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Propagating solitons generated by localized perturbations on the surface of deep water
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We report experimental evidence of the propagating capillary solitary waves generated by a localized water
surface perturbation. Solitons are formed at the air-water interface with a solid plunger and then propagate with
velocities proportional to their amplitudes. The shape of the forward front of such solitons is independent of the
plunger shape and is given by the hyperbolic secant profile. We find that the nonlinearity of capillary waves is

responsible for a small dispersion in the capillary wave group velocity and the soliton existence. This dispersion
can be further reduced by adding minute concentrations of proteins to water.
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I. INTRODUCTION

Solitary waves, or solitons, which are spatially localized
structures maintaining their shape due to a balance between
nonlinearity and dispersion, are found in a broad range of
scientific contexts (see, for example, [1]). Despite the fact
that a propagating soliton was first observed by Russell in
1834 on the surface of water, there is little experimental
evidence of their presence in the deep water surface ripples.
The ability of a water surface perturbation to propagate
without substantially changing its shape is well understood
in shallow layers, described by the Korteweg—de Vries (KdV)
equation [2]. In that case, the nonlinearity due to the finite
water depth & balances the dispersion of long gravity waves
w? = gktanh(kh). Solitons in optical fibers, which can be
generated as a result of modulation instability, were discovered
in nonlinear optics under the conditions when the dispersive
broadening of a short optical pulse is compensated by self-
phase modulation induced by the presence of an intensity-
dependent refractive index [3-5]

Recently localized oscillating solitons have been found
in the water surface ripple under continuous parametric
excitation in the capillary-gravity range of frequencies [6].
It has been found that if a water container is shaken in the
vertical direction at the frequency f;, a parametrically excited
standing wave at the first subharmonic frequency f| = f;/2
becomes modulationally unstable and breaks into independent
structures oscillating at the frequency f;. The surface ripples
appear as ensembles of oscillons, or quasiparticles, interacting
at short distance. In this case oscillations are constantly forced.

Here we study surface ripples produced by a localized
vertically moving plunger. We present experimental evidence
that steep capillary waves produced at solid plungers become
modulationally unstable and generate solitons at the water-air
interface propagating away from the source with the velocity
which is proportional to their amplitude. Such solitons had
not been observed before on the deep water surface and the
mechanism of their generation may clarify the physics of
surface oscillations and wake solitons produced by moving
solid bodies in contact with water-air interface (e.g., [7,8]).

All results presented here are obtained when the surface
perturbations are generated by a vertically moving 45° conical
plunger seen in Fig. 1. The diameter of the unperturbed
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waterline is 50 mm. Experiments are performed in a square
0.5 x 0.5 m? container filled with water to a level of 0.1 m.
The plunger is driven in the frequency range between 10 Hz
to several kHz. The forcing is proportional to the acceleration
(expressed in units of g) which is computed as a. = Aw,?/g,
where A is the peak-to-peak displacement of the plunger, g is
the gravitational acceleration, and f; = w,/(2m) is the driving
frequency. The gradient of the surface ripple V7 is measured by
reflecting a thin laser beam off the water surface and measuring
light intensity [9,10]. By integrating in time V7 of the wave,
propagating past the laser reflection point, the surface elevation
n is deduced. Fast video imaging (up to 600 fps) is used for
the visualization of the fluid surface and for the measurements
of the wave-propagation velocities.

II. SURFACE RIPPLE DEVELOPMENT

At low acceleration of a, = 3g, the surface ripple is
represented by the concentric rings shown in Fig. 1(a). As
the acceleration is increased to a. = 5g, the water line of
the plunger becomes modulated and the wave fronts become
broken, as shown in Fig. 1(b). The breakup of the smooth
circular wave front is also observed during the startup stage
at higher acceleration. Figure 1(c) shows the time evolution
of the surface gradient Vn(¢) measured 150-mm away from
the plunger during the startup at a, = 8g. The surface gradient
which is reasonably symmetric right at the beginning, becomes
positively skewed as the instability develops.

