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Splash control of drop impacts with geometric targets
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Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of inertial, viscous,
and capillary forces. After impact, a liquid lamella develops and expands radially, and under certain conditions, the
outer rim breaks up into an irregular arrangement of filaments and secondary droplets. We show experimentally
that the lamella expansion and subsequent breakup of the outer rim can be controlled by length scales that are of
comparable dimension to the impacting drop diameter. Under identical impact parameters (i.e., fluid properties
and impact velocity) we observe unique splashing dynamics by varying the target cross-sectional geometry.
These behaviors include (i) geometrically shaped lamellae and (ii) a transition in splashing stability, from regular
to irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations imposed
by the target cross-sectional geometry and that irregular splashes are governed by the fastest-growing unstable
Plateau-Rayleigh mode.
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I. INTRODUCTION

The impact of liquid drops is a rich phenomenon that
continues to draw copious research attention since drop
impacts are ubiquitous to many processes in both nature
and industry [1–7]. Ink-jet printing, pesticide deposition, and
fuel combustion are just a few examples where the effective
application of a fluid onto a surface relies on the impact
and subsequent splash of drops. Despite the fascination with
splashing patterns [8,9], the dominant mechanism that leads to
the rim breakup, filament formation, and secondary droplets
remains controversial [10–12].

Recently, a better understanding of how to influence
splashing (i.e., either enhance or suppress the occurrence of a
splash) has been obtained. Drop impacts under different care-
fully chosen experimental conditions, such as on compliant
surfaces [13], on moving surfaces [14], on wetted patterned
surfaces [15], in environments of varying pressure and gas
composition [16], and with non-Newtonian liquids [6] have
provided techniques that can precisely control splashing. The
dominant mechanism, however, still remains unclear. One
reason for the ambiguity is that for all of the above cases
the length scale of the target surface is much larger than the
impacting drop diameter. Under such conditions, the impact
process is defined by the competition of inertial, viscous,
and capillary forces [17,18]. Unfortunately, it is difficult to
distinguish the role played by each force, and as a result
it has been challenging to formulate reliable theoretical and
numerical methods.

In this paper we provide insight into the instability
governing the breakup of liquid lamella sheets that develop
after drop impact. Liquid drops of diameter D0 fall onto a
target post of equal diameter with impacting speed U0. A
finite amplitude azimuthal perturbation is produced by varying
the target cross-sectional geometry, which includes a cylinder
and regular polygon shapes. Figure 1 shows the side view of
an example drop impact with a cylindrical post with a time
interval between frames in terms of the characteristic impact
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FIG. 1. Side view of a liquid drop composed of water and glycerol
impacting a cylindrical post recorded at 40 000 fps. (a) A drop of
diameter 2.85 mm with impact velocity of 1.56 m s−1 makes contact
with the target. The drop deforms and (b) spreads radially to form (c)
a liquid lamella sheet. (d) As the sheet expands, undulations along
the rim emerge followed by the formation of filaments and secondary
smaller droplets. The time interval between frames is equal to the
characteristic impact time τ ∗ ≈ 1.8 ms. See Supplemental Material
for movie [26].

time τ ∗ = D0/U0. Despite the advantage of this simple setup,
only a limited number of investigations have focused on drop
impacts with obstacles of similar length scales as a window to
understanding the complexities of drop splashing [19–25].

