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Charging of dust in thermal collisional plasmas
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Thermal strongly collisional dusty plasma is studied. The electrical neutrality of the plasma suggests that the
gas phase has some electrostatic energy when the plasma contains charged dust grains. The value of this energy
determines the interphase interaction and ionization balance in the plasma. Proceeding from this, a new method
of calculation of the dust grains’ charges in plasmas with any number of ions (down to zero) has been proposed.
The correspondence between the theory and the experimental data is demonstrated.
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I. INTRODUCTION

One of the problems of dusty plasma theory is the
determination of the dust charge as the charge determines
the interaction of the dust grains with the gas component and
among themselves. This problem emerged when Sugden and
Trush [1] determined the increase of the electron number
density in the hydrocarbon combustion flames, which was
explained by the thermionic emission from the soot particles
[2,3]. This phenomenon has been extensively studied [4–12],
and even technical applications for it have been found. For
example, some authors proposed the seeding of working fluids
of magnetohydrodynamics (MHD) generators with refractory
grains of a low work function in order to increase their
electrical conductivity [13]. Nevertheless the problem of
calculation of the dust charge in the plasma has not been solved
completely.

I have considered a thermal plasma at atmospheric pressure,
i.e., a strongly collisional plasma, for which the time of
ionization relaxation is much less than the time of diffusion-
drift relaxation. Such plasmas are formed as a result of
the combustion of various fuels, in the channels of MHD
generators, and in welding fumes. They are charged solid
or liquid particles (dust grains) suspended in a partially
ionized gas at atmospheric or higher pressures. The system
is considered isothermal with the average temperature around
T ∼ 0.1–0.3 eV (T/kB ∼ 1200–3500 K). At such tempera-
tures, the ionization of the air, which is the gas component of
the plasma, is low. Therefore, the additional agents of alkali
metals are introduced into the fuel or another plasma source.
The alkali metal atoms have a low ionization potential, and
in this case, the gas phase of the plasma is the neutral buffer
gas containing the singly charged positive ions, emerging as a
result of the collision ionization of the additional agent atoms,
and the electrons, resulting from both processes—the collision
ionization and the emission from the dust grains’ surfaces.

When plasma does not contain the dust component, the
ionization balance is described by the Saha equation [14]

neni

na

= gi

ga

νe exp

(−I

T

)
≡ KS, (1)

where ne is the average electron number density; ni is the
average ion number density (in a low-temperature plasma,
the singly charged positive ions only are considered); na is
the average number density of atoms; νe = 2(meT/2πh̄2)3/2

is the effective density of the electron states; gi and ga are

the statistical weights of the ions and atoms, respectively; I

is the ionization potential of the alkali metal atoms; T is the
equilibrium temperature of the plasma which in this case is an
isothermal system; me is the electronic mass; h̄ is the Planck
constant; and KS is the Saha constant. Also, the neutrality
equation and the conditions of the mass conservation should
be considered:

ne = ni, ni + na = nA, (2)

where nA is the number density of the additional agent.
When the plasma contains dust grains, the number density

of electrons is changed by the interphase interaction. The
neutrality of plasma with polydisperse (in a general case) dust
component is described by the following equation:∑

j

Zjnj = ne − ni, (3)

where Zj is the charge number of the dust grains of kind j (the
charge is expressed in the elemental charges) with the number
density nj .

It should be noted that the charge exchange between the
dust and gas phases and the collision ionization are not
additive processes. The detailed analysis of the ionization and
recombination in the space charge layer near the dust grain
surface in plasma [15,16] demonstrated that the interphase
interaction results in the ionization balance displacement and
the emergence of nonequilibrium charge carriers. The local
increase or decrease of the plasma ionization degree, which
occurs as a result of interphase interaction, entails changes
of the electron and ion number densities, i.e., the ionization
balance in the space charge layer is not described by the Saha
Eq. (1). Therefore, the modernization of the Saha equation,
taking into account the interphase interaction, was proposed
in Refs. [17,18] as

neni

na

= KS exp
eϕ0

T
, (4)

where ϕ0 is the bulk plasma potential, the value of which is
defined by the total charge of the plasma gas phase.