We identify three regimes corresponding to three ranges
of forcing illustrated in Fig. 2. At low forcing, Figs. 2(a) and
2(d), the plunger produces linear nearly sinusoidal waves. The
surface gradient spectrum is characterized by a dominant peak
at the forcing frequency f; = 20 Hz. At higher forcing, the
water line of the plunger becomes modulated, which is also
reflected in the modulation of the wave fronts propagating
away from the plunger, Fig. 2(b). This corresponds to the onset
of several new features in the frequency spectrum, Fig. 2(e),
namely the first subharmonic of the plunger frequency and its
multiple harmonics. Further increase in forcing leads to the
increase in the surface perturbation steepness, a breaking of
the water line into individual “blobs” [clearly seen in Fig. 1(b)]
and to the formation of asymmetric wave pulses propagating
away from the source. The frequency spectrum at the high
forcing level is dominated by the first subharmonic at f; = 10
Hz, Fig. 2(f).
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FIG. 1. (Color online) Snapshots of the surface perturbation at
different accelerations (a) at a. = 3g, (b) a. = 8g, and (c) time
evolution of the surface gradient at the startup of experiment at
a. = 8g.

The onset of the subharmonic frequency in the spectrum
points to a parametric nature of the instability developing
at the plunger. Similar instabilities, known as cross waves,
have been studied in rectangular water basins where waves
were excited by symmetric wave makers (for review see [11]).
The initial azimuthal modulation of the water front is due to
the modulation instability of a capillary-gravity wave. It is
well known that the gravity surface waves are modulationally
unstable, a phenomenon discovered by Benjamin and Feir [12].
Capillary waves are also unstable to small perturbations of
the wave envelopes. The instability develops when a Lighthill
criterion is satisfied

(Bw/dlal*) (0w /9k*) < 0. (1)

Here |a|? is the wave intensity, @ is a nonlinear wave
frequency, and w = (Tk?/p)!/? is a linear dispersion of
capillary waves (T and p are the surface tension coefficient
and water density, respectively). This criterion states that a
wave is unstable if the sign of the group velocity dispersion
02wy /dk* is opposite to dw/d|a|> nonlinearity. An exact
nonlinear solution for capillary waves was found by Crapper
in 1957 [13], who derived the following expression for the
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FIG. 2. (Color online) Schematics of the plunger and the under-
water view of the surface perturbation at (a) a. = 3g, (b) a. = 5g,
and (c) a. = 8g. The corresponding frequency spectra of the surface
gradient at (d) a, = 3g, (e) a. = 5g, and (f) a. = 8g. The driving
frequency of the plunger is f, = 20 Hz.

capillary wave phase velocity

c = kT /p)"*(1 + k*a*/16)~1/4, )

In this expression a is the peak-to-trough amplitude of the
wave, as defined in [13]. We follow this definition throughout
the remainder of the paper. It is easy to check that the Lighthill
criterion (1) is indeed satisfied for capillary waves with @ =
kc, where c is given by (2).

The growth rate of the nonlinear stage of the instability
leading to the breaking of waves into pulses increases with
forcing. Fast video [14] shows that the instability is periodic:
the first soliton-like structure is detached from the plunger
after about 10 periods of the plunger oscillations. At higher
forcing, the instability can develop within a minimum of four
plunger periods. Stronger forcing leads to the breaking of the
cross wave and ejection of droplets.

A relationship between modulation and parametric instabil-
ities has been established theoretically and numerically [15]
and it has been shown that though linear growth rates of the
two instabilities are identical, nonlinear stages are different.
It should be noted that the development of the modulation
instability which leads to the modulation of wave fronts and
formation of the oscillating solitons has recently been reported
in experiments on parametrically driven surface waves in
vertically vibrated containers [6]. The main difference with
the results reported here is that in parametrically excited
systems standing oscillonic structures are produced which are
constantly forced. With the localized excitation, the surface
perturbations are formed at the plunger and then propagate
away from the source.
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FIG. 3. (Color online) Measurements of (a) the surface pertur-
bation propagating velocity and (b) the skewness of the surface
elevation, at different accelerations. The plunger frequency is kept
constant at f; = 20 Hz. The acceleration is varied by changing the
plunger oscillation amplitude A.