II. EXPERIMENTAL METHODS

Droplets are created as liquid is injected into a capillary
tube using a low-noise syringe pump. The liquid slowly
drips out of the tube to form reproducible pendant drops
with an average diameter D0 of 2.85 mm. The liquid is
composed of deionized water and glycerol. Food coloring is
added to the solution for image enhancement purposes. The
liquid has a viscosity of 10 cP and a surface tension with
ambient air of 35.3 × 10−3 N m−1. Drops fall from a height
of 15 cm before striking the target, hitting the surface with a
measured impact velocity U0 of 1.56 m s−1. All experiments
are performed at ambient pressure (101 kPa). The dynamics
are described by two dimensionless parameters: the Reynolds
number (Re), defined as ρD0U0/μ, and the Weber number
(We), defined as ρD0U

2
0 /γ . Here ρ is the fluid density, U0 is

the impact velocity, D0 is the drop diameter, μ is the dynamic
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viscosity, and γ is the surface tension. For the given set of
experimental parameters, this results in a Re of 550 (i.e.,
inertial forces dominate viscous forces) and a We of 250
(i.e., inertial forces dominate surface forces). The capillary
number, defined as μU0/γ , is 0.45 meaning that surface forces
dominate over viscous forces. Top and side view images are
recorded using high-speed photography ranging from 30 000 to
40 000 frames per second.

The target posts are machined out of polyoxymethylene
with no surface treatments. The target cross-sectional geome-
try is varied and includes a cylinder and regular polygon shapes
that range from a triangle (n = 3) to a decagon (n = 10), where
n is the number of vertices. The diameter of the cylindrical
post is 2.85 mm, equal to the impacting drop diameter, and the
impacting cross-sectional surface area is kept constant for all
shapes (cylinder and polygons) at 6.38 mm2. This geometric
constraint allows the polygonal circumradius, the radius of a
circle that passes through all of the polygon vertices, to be
expressed in terms of the initial drop diameter as a function of
the number of vertices given by

R(n) = D0

√
π

2n sin(2π/n)
. (1)

More importantly, the relevant azimuthal length scale, which
is the edge length between vertices, is given by

s(n) = 2R(n) sin(π/n). (2)

From Eq. (2), we note that the edge length is largest for
n = 3 and decreases as the number of vertices increase.
This effectively decreases the amplitude of the azimuthal
perturbation.

III. RESULTS

A. Effect of target cross section on drop impacts

Figure 2 shows snapshots from the top view of a drop
impacting target posts of different cross-sectional geometries.
Under similar impacting conditions (i.e., constant Reynolds
and Weber numbers) we observe that the spreading and
retraction of the liquid lamella is significantly affected by
the target cross-sectional geometry. For example, both regular
(3 � n < 8) and irregular (cylinder and n � 8) splashing is
observed for impacts on polygonal posts. We refer to regular
splashing as whenever the number of filaments is equal to
the number of target vertices and their location is rotated
azimuthally by an angle of π/n with respect to the target
orientation. Irregular splashing occurs when the number of
filaments that form, and their location, are independent of the
target geometry, or number of vertices.

For the cylindrical case, the drop deforms and spreads
radially upon impact (Figs. 1 and 2). A thick rim forms at
the edge of the lamella sheet due to the accumulation of
ejected fluid. As the rim decelerates due to surface tension
it becomes susceptible to infinitesimal perturbations that lead
to the breakup of the lamella sheet into filaments and secondary
droplets. As the cross-sectional geometry of the post is
changed, the dynamics of the resulting lamella is significantly
altered. Figure 2 (top row) shows example snapshots of
geometric lamella for n = 3, 4, and 5 at a time 2τ ∗ after
impact, where τ ∗ is the characteristic impact time. Strikingly,
the resulting splash resembles the shape of the polygonal target
with an azimuthal rotation of approximately π/n with respect
to the target orientation, where n is the number of vertices.
For example, a drop that impacts a triangular post results in a
triangular-like splash that is shifted by π/3 with respect to the
post (Fig. 2, n = 3). For n � 8, the splashing dynamics are
similar to the cylindrical post case.