The bulk plasma potential is the reference level for the
electrostatic potential in the system of charged particles. It is
well-known that the potential is defined by a constant. This
problem is easily solved when the charged particles are in
vacuum, i.e., the Coulomb interactions are considered. In this
case, the value of the potential at infinity is assumed equal
to zero, providing a reference point. In the plasma, such an
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approach can be implemented only for a single grain in the
perpetual system. The restriction of the plasma volume results
in a potential barrier on the boundary due to different mobilities
of electrons and ions. In this case, it is impossible to define the
point at infinity or to equate arbitrarily the value of potential
to zero because the whole plasma volume is charged (though
the charge is small). The system of polydisperse dust grains in
the plasma is even more complex. Using the Poisson equation,
it is possible to calculate the potential distribution around a
separate grain but up to a constant. Thus, inevitably there is
a problem concerning the correlation of the calculations done
for different dust grains among themselves.

The concept of the bulk plasma potential allows for the
solving of this problem: the existence of plasma based on
electrical interaction of its components. The whole plasma
volume is neutral, but the presence of the charged dust
grains entails a volumetric charge in the gas phase. The bulk
plasma potential characterizes the size of the operation that
is necessary for the plasma to gain some volumetric charge.
Thus, the gas phase of plasma contains some electrical energy,
which determines the energy level eϕ0. The potential barrier
near the dust grain surface is determined by the difference of
the energies of the electron on the grain surface and on the
level eϕ0.

This question in Ref. [19] for interacting planes has been
considered in detail; it has been demonstrated that the value
of the bulk plasma potential defines whether the planes are
repulsive or attractive. This problem in spherical symmetry
was considered in Ref. [20]. Besides, the possibility of
describing the dust grains’ long-range interaction and their
ordered structure formation in the thermal plasma (to which
the orbit-limited (OML) theory [21] is not applicable) by
the concept of bulk plasma potential was demonstrated in
Ref. [18]. Thus, the definition of the bulk plasma potential is
directly linked with the determination of the dust grain charges.

By now, I have considered the complex plasma containing
ions with a high number density. However, there is another
kind of thermal plasma. It is the dust-electron plasma, which
does not contain ions. Such plasma exists, for example, in
the welding fumes in which all ions are nucleation centers.
Thus, in this system, there are hot dust grains in the neutral
buffer gas. The system is saturated with electrons as a result
of thermionic emission from the grains surfaces, and the dust-
electron plasma emerges, so the neutrality equation acquires
the following form:

∑
j

Zjnj = ne. (5)

Such a system was considered in Refs. [22,23] in which
the theory of neutralized charges, allowing to calculate the
dust grain charges in a polydisperse system, was proposed.
This theory also uses the concept of bulk plasma potential;
however, here it is defined in a way different from that of the
complex plasma (containing ions).

The plasma containing a small number of additional
alkaline agents, for example, in the form of natural impurities,
is absolutely beyond the scope. This transition stage is not
described at all, and it is not clear how the grain charges
are calculated in this case. The present paper is dedicated to

the development of a general procedure for defining the dust
grains’ charges in a thermal strongly collisional plasma with
any number of ions.

In order to solve this problem, a general concept of bulk
plasma potential applicable to both dust-electron plasma and
complex plasma needs to be defined, and the theory should
correspond to the known experimental data of, for example,
Refs. [24–26].

Consideration will be concentrated on the plasma with
a dust component that acquires charge due to thermionic
emission, i.e., it is charged positively. The following notations
will be used further: the total potential with respect to any
reference system ϕ, the bulk plasma potential in the same
reference system ϕ0, the relative potential φ = ϕ − ϕ0, and
the dimensionless relative potential � ≡ eφ/T .

II. THERMAL DUST-ELECTRON PLASMA

The subject of interest is thermal plasma; therefore, the
formation of dust-electron plasma as a result of thermionic
emission is considered. The photoemission and the field emis-
sion that may take place in some cases are neglected. Thermal
dust-electron plasma is formed in the combustion products’
condensation zone of various fuels without additional alkali
metal agents. The high-temperature vapor of the combustion
products condenses and forms the nano-sized particles that
grow into larger conglomerates. These particles are in a state
close to thermodynamic equilibrium with the environmental
gas. The Kelvin temperature of the gas is about 1200–3500 K;
accordingly, the condensed dust has the same temperature.
At such a temperature, thermionic emission from the dust
grain surfaces is essential, and the equilibrium electron number
density near the grain surface is described by the Richardson
equation

nes = νe exp
−W

T
, (6)

where W is the electronic work function from the grain surface.
For the nano-sized grains, the correction factor to the work
function given in the reference books for the flat surface is
required. Such a correction factor can be found in the papers
by B. Smirnov [27,28].