III. SOLITON FORMATION

Velocities of the surface perturbations were studied using
fast video. A perturbation is followed for about 200 mm. The
velocities were measured at the distances from the plunger of
(20-100) mm and (100-180) mm. The shape of the waveforms
was monitored using laser reflection at the distance 150-mm
away from the plunger. The velocity results are presented in
Fig. 3(a), while Fig. 3(b) shows the waveform skewness. At
low forcing, a. < 4g, perturbations propagate with velocity
which is very close to the capillary wave phase velocity
at the frequency of forcing c(f;). These waves are slightly
skewed negatively, as predicted by the nonlinear theory of
capillary waves at low amplitudes [13]. Above the threshold
of modulation instability, the surface ripples propagate slower,
at the speed close to the group velocity of the first subharmonic
wave f; = 10 Hz. This regime coincides with the onset of the
modulation of the wave fronts. The skewness of the surface
ripple changes dramatically and becomes strongly positive.
The further increase in forcing at a, > 6g leads to a steady
increase in the propagation speed with forcing, Fig. 3(a). The
shape of the perturbations, however, does not change in this
forcing range, such that the skewness is roughly constant.
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This suggests that the propagating structures are solitons
which (a) maintain their shape as their propagate, and (b)
have velocities which depend on their amplitude. Propagating
solitons are subject to viscous dissipation, their amplitudes
and velocities are reduced as they propagate away from the
plunger. Soliton velocities shown in Fig. 3(a) were measured
(20-100) mm away from the plunger. Further away, at (100—
180) mm, velocities are typically 10-20% lower. We have
also confirmed experimentally that the peak amplitude of the
propagating perturbation pulses (solitons) increases linearly
with the plunger oscillation amplitude. Thus we conclude
that the observed soliton’s velocity depends on its amplitude,
similar to a KdV soliton.

Now let us turn to the shape of these solitons. At low
amplitude, waves are nearly sinusoidal, as seen in Fig. 4(a).
At higher forcing, the surface gradient V5 consists of pulses
which are perfectly fitted by a Dsech(% Vt) function, as shown
in Fig. 4(b). Here V is the soliton velocity determined from the
fast video data, and b is a characteristic pulse width. Hyper-
bolic secant pulses are well known solutions of the nonlinear
Schrodinger equation (e.g., [16]) which are commonly used
to describe solitons in various systems, including oscillating
oscillons recently found in the parametrically forced capillary
ripple [6].

Soliton pulses propagate over large distances (over 80 mm)
compared with their widths at the nearly constant velocities.
The integration of V7 gives profiles of the surface elevation
shown in Fig. 4(d). The shape of these perturbations does
not significantly change as they propagate in the near zone,
as will be illustrated below. The origin of the sech(x) pulses
in the ripple can be tracked back to the plunger. The cross
wave is broken into blobs, as seen in Fig. 4(d). The forward
fronts of these blobs are well approximated by the sech(x)
function, as shown in Fig. 4(e). This shape is universal
and it is not dependent on the shape of a plunger. We
have performed measurements with conical, cylindrical, and
triangular prismatic plungers. In all cases the surface gradient
signals show ideal sech(x) pulses, as in Fig. 4(b).

The ability of capillary solitons to maintain their shape
unchanged can be explained as follows. A capillary-gravity
wave dispersion derived from (2) is given by

w ~ [gk + (KT/p)(1 + k*a*/16)"/2]'/2, 3)

Here we only included nonlinear frequency correction [13]
to the capillary branch. Figure 5 shows the dispersion of the
group velocity V, = dw/dk as a function of wave number k
for several amplitudes of waves near the plunger. The surface
tension of water is 7 = 73 mN/m. The V, (k) shows a broad
range of k in the capillary waves range, where the nonlinearity
balances the dispersion, thus allowing a soliton propagation.
The range of the peak-to-trough amplitudes a in Fig. 5 is
consistent with the wave amplitudes observed in the vicinity
of the plunger [see, e.g., Fig. 4(e)].

