, 2.6 ×
10−10, 1.6 × 10−10, 1.2 × 10−10, and 9 × 10−11 s, respectively.

026408-6



SPECTRA OF ION DENSITY AND POTENTIAL . . . PHYSICAL REVIEW E 85, 026408 (2012)

kinetic energy to ionize the argon gas (Uiz = 15.76 eV),
the ionization related fluctuating quantities increase (being
directly proportional to the average ionization frequency νe),
and the spectral densities decrease in most frequency ranges.
This picture is confirmed by the results of Fig. 6. When
comparing the cold (Te ∼ 0.1 eV) electrons with the typical
Te ∼ 3 eV the differences are of a factor of 5 over the whole
frequency range.

IV. CONCLUSIONS

(1) The spectra of ion density and electrostatic potential
fluctuations are derived and evaluated numerically for plasma
conditions of laboratory low-temperature discharges. The
measurement of two independent fluctuating quantities can
prove useful for the verification of the theoretical predictions
and the development of the dust diagnostic.

(2) The results of both kinetic models taking into account
the presence of neutrals reveal orders of magnitude enhance-
ment (five to ten orders of magnitude) of the fluctuation level
due to the presence of dust, similar to previously reported
spectral changes for fully ionized plasmas.

(3) Neutral gas density (pressure) can be responsible
for significant modifications of spectral density magnitudes,
despite the opposite behavior of the equilibrium dust charge
number Zd . Hence the inclusion of the effect of neutrals is
essential for a more realistic comparison with experiments,
especially if spectral measurements are intended for dust
diagnostic purposes.

(4) The full self-consistent model deviates from the mul-
ticomponent model significantly (above typical experimental
errors) already for typical dust densities nd ∼ 105 cm−3 and
dust radii a > 100 nm, which is common for in situ produced
dust.

(5) The nonmonotonic effect of electron temperature varia-
tion is attributed to the strength of electron impact ionization.

We also mention that for some space environments, plasma
fluxes emitted by the grain might be of importance in dust
charging, e.g., photoelectric emission in presence of a strong
radiation source [23–27]. In such cases an additional term Iext

is to be added to the charging equation and will affect the
equilibrium dust charge qeq, by reducing its negative value
or even making it positive. This, however, will not alter the
expressions for the dust charge fluctuations and consequently
the spectral densities, since Iext can be considered constant
in the temporal and spatial scales of the fluctuations [16,18].
In addition, one should also include relevant source terms
in the plasma Klimontovich equations, these will also be
nonfluctuating and hence have no effect on the spectral
densities.
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APPENDIX: A CONDITION FOR THE OMISSION
OF NATURAL PLASMA DENSITY FLUCTUATIONS

One of the basic assumptions of the kinetic model [16]
is the treatment of electrons and ions as continuous Vlasov
fluids in the low-frequency regime of dust dynamics (roughly
defined so far as ω � kvT i). Neglecting plasma discreteness
also implies that the electron and ion binary collisions can be
neglected compared to collisions with dust.

Due to the random character of the natural plasma fluctua-
tions, the range of validity of such an assumption can only be
estimated in light of its effect in the deliverables of the theory,
i.e., the permittivity, the collision integrals, and the spectral
densities of fluctuations. The permittivity cannot provide any
insight since it depends only on the induced fluctuations,
while estimates based on the characteristic frequencies of the
collisional processes have yielded the condition PZd > 1 for
natural plasma fluctuations to be negligible [16,28]. Here, we
find a condition on neglecting plasma discreteness based on
the spectral densities of fluctuations.

The effect of plasma discreteness on the spectral densities
will initially be evaluated through the multicomponent model of
fully ionized plasmas. Also taking δf

e,(0)
p (r,t) and δf

i,(0)
p (r,t)

into account will yield the spectral densities [15,17]

Sα
k,ω = S

α,(0)
k,ω

(
1 − 2Re

{
χα

k,ω

εk,ω

})
+

∣∣∣∣χα
k,ω

εk,ω

∣∣∣∣2

× (
S

α,(0)
k,ω + S

β,(0)
k,ω + Z2

dS
d,(0)
k,ω

)
, (A1)

S
φ

k,ω = 16π2e2

k4|εk,ω|2
(
S

α,(0)
k,ω + S

β,(0)
k,ω + Z2

dS
d,(0)
k,ω

)
, (A2)

where α,β = {i,e} and α �= β. Therefore, a meaningful com-
parison is between the spectral density of natural plasma
charge density fluctuations e2S

α,(0)
k,ω and the spectral density of

natural dust charge density fluctuations Z2
de

2S
d,(0)
k,ω . Imposing

Z2
de

2S
d,(0)
k,ω > e2S

α,(0)
k,ω and using the Maxwellian expressions

for the natural correlators, we can obtain a simple condition for
neglecting natural plasma fluctuations (also using vT d � vT α

or equivalently keeping only the zero-order terms in the
small parameter ω

kvT α
): ω

kvT d
< �α with the dimensionless

parameter defined by �α = √
2{ln (Z2

dnd

nα

vT α

vT d
)}1/2. Note that

for typical plasma and dust parameters and for grains of
radii ranging from 20 nm to 10 μm, we have �i = 5–7 and
�e = 6–8.