The dust grains are charged positively, and the emitted
electrons saturate the environment. The theory of neutralized
charges [22] suggests that most of the electrons in the plasma
volume are distributed uniformly with some uniform (or
unperturbed) number density of n0 with the increase of the
electron number density only in the thin layer near the dust
grain surface. Therefore, the description of the system uses
relative values in this theory. The electron number density
is measured based on the uniform number density n0, and
the potential is measured based on the bulk plasma potential,
which is the potential of the neutralized background ϕ0 here.
The neutralization consists of the fact that the electrons with
number density n0 and some part of the dust grains’ charges
Z0 < Z (Z is the average charge number) neutralize each
other. As a result, the grain interaction depends only on the
visible part of the charge Z̃j = Zj − Z0. The neutralized
charge Z0 is linked with the uniform number density by the
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following equation:

Z0nd = n0. (7)

The total dust grain charge is described by the following
equation [22]:

Zj = Z0 +
√

2(rD + aj )ajT

sgn(�sj )e2rD

√
exp(�sj ) − �sj − 1, (8)

where aj is the grain radius, rD =
√

T/4πe2n0 is the screening
length, and �sj is the potential barrier with respect to ϕ0,

�sj = ln
nej

n0
= ln

νe

n0
− Wj

T
. (9)

The potential of the neutralized background can be defined
as follows. If the total charge of the dust grains is equal to
zero Zk = 0, the total potential of this grain surface is equal to
zero too. Thus, the relative charge of this grain Z̃k = −Z0, and
the relative surface potential φsk = −ϕ0. Then, from Eq. (8) it
follows that

e2Z0√
2aT

=
√

exp
−eϕ0

T
+ eϕ0

T
− 1, (10)

where a is the average dust grain radius. Here, it is considered
that the inequality a � rD is valid for most dust grains in
the combustion plasma and that sgn(−ϕ0) = −1 for ϕ0 > 0.
When the potential of the neutralized background ϕ0 � T/e,
Eq. (10) reduces to the Coulomb potential ϕ0 = eZ0/a.

As the potential of the neutralized background is defined,
it is possible to use it to define the average electron number
density, and eϕ0 is considered as the correction factor for the
electron chemical potential,

ne = n0 exp
eϕ0

T
. (11)

Now, it is possible to calculate the dust grain charges and
the average electron number density in thermal dust-electron
plasma, i.e., those parameters that can be measured. It allows
one to compare the theoretical model with the experimental
data. For example, in Ref. [24], the experimental data, obtained
by the study of thermal plasma formed in the flame of burning
aluminum dust, was cited: the alumina grain radius a =
0.05 μ, the plasma temperature is 3150 ± 70 K (T = 0.27 eV),
the dust number density nd = 1010 cm−3, and the electron
number density n

expt
e = 1.5 × 1012 cm−3.

The electronic work function for aluminum oxide is 4.7 eV,
and with the correction to the work function for the curvature
[29],

W = 4.7 eV + 0.39e2

a
= 4.71 eV.

The values of the temperature and work function allow
one to calculate the surface electron number density Eq. (6),
nes = 2.5 × 1013 cm−3. Taking into account Eq. (9), the total
charge is defined as a function of Z0:

Z(Z0) = Z0 +
√

2aT

e2

√
nes

Z0nd

− ln
nes

Z0nd

− 1,

and the potential of the neutralized background is defined as a
function of Z0: eϕ0/T = ln (ne/n0) = ln (Z/Z0).

Thus, the equation for Z0 is defined from Eq. (10) in the
following form:

e2Z0√
2aT

−
√

Z0

Z(Z0)
+ ln

Z(Z0)

Z0
− 1 = 0.