IV. PROPAGATION OF SOLITONS

After solitons are formed as a result of the cross-wave
instability at the plunger, they detach from it and propagate in
the direction normal to the plunger axis. The number of solitons
is determined by the mode number of the cross wave, which
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FIG. 4. (Color online) Gradient of surface elevation of the water
surface at (a) a. = 3g and (b) a, = 8g. (c) Corresponding elevation
of the surface at a, = 8g. (d) Photo of the soliton generated at the
plunger, (e) a waveform of the soliton close to the plunger and its
secant hyberbolic fit.
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FIG. 5. (Color online) Dispersion of the group velocity based on
the capillary wave nonlinear frequency correction at different wave
amplitudes.

is a function of both excitation frequency and acceleration. At
higher excitation frequencies, solitons are subject to viscous
damping which greatly increases with f since damping is
proportional to vk, where v is the kinematic viscosity. At
lower frequencies, just higher than those corresponding to the
minimum of the group velocity, Fig. 5, solitons can propagate
longer distances with less damping, however, they gradually
disperse, such that the adjacent solitons start overlapping some
distance away from the plunger, as illustrated in Fig. 6(a).

A
(@)

water

FIG. 6. (Color online) Soliton dispersion in (a) water and (b) in
the water suspension of 1 p.p.m. of bovine serum albumin.

026313-4



PROPAGATING SOLITONS GENERATED BY LOCALIZED ...

0 t(s) 0.015-0.017 0

-0.015
0.08
vn

0.04 |

-0.04

x=Vt (mm)

FIG. 7. (Color online) Waveforms of the gradient of the surface
elevation measured along the wave propagation at points X; and X,
[Fig. 6(b)] located (a) 64 mm and (b) 94 mm away from the plunger,
respectively. (c) Superimposed normalized sech fits of the waveforms.

A remarkable reduction in the soliton dispersion is observed
when microscopic quantities of natural polymers, such as
proteins are added into water. This is shown in Fig. 6(b), where
1 p.p.m. (in weight) of bovine serum albumin was added into
water. In this case solitons generated at the plunger propagate
without dispersion forming nonoverlapping soliton streaks.
Though it is not exactly clear how minute concentrations of
polymers reduce the dispersion, one can speculate that the
modifications of the viscoelastic properties of water affect
the capillary wave nonlinearity (3). A rather strong effect
of small amounts of proteins added to water has recently
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been reported in the capillary-gravity ripples under parametric
excitation [6]. It has been found that the addition of protein
does not noticeably change surface tension or viscosity. More
work is needed to understand the effect of natural polymers on
surface waves.

To illustrate that the surface perturbations propagate rela-
tively long distances (five to ten times longer then their widths
in physical space), we performed measurements of the surface
gradient using laser reflection at two points along the wave
propagation. These are shown in Fig. 6(b) as points X (64
mm from the plunger) and X, (94 mm from the plunger). The
corresponding waveforms are shown in Figs. 7(a) and 7(b)
along with the sech fitting functions. The shape of both pulses
is very similar with the full width at half maximum at point
X of about 3 mm. At point X, the pulse is slightly broader, as
seen in Fig. 7(c), where the fitting functions are normalized to
the same amplitude and superimposed. Thus the sech pulses
propagate over the distance of about 10 waveform sizes without
changing their shape.

V. CONCLUSION

Summarizing, we present new experimental results on the
nonlinear generation of solitons on the surface of deep water.
Solitons develop at a solid plunger, irrespective of its shape,
above certain excitation threshold. Soliton formation occurs
via the development of modulation instability of initially linear
waves which leads to the cross-wave modulation of the air-
water-plunger interface. Then parametrically excited solitons
are formed at the plunger at the first subharmonic frequency.
Solitons propagate away from the plunger at the velocity which
depends on the soliton amplitude. The shape of the forward
front of these solitons is universally described by the secant
hyperbolic function. A low dispersion of the group velocity
derived from the capillary wave nonlinear solution by Crapper
[13] supports our finding of the capillary solitary waves.
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