cylinder n = 3 n = 4 n = 5 n = 8

π / n

FIG. 2. Top view of liquid drops composed of water and glycerol impacting geometric target posts with a Re of 550 and a We of 250. (Top
row) Geometrically-shaped lamella 2τ ∗ after impact, where τ ∗ is the characteristic impact time D0/U0, with a cylindrical, triangular (n = 3),
square (n = 4), pentagon (n = 5), and octagon (n = 8) post. For n < 8, the resulting lamella shapes are identical to the target geometry but
are rotated by π/n due to the azimuthal variation of viscous dissipation. (Bottom row) Filament formation 4τ ∗ after impact shows that the
splashing dynamics depend on the target cross-sectional geometry. The lamella rims for n = 3, 4, and 5 breakup in a controlled manner and
form the exact number of filaments as the number of target vertices. The lamella rims for the cylinder post and n � 8 targets, however, breakup
in a similar fashion independent of target shape. See Supplemental Material for movies [26].
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B. Dynamics of geometrically shaped lamella

The dynamics of lamella sheets are characterized by
measuring the normalized splash diameter β, which is the
ratio of the instantaneous splash diameter D(τ ) and the initial
drop diameter D0, as a function of normalized time τ = t/τ ∗
[Fig. 3(a)]. Here τ = 0 is taken to be the instant that the drop
makes contact with the surface of the target. The first few
instants, as the lamella spreads along the target surface from
the point of impact, are not able to be resolved and represent the
initial flat part of β(τ ). Each plot of β(τ ) represents an average
of at least five impact events. The maximum normalized splash
diameter βm for all target cross sections is 3.74 ± 0.33. The
average value of the maximum normalized splash diameter
agrees reasonably well with the scaling laws of βm ∼ Re1/5

and with βm ∼ We1/4 [27]. This means that inertia, viscous, and
surface forces play important roles in the splashing dynamics
despite the minimal interaction between the drop and the
target surface. This is in accordance with an impact number
P ≡ We/Re4/5 close to unity [27]. Values of P < 1 describe
impacts for inviscid fluids and P > 1 describe impacts of

β(
τ)

τ

τ

ε(τ).

dβ
 / 
dτ

(a)

(b)

FIG. 3. (Color online) (a) The lamella splash diameter normalized
by the initial drop diameter plotted as a function of normalized time
τ . The average maximum splash diameter for all targets is 3.74
which agrees well with both scaling laws of βm ∼ Re1/5 and βm ∼
We1/4. (b) The velocity of the expanding splash diameter exhibits two
exponentially decaying regimes. At early times (0.3 < τ < 0.7) a fast
decay is due to the inertia dominated deformation of the drop as it
contacts the target. At later times (0.7 < τ < 3) a second slower decay
is due to viscous dissipation and surface forces impeding lamella
expansion. (Inset) The average strain rate on the expanding lamella
sheet ε̇ = β̇/β shows two exponential regimes.

viscous fluids. For this study, the impact number is P ≈ 1.6
and therefore follows closely with both scaling laws.

The liquid lamella expansion rate, computed from the
splash diameter dβ/dτ , shows two exponentially decaying
regimes [Fig. 3(b)]. At early times (0.3 < τ < 0.7), the rim
expansion follows a fast decay due to the inertia dominated
deformation of the drop as it comes into contact with the target.
The initial downward momentum is transferred horizontally,
producing radial expansion parallel to the surface of the target.
At later times (0.7 < τ < 3), the rim expansion is described by
a second slower decay than the first regime. Viscous dissipation
is present due to shear flow at the target surface as well as
surface forces due to the increase in surface area, both working
to impede the lamella expansion. For τ < 0.3, the rapid
increase in the expansion rate is due to an artifact as the initial
transient of spreading along the target surface is not captured
until the lamellae expand beyond the target circumradius. The
corresponding lamella strain rate ε̇, computed here as the
ratio of the expansion rate dβ/dτ and the normalized splash
diameter β(τ ), shows two exponential regimes in accordance
with biaxial extensional flow. This would suggest that the
splashing dynamics could be very different for non-Newtonian
fluids where the extensional viscosity can vary by orders of
magnitude under strong extensional flows [6,20].