Then, calculation produces the neutralized charge Z0 = 25, the
average dust grains’ charge Z = 154, and the electron number
density ntheor

e = 1.54 × 1012 cm−3, which well agrees with the
experimental data.

III. COMPLEX THERMAL PLASMA

Complex thermal plasma consists of a dust component
and additional alkali metal agents in the buffer gas. The
average number densities of the electrons, ions, and atoms
are linked by Eq. (4) for which the bulk plasma potential ϕ0

describes the average displacement of the ionization balance.
The mechanism of this displacement as a result of interphase
interaction was described in Ref. [15]. The cause of the excess
ionization near the surface of a positively charged dust grain
is that the intensity of the collision ionization is proportional
to the product nena whereas the intensity of recombination is
proportional to neni . If the Boltzmann distribution is assumed
valid for the electrons and ions, then the recombination
intensity is a constant neni = n2

0, but the ionization intensity
depends on the potential nena = n0nA exp(�) − n2

0, i.e., the
ionization intensity increases near the positively charged dust
grains. The tendency is opposite for the negatively charged
grains.

If the Boltzmann distribution is considered equilibrium,
then the local displacement of the ionization balance can
be described as an additional correction factor δn(�) to the
Boltzmann distribution,

ner = n0 exp(�) + δn, nir = n0 exp(−�) + δn,

where ner and nir are the local number densities in contrast
to the averages ne and ni , respectively. Here, it is taken into
account that nonequilibrium additions for electron and ion
number densities are equal between themselves in the case of
single ionization. This addition is defined in Ref. [15] as

δn = n0
exp(�) − 1

2 cosh(�) − 1
. (12)

As a result, the additional ionization arising near the positively
charged grains causes an almost uniform spatial distribution
of ions [16], i.e., nir

∼= n0 when � > 0.
The thermionic emission is not a unique perturbation of

the complex plasma by the dust grains. The ionization of
atoms and the recombination of ions on the grain surfaces also
take place, i.e., there are fluxes of electrons, ions, and atoms
near the grains. Therefore, the displacement of the ionization
balance is determined by the diffusion processes considered in
Refs. [15,16]. It should be taken into account that Eq. (12)
is applicable to the strongly collisional plasma for which the
extent of the diffusion flux perturbations is much less than that
of the electrical perturbations (i.e., the recombination length
is much less than the screening length).

Besides, this theory is applicable to plasma with a great
amount of additional agent when the initial ionization degree
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is low and additional ionization in the field of positive grains
is possible. This situation remains as the number density of
the additional agent nA decreases down to the limiting value
when the full ionization of atoms provides for the necessary
displacement of the ionization balance.

The concept of the unperturbed number density n0 is used
to describe the complex plasma. It is the electron and ion
number densities in the unperturbed plasma area, i.e., outside
the space charge layers near the dust grains. This area is
neutral for high number densities of the additional agent.
The decrease of the amount of additional agent results in
the necessity of separation of the total unperturbed number
density on the electron unperturbed number density ne0 and the
ion unperturbed number density ni0, and the nonequilibrium
addition δn is determined by the ion unperturbed density
ni0 = ni because it describes the additional ionization. The
low number density of additional agent suggests that the
displacement of ionization balance should be considered
with the neutralization of the spatial electron charge by the
part of the dust component charge Z0. The neutralization
is described by Eq. (7) for dust-electron plasma. The ions
in the complex plasma neutralize the part of the spatial
electron charge, and the equation ne0 = Z0nd + ni0 should
be used instead of Eq. (7). As the ions are allocated uniformly
by additional ionization, the following equation should be
used:

ne0 = Z0nd + ni. (13)

The bulk plasma potential in the complex plasma can be
described by the same equation as the potential of the
neutralized background in the dust-electron plasma Eq. (10)
if the neutralized charge is described by Eq. (13).