In the multicomponent model the effects of charging in
the system’s kinetics are not considered, hence the only
discrete collisional process are Coulomb collisions with the
resulting spectral functions S

γ,(0)
k,ω , γ = {i,e,d}. In the full

kinetic model of fully ionized plasmas due to the effect
of the plasma discreteness in inelastic charging collisions
and the velocity dependence of the capture cross sections
new spectral functions will appear for electrons and ions.
Yet, when compared to S

e,(0)
k,ω and S

i,(0)
k,ω respectively in the

region ω
kvT α

� 1 they are much smaller and thus the condition
ω

kvT d
< �α still holds. The new spectral functions will be of the
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form [13]

T α
k,ω = 2π

νch

∫
νd,α(v)�α

pδ(ω − k · v)
d3p

(2π )3
, (A3)

T̃ α
k,ω = 2π

ν2
ch

∫
ν2

d,α(v)�α
pδ(ω − k · v)

d3p

(2π )3
, (A4)

where νd,α(v) = ndvσα(q,v) is the instantaneous frequency of
inelastic charging collisions with dust and νch is the charging
frequency.

New ion spectral functions. For T i
k,ω, we acquire

T i
k,ω = (2π )2nd

νch

∫ ∞

ω/k

v2

k
σi(q,v)�i(v)dv ,

which for Maxwellian distributions, orbit motion limited
(OML) collisionless cross sections σi(qeq,v) [29] and ζi =

ω√
2kvT i

will lead to

T i
k,ω =

√
2πni

kvT i

√
2ndvT iπa2

νch

×
[
ζie

−ζ 2
i +

(
1

2
+ z

τ

)√
π [1 − erf(ζi)]

]
,

where erf(.) is the error function. Expansion in terms of ζi

gives the zero-order term

T i
k,ω ∼ S

i,(0)
k,ω

√
2ndvT iπa2

νch

(
1

2
+ z

τ

)√
π .

Use of νch = aωpi√
2πλDi

(1 + z + τ ) and typical parameters leads

to the estimate T i
k,ω/S

i,(0)
k,ω ∼ 10−3.

Similarly for T̃ i
k,ω we get

T̃ i
k,ω =

√
2πni

kvT i

2n2
dπ

2a4

ν2
ch

v2
T i

×
[(

1 + 2z

τ
+ ζ 2

i

)
e−ζ 2

i + z2

τ 2
Ei

(
ζ 2
i

)]
,

where Ei(.) is the exponential integral, this leads to the low-
frequency expansion

T̃ i
k,ω ∼ S

i,(0)
k,ω

2n2
dπ

2a4v2
T i

ν2
ch

z2

τ 2
Ei

(
ζ 2
i

)
,

and the estimate T̃ i
k,ω/S

i,(0)
k,ω ∼ 10−4.

New electron spectral functions. The main difference is that

only electrons with v > v∗ =
√

2Zde2

ame
can cross the repulsive

barrier set by the negatively charged dust and be captured by
the grain, hence the lower integration limit of the integrals will
be max{v∗, ω

k
} = v∗, since typically v∗ 	 107–108 cm/s while

vT i 	 104 cm/s. Therefore, the electron spectral functions will
be nearly of the form of the ion ones, with z instead of ζ 2

e , i.e.,

T e
k,ω =

√
2πne

kvT e

√
2πa2nd

νch
vT e

×
{√

ze−z +
(

1

2
− z

)√
π [1 − erf(

√
z)]

}
,

T̃ e
k,ω =

√
2πne

kvT e

2n2
dπ

2a4

ν2
ch

v2
T e{(1 − z)e−z + z2Ei(z)} ,

which yield the estimates T e
k,ω/S

e,(0)
k,ω ∼ 10−2 and T̃ e

k,ω/S
e,(0)
k,ω ∼

10−3, respectively.
Finally, to complete the proof, in the full kinetic model

of partially ionized plasmas, due to the effect of electron
discreetness in the electron impact ionization of neutrals and
the velocity dependence of the ionization cross sections σiz(v),
additional spectral functions will arise. They will be of the form

Ze
k,ω = 2π

νe

∫
νI (v)�e

pδ(ω − k · v)
d3p

(2π )3
, (A5)

Z̃e
k,ω = 2π

ν2
e

∫
[νI (v)]2�e

pδ(ω − k · v)
d3p

(2π )3
, (A6)

Z
e,ch
k,ω = 2π

νeνch

∫
νI (v)νd,e(v)�e

pδ(ω − k · v)
d3p

(2π )3
, (A7)

with νI (v) the instantaneous ionization frequency and νe the
average ionization frequency over the electron distribution
function. They can always be neglected for ω

kvT e
� 1 compared

to S
e,(0)
k,ω . Moreover, due to the effect of ion-neutral collisions in

ion absorption on dust grains, the inelastic charging collision
cross sections for ions will not be given by the OML model
but by a collision enhanced collection model [19,30] and
will be significantly larger on average. However, the charging
frequency νch will also be significantly larger, hence T i

k,ω , T̃ i
k,ω

can still be neglected compared to S
i,(0)
k,ω . Thus we conclude that

the condition ω
kvT d

< �α is a sufficient criterion for neglecting
the discreetness of plasma particles.
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