As noted earlier, the resulting splash resembles the target
polygonal shape but with an azimuthal rotation with respect
to the target orientation (e.g., Fig. 2, n = 3). The rotation
of the lamella by π/n relative to the target can result from
two possible mechanisms: (i) the rapid decrease in kinetic
energy as the drop deforms after impact and (ii) the azimuthal
dependence of viscous dissipation in the boundary layer that
is formed in the vicinity of the target surface. Let us consider
a geometric cross-sectional target that is described by the
smallest and the largest radial distance from the origin, the
apogee r , and the circumradius R, respectively. For a liquid
drop that expands radially in contact with the surface from
the origin, the time it takes for the liquid lamella to reach the
apogee is less than the time it takes to reach the circumradius.
The fluid at the apogee experiences less of a decrease in
kinetic energy and less viscous dissipation than the fluid at the
circumradius. Hence the fluid velocity is larger at the apogee
than at the circumradius resulting in a geometrical lamella that
are shifted by π/n with respect to the target vertices, for n < 8.

C. Rim instability: Regular and irregular splashing

Once the maximum splash diameter is reached, the liquid
lamella retracts inward. Finger formation and secondary
droplets result as the outer rim breaks up to minimize the
increase in surface energy. We observe that for polygonal
targets, the ability to create geometric lamellae that undergo
controlled breakup into n filaments depends on the target
cross-sectional geometry and holds for targets with n < 8
only (Fig. 2, bottom row). Specifically, there is a transition
in the splashing stability from regular (3 � n < 8) to irregular
(n � 8) breakup of the liquid lamellae. We propose that there
is a competition between the finite amplitude perturbation
imposed from the target cross-sectional geometry and the
most unstable mode determined by the dominant instability,
which in this case is similar to the Plateau-Rayleigh (PR)
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FIG. 4. (Color online) (Top row) Evolution of the radial profile for expanding lamella sheets for the time interval τ ∗ < τ < 3τ ∗ after drop
impact on a cylinder, hexagon (n = 6), and octagon (n = 8) targets. Six equidistant peaks are evident over the entire interval for the hexagon
case. The peaks for the cylinder and octagon case are not evenly spaced and the number decreases due to merging. Scale bar represents 1.75
mm. (Bottom row) Left: The deviations in the undulation amplitude σ normalized by the average lamella radius 〈R〉 increases exponentially
with time. Middle: The periodograms of the radial profiles of the lamella sheets for the three cases at 2τ ∗ after impact. There is a single narrow
peak at π/3 for the n = 6 case and a broad distribution of values with multiple peaks for the cylinder and n = 8 cases. Right: A comparison of
the target perturbation amplitude φn and the most unstable azimuthal mode φmax of a toroid jet determined by the Plateau-Rayleigh instability.
Regular splashing occurs when φn/φmax > 1 for targets with 3 � n < 8 and irregular splashing occurs when φn/φmax < 1 for targets with n � 8.

instability [12,19,28]. Other possible mechanisms that have
been proposed include the Richtmyer-Meshkov [29] and the
Rayleigh-Taylor [9,10,25,30] instabilities.

To gain insight into the mechanism responsible for the
breakup and retraction of the lamella, an analysis of the
corrugations around the expanding rim was performed.
The top row of Fig. 4 shows the evolution of the azimuthal
profile of lamella sheets after drop impact on a cylinder (left),
hexagon (center), and octagon (right) target over the time
interval of τ ∗ to 3τ ∗. At early times (τ = τ ∗), the amplitude
of rim undulations is similar for all three cases. At later times,
however (τ ∗ < τ � 3τ ∗), it is evident that the radial profile
for the hexagon case is different than the profiles for the
cylinder and octagon cases. The typical behavior of lamella
sheets for impacts on targets with 3 � n < 8 is that there are
n equidistant peaks apparent over the entire splash process,
similar to the six equidistant peaks for the hexagon case.
For other targets (n � 8) the peaks are unevenly distributed
and the number decreases as filaments merge during the sheet
expansion, similar to the profiles for the cylinder and octagon
cases (Fig. 4, top row).