The dust grain charge in the complex plasma at a high
number density of ions and under the condition a � rD is
described by the following equation [18]:

Z̃ = 2
aT

e2
sinh

�s

2
, (14)

which coincides with Eq. (8) up to a factor of
√

2 for positive
values of �s . Therefore, instead of Eq. (10), the following
equation may be used for a neutral grain:

e2Z0√
2aT

= 2 sinh
eϕ0

2T
,

and, accordingly,

ϕ0 = 2
T

e
arsinh

e2Z0

2
√

2aT
. (15)

The increase of the amount of additional agent can result in
the negative potential barrier that causes a local decrease of the
ionization degree. However, as it follows from Ref. [16], the
uniform space distribution of ions remains valid for negative
dust grains if �s � −0.7, corresponding to the visible charge
number Z̃ � −500a(μ)T (eV). Accordingly, Eq. (15) remains
valid in this range.

Therefore, it is possible to calculate the parameters of the
complex thermal plasma. The following combined equations
should be used:

ϕ0 = 2
T

e
arsinh

e2(ne0 − ni)

2
√

2andT
,

Z̃ = 2
√

2aT

e2
sinh

[
1

2
ln

(
νe

ne0

)
− W

2T

]
, (16)

Z̃nd =
(

exp
eϕ0

T
− 1

)
ne0.

Here, we assume that the ion number density is known as it
takes place in the experimental data considered below. If the
number density of the additional agent is given, the modernized
Saha Eq. (4) must be used too.

The combined Eq. (16) is reduced to one equation based on
Z0. The potential barrier of Eq. (9) is defined as a function of
Z0, and accordingly, the relative grain charge is defined in the
following form:

Z̃(Z0) = 2
√

2aT

e2
sinh

(
ln

√
nes

Z0nd + ni

)
.

The bulk plasma potential is defined as a function of Z0 by
Eq. (15). Thus, the equation for Z0 is defined from Eq. (16) in
the following form:

Z̃(Z0) −
[

exp

(
2arsinh

e2Z0

2
√

2aT

)
− 1

] (
Z0nd + ni

nd

)
= 0.

The results of measurement of the thermal complex plasma
containing grains of cerium oxide (W = 2.75 eV) with radii
of a = 0.4 μ and a number density nd = 6.8 × 107 cm−3 and
sodium ions with a number density ni = 4.2 × 109 cm−3 in
Ref. [25] are presented. The Kelvin temperature of the system
is 1700 K, the measured electron number density is ne = 7.2 ×
1010 cm−3, and Z ∼ 1000. The calculation using Eq. (16)
produces the following results: ne = 7.27 × 1010 cm−3 and
Z = 1007.

In the same reference, the following data are presented. The
thermal complex plasma contains grains of aluminum oxide
(W = 4.7 eV) with radii of a = 0.8 μ and a number density
nd = 1 × 106 cm−3 and sodium ions with a number density
ni = 8.6 × 1010 cm−3, and the Kelvin temperature is 2035 K.
The measured electron number density is 1.3 × 1011 cm−3

in this case; the calculated electron number density is 0.9 ×
1011 cm−3.

The results of measurement of the thermal complex plasma
containing grains of cerium oxide with radii of a = 0.4 μ and
a number density nd = 5 × 107 cm−3 and sodium ions with
a number density ni = 4 × 1010 cm−3 at Kelvin temperature
1700 K in Ref. [26] are presented. The measured electron
number density is 7 × 1010 cm−3, and the charge number is
∼500. The calculation produces the following results: ne =
6.2 × 1010 cm−3, Z = 433, and ne0 = 4.08 × 1010 cm−3. It
should be noted that ne0 ∼ ni in this case, i.e., the plasma is
neutral outside the space charge layers.

Thus, the proposed theory and the experimental data agree
well. The dependence of the electron number density on the
ion number density should be considered in the example of the
last system (Fig. 1).
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FIG. 1. Dependences of the average electron number density ne

and the unperturbed electron number density ne0 on the ion number
density. The dotted curves illustrate the use of Eq. (17).

The injection of ions into the plasma does not influence the
electron number density in such a system if the ion number
density ni < 108 cm−3, i.e., the plasma can be considered dust-
electron where ne0

∼= Z0nd . On the other hand, the thermionic
emission does not influence the collision ionization of the
complex plasma if the ion number density ni > 1011 cm−3,
and ne0

∼= ne
∼= ni in this case. The transition range in which

the thermionic emission and collision ionization are the
competitive processes takes place between the values of ion
number density 108 cm−3 < ni < 1011 cm−3.

The bulk plasma potential is determined as a potential
barrier near the surface of a neutral dust grain. Meanwhile,
the bulk plasma potential characterizes the electrical energy
contained in the plasma gas phase. In this case, it is background
energy that consists of the electron energy, the ion energy,
and the energy of the neutralized part of the grain charges.
The bulk plasma potential was defined based on the total
electric energy of the plasma in Refs. [17,18]. In dust-electron
plasma, the visible part of the grain charge Z̃ is screened
by the electrons of the space charge layer; the other part of
the grain charge Z0 is screened by the uniformly allocated
electrons that define the neutralized background, i.e., a part
of the grain electric energy compensates for the total energy
of the background electrons. This part of the grain energy is
described by the potential of the neutralized background or
the bulk plasma potential. When the ions are injected into the
plasma, the background energy decreases because a portion of
the background electrons is neutralized by the ions, and the
neutralized charge Z0 decreases too.

The Coulomb energy per electron can be defined [30]
as e2/Re, where Re = (3/4πne)1/3 is half of the average
distance between the electrons. Accordingly, the Coulomb
energy per ion is e2/Ri , where Ri = (3/4πni)1/3, and the
Coulomb energy of the neutralized charge per dust grain is
(eZ0)2/RW . Then, taking into account that ne/nd electrons
and ni/nd ions are required per dust grain, it is possible to
define the bulk plasma potential [31]

ϕ0 = 3

2

e

nd

(
Z2

0n
4/3
d − n4/3

e + n
4/3
i

)
, (17)

taking into account that 3
√

4π/3 ∼= 3/2.
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FIG. 2. Dependences of the visible charge and the neutralized
charge on the ion number density. The dotted curves illustrate the use
of Eq. (17).

In this case, the combined Eq. (16) should be used to
calculate the dust grain charges, but the equation for the bulk
potential needs to be replaced by Eq. (17). The results of such
calculations in Figs. 1–3 are represented by dotted curves. Only
the values of the neutralized charge Z0 in the range of high ion
number density differ much. However, it is not significant as
ne ∼ ni � Znd in this case.

Thus, both methods produce similar results. It means that
both the theory of neutralized charges describing dust-electron
plasma and the theory of complex plasma with a high content
of ions well coexist in the transition range where ni ∼ Znd .

It should be noted that in the range of densities equal to
ne0

∼= ni , there is a decrease of the average electron number
density (Fig. 1). The visible charge falloff takes place in this
range (Fig. 2). The average electron number density is defined
by the number of electrons in the unperturbed plasma area
and, additionally, in the space charge layer ne = ne0 + Z̃nd .
When the increase of ne0 is less intensive than the decrease
of Z̃, the average electron number density decreases. The
physics of this process is as follows. The potential barrier
on the plasma-grain boundary eφs decreases when the visible
charge Z̃ decreases. The thermionic emission flux does not
change though. Therefore, the electron backflow from the gas
phase on the grain surfaces increases, caused by the increase
of the unperturbed electron number density as a result of
the collision ionization. At the same time, the bulk plasma
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FIG. 3. Dependence of the bulk plasma potential on the ion
number density. The dotted curves illustrate the use of Eq. (17).
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potential decreases (Fig. 3), and accordingly, the additional
ionization, caused by the interphase interaction, decreases also
[see Eq. (4)]. As a result, the number of electrons in the
space charge layer ner − ne0 decreases simultaneously with
the increase of the unperturbed number density ne0. Thus, the
average electron number density tends to ne0, i.e., it decreases
in the transition range.

IV. CONCLUSION

A general theory for the dust-electron and complex plasmas
can be constructed if different values of unperturbed number
densities for electrons and ions are used. The concept of the

bulk plasma potential as a common reference level for the
electrostatic potential in the whole system is a basic concept
of this theory. The bulk plasma potential can be determined
as the potential barrier on the boundary plasma-neutral grain
or as the Coulomb energy of the plasma components. Both
methods produce similar results.

The injection of the additional alkali metal agents into
thermal dust plasma (the flame or MHD generator channel)
does not always result in an increase of the electron number
density. From the spent analysis, it follows that there can be
a range of ion number densities in which the increase of the
additional agent number density causes the decrease of the
electron number density.
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