For all cases (3 � n � 10 and cylinder), the amplitude of
rim undulations increase with time. The fluctuations of the
corrugations, which are quantified by the ratio of the standard

deviation σ about the average lamella sheet radius 〈R〉, grow
exponentially with time (Fig. 4, bottom left). The rates of
growth, evident by the slope of the straight portion of the
curves for τ > 2, are similar for all cases independent of the
target cross-sectional geometry. This is not surprising because
the mechanism behind every lamellae breakup, whether it
undergoes regular or irregular splashing, is driven by surface
tension. The exponential growth rate, however, is indicative
of a PR instability. The dispersion relation associated with
the most unstable mode of the PR instability is given by
ωPR = 0.34

√
γ /ρa3, where γ is the surface tension, ρ is the

fluid density, and a is the radius of the fluid jet [31]. For
the current experimental parameters, the time scale of the
PR instability would be approximately 2.7 ms. The average
characteristic time scale of growth in fluctuations of expanding
lamellae, extracted by fitting an exponential function to the
curve for τ > 2, is measured to be 2.1 ± 0.4 ms, in good
agreement with the PR time scale.

For further comparison, we compute the periodograms of
the radial profiles for the three cases (cylinder, n = 6, and n =
8) at 2τ ∗ (Fig. 4, bottom middle). The periodogram of the radial
profile for the hexagon case is a single narrow peak centered
about π/3. It is typical for the periodograms to contain a single
peak centered about π/n for targets with 3 � n < 8 vertices.

026319-4



SPLASH CONTROL OF DROP IMPACTS WITH GEOMETRIC . . . PHYSICAL REVIEW E 85, 026319 (2012)

The periodograms for other targets (cylinder and n � 8),
however, are broad and contain multiple peaks, represented
in the periodograms for the cylinder and octagon cases. This
supports the idea that the perturbation imposed from the target
cross-sectional geometry for 3 � n < 8 overwhelms the most
unstable mode and is therefore a determining factor in the evo-
lution of the lamella. The cylinder and octagon cases, however,
contain a distribution of values as the imposed target perturba-
tion is small compared to the most unstable mode, making the
rims unstable and susceptible to infinitesimal perturbations.

It seems reasonable to conclude that a regular splash will
occur when the azimuthal perturbation imposed by the target
cross-sectional geometry is larger than the most unstable mode
of the expanding toroidal jet, experimentally equivalent to the
thick outer rim. The thin liquid lamella sheet that connects the
outer rim to the target post is neglected since we believe that
it does not contribute to the rim instability. This simplification
is supported by our observations that, for moderate Re, there
are no ripples in the lamella sheet (Fig. 2) as seen for high Re
impacts of O(104) [19]. Furthermore, the lamellae are seen to
break from the outermost points of the rim rather than from
within the sheet connecting the target to the rim.

Utilizing the observations that the fluctuations in the rim
corrugations increase exponentially with a characteristic time
similar to that associated with the PR dispersion relation ωPR,
we approximate the most unstable mode of a toroidal jet
as determined by the PR instability and compare it to the
azimuthal perturbation imposed due to the target geometry.
The rim volume can be expressed as a fraction of the initial
drop volume Vr = εV0, with 0 < ε < 1. Denoting a as the
minor radius of the toroid, Rm as the major radius of the
toroid, and R0 as the initial radius of the impacting drop, the
rim volume is given by

2π2a2Rm = 4

3
πεR3

0 . (3)

At maximum expansion the torus minor radius can be written
in terms of the maximum splash radius Rm and the normalized
splash radius βm and is given by

a = Rm

√
2ε

3πβ3
m

. (4)

Using the scaling relations for βm [27] and an average
measured value for ε of 0.65 [19,21], Eq. (4) predicts the
minor radius a to be 0.27 mm. This value agrees well
with observations of the rim thickness for geometric lamella,
measured to be a = 0.3 mm.

Analogous to the most unstable wavelength of a cylindrical
jet [32], the most unstable azimuthal mode for a toroid jet
determined by the PR instability [33,34] is given by

φmax = λmax

Rm

= 9.02 a

Rm

= 9.02

√
2ε

3πβ3
m

. (5)

The amplitude of the azimuthal perturbation imposed for
regular polygon targets is taken to be

φn = π/n. (6)

The ratio of the target perturbation φn and the most unstable
azimuthal mode of a toroid jet φmax is plotted as a function

of target vertices n (Fig. 4, bottom right). Interestingly, we
see that for targets with 3 � n < 8 vertices, the azimuthal
perturbation imposed by the target geometry is larger than
the most unstable azimuthal PR mode, or that φn/φmax > 1.
These conditions will produce a regular splash, in agreement
with observations (Fig. 2). For targets with n � 8, however,
the azimuthal perturbation is smaller than the most unstable
PR mode, φn/φmax < 1, suggesting that the lamella rim is
susceptible to infinitesimal perturbations and will produce an
irregular splash, independent of target geometry. We note that
Rm does not explicitly appear in Eq. (5) as we assume that the
maximum radius for the toroid jet is similar to circumradius of
a geometrically shaped lamella, a reasonable assumption from
Fig. 3(a). Finally, to show that these results are independent
of scaling arguments, both βm ∼ We1/4 and βm ∼ Re1/5 are
used in place of the normalized splash radius in Eq. (5), and
the upper and lower bounds are shown with error bars.

IV. CONCLUSION

We have shown that the expansion and subsequent breakup
of the outer rim of liquid lamellae can be controlled by
length scales on the order of the impacting drop diameter.
Under identical impact conditions of constant Reynolds and
Weber numbers, we observe unique splashing dynamics by
simply varying the target cross-sectional geometry to include
a cylinder and regular polygon shapes. For polygon targets
with 3 � n < 8 vertices, the expanding lamellae resemble the
geometric cross-section of the target, but are rotated by an
angle of π/n with respect to the target orientation. We find
that the breakup of the outer rim and liquid lamellae are
well controlled and reproducible. The number of filaments
that form during splashing is equal to the number of vertices
n of the target. For other targets (cylinder and n � 8), the
expansion and breakup of the outer rim and liquid lamellae are
independent of the target geometry.

We find that there are two distinct splashing regimes
depending on the number of target vertices: regular splashing
(3 � n < 8) and irregular splashing (cylinder and n � 8). We
propose that the transition in splashing stability is a result
of the competition between the amplitude of the azimuthal
perturbation imposed by the target cross-sectional geometry
and the most unstable azimuthal mode, determined by the
Plateau-Rayleigh instability, of the expanding outer rim. For
3 � n < 8 polygon targets, regular splashing occurs since the
imposed target perturbation is large enough to overwhelm
the most unstable mode and effectively control the dynamics
of the splash. For the cylinder and n � 8 targets, irregular
splashing occurs since the imposed target perturbation is
smaller than the most unstable mode and the resulting splash
dynamics are independent of the target geometry. The rim
dynamics are instead governed by the most unstable azimuthal
Plateau-Rayleigh mode.

In summary, we show that drop splashing can be potentially
controlled by geometric features of the target. The experiments
presented here provide a new method that systematically
probes the effects of azimuthal perturbations on the expanding
lamellae after drop impact. While our experimental observa-
tions indicate that the splashing phenomenon is dominated by
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the Plateau-Rayleigh instability, questions still remain. One
important parameter to investigate further is the dependence
of the ratio of the maximum splash radius to the minor radius
of the outer rim, expressed in Eq. (4), on varying impact
conditions (i.e., changing both the Re and the We). This would
provide a better understanding on the limiting case for irregular
splashing of liquid lamellae.
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