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We present an analytical model that describes the linear interaction of a planar shock wave with an isotropic
random sonic field. First, we study the interaction with a single-mode acoustic field. We present the exact evolution
for the pressure, velocity, vorticity, and density field generated behind the shock wave, and we also calculate exact
and closed analytical expressions for the asymptotic behavior of these modes. Applying superposition, we use the
results obtained from the single-mode analysis in order to compute the interaction with 2D/3D isotropic random
acoustic fields. We present analytical expressions for the average turbulent kinetic energy generated behind the
shock, as well as the averaged vorticity and the density perturbations as a function of the shock strength M1 and
the gas compressibility γ . We also study the acoustic energy flux emitted by the shock front. Exact asymptotic
analytical scaling laws are given for all the 3D averages downstream. A detailed comparison with previous works
is shown.
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I. INTRODUCTION

The propagation of shock waves in inhomoge-
neous/turbulent flows is a fundamental problem in different
fields, ranging from shock tube research [1–3], astrophysics
[4], aerodynamics [5–12], inertial confinement fusion (ICF),
and high energy density physics (HEDP), where the shock
waves traveling into an inhomogeneous medium generate addi-
tional vorticity, density, and pressure downstream fluctuations
that may affect shock performance [13–16]. The subject has
been under study for more than 50 years, beginning with the
pioneering works of Ribner on the interaction of a shock wave
with vortical flows [5,7] and of Moore [6] on the interaction
of a shock front with acoustic waves. With the advent of
supercomputers, the theoretical investigation benefited from
the development of hydrodynamic simulation that resulted
in large eddy simulations (LES) as in Ref. [13] or direct
numerical simulations (DNS) as in Ref. [11]. Good agreement
with the existing linear analysis of the same problem has been
obtained. Nevertheless, a complete and general study of the
downstream quantities as functions of the fluid compressibility
and shock strength could not be presented in those works.
Quite recently, linear theoretical models for the interaction
of a shock wave with an isentropic vorticity field [17] and
with an isotropic density field [18–20] have been reported,
where such an extensive study of the downstream quantities
(turbulent kinetic energy, acoustic flux, vorticity, density) was
done. Exact analytical expressions for arbitrary values of the
shock Mach number and fluid compressibility were obtained
for the quantities of interest behind the shock in terms of
elementary functions, completing the work started more than
50 years ago. Regarding the interaction of a shock wave with
an isotropic field of acoustic waves, there is only the study
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reported in Ref. [10], which showed a comparison between
their numerical results and the linear theory predictions based
on the theory developed by Moore [6]. The present work is
a natural continuation of the works shown in Refs. [17,19],
and the goal is to describe the generation of vorticity, pressure,
and density perturbations downstream due to the influence of
an isotropic field of acoustic waves in front of the shock [see
Fig. 1(a)], and their dependence upon the fluid compressibility
and the shock strength [21]. This work is a necessary step,
not only to complete the picture of the linear shock interaction
with the three fundamental hydrodynamic perturbation modes,
but also to gain a basic understanding in order to deal with
the reshock of arbitrary turbulent flows. Generally speaking,
a first shock launched against any of the three different
problems mentioned above will generate the three perturbation
modes behind it. Consequently, any second shock launched
after the first one will interact with all three perturbation
modes simultaneously. Each mode interacts in its own way
with the shock front. Therefore, it is very convenient to
have the three problems studied separately before the more
complex problem of reshocking a complete turbulent field
(with entropic, vortical, and acoustic perturbations in it) is
considered.

In Sec. II, we consider the interaction of the shock wave
with a single two-dimensional (2D) mode upstream in order
to identify the basic mechanisms of downstream perturbation
generation (pressure, vorticity, velocity, acoustic flux), assum-
ing an ideal-gas equation of state. The Richtmyer-Meshkov
(RM) unstable growth at the weak discontinuity is also studied
in detail. A particular case, in which the upstream acoustic
waves only travel along the x axis, is studied by means of the
characteristic method in Appendix A. Later on, in Sec. III,
mode averaging is performed as usual in order to calculate
the statistical averages downstream, to take into account the
interaction of a planar shock front with a full spectrum of
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FIG. 1. (Color online) (a) The incident planar shock travels with velocity Dx̂ in the laboratory reference frame for t < 0. (b) The transmitted
corrugated shock moves into the disturbed fluid at the compressed fluid frame for t > 0 with velocity (D − U )x̂. Density, vorticity, and acoustic
fluctuations are generated behind it. A stable sound wave is reflected to the left and it travels with velocity c2 in this frame.

randomly oriented acoustic waves. Mode averaging is done in
both two and three dimensions. Exact asymptotic expressions
are obtained in the important physical limits of weak shocks,
strong shocks, and highly compressible fluids, thus completing
the study initiated in Ref. [10]. Turbulent kinetic energy, acous-
tic flux, vorticity, density, and the level of anisotropy of the
velocity perturbations are systematically studied as functions
of the fluid compressibility and the shock Mach number. All
these quantities are analyzed in the asymptotic limits, and
exact expressions are given in terms of elementary functions
of the Mach number and adiabatic index γ (the ratio of specific
heats) in Appendix B. Finally, a summary is presented in
Sec. IV.

II. INTERACTION OF A PLANAR SHOCK
WITH A SINGLE-MODE 2D ACOUSTIC FIELD

A. Wave equation and boundary conditions

In this section, we consider the interaction of an isolated
shock wave with a single-mode 2D acoustic perturbed field. We
choose the time origin such that the shock is incident at t = 0 at
the surface x ′ = 0 in the laboratory frame. The fluid is an ideal
gas with adiabatic exponent γ . The shock comes from the left
(x ′ = −∞) and travels with velocity Dx̂ ′, as measured in the
laboratory frame. In the uniform half-space x ′ < 0, the density
and pressure ahead of the shock are ρ1 and p1 respectively,
and ρ2 and p2 are the values behind it. The velocity of the
compressed fluid is Ux̂ ′, also measured in the laboratory. The
upstream sound speed is c1 and its downstream value is c2.
The shock Mach number with respect to the upstream gas
is M1 = D/c1 � 1 and the shock Mach number with respect
to the compressed fluid is M2 = (D − U )/c2 � 1. We denote
the upstream values with the subscript 1 and the downstream
values with the subscript 2 [see Fig. 1(a)]. Before the shock
arrives at the interface x ′ = 0, the quantities at both sides of
the shock front are related by

R = ρ2

ρ1
= D

D − U
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

, (1)

M2 = D − U

c2
=
√

(γ − 1)M2
1 + 2

2γM2
1 − γ + 1

, (2)

p2

p1
= 2γM2

1 − γ + 1

γ + 1
, (3)

c2

c1
=
√

(2γM2
1 − γ + 1)[(γ − 1)M2

1 + 2]

(γ + 1)M1
. (4)

In the right half-space, the perturbed acoustic field is described
by

δp1(x ′,y,t) = ρ1c
2
1σk cos(kxx

′ − ω1t) cos(kyy),

δρ1(x ′,y,t) = ρ1σk cos(kxx
′ − ω1t) cos(kyy),

(5)
δvx1(x ′,y,t) = c1 cos θσk cos(kxx

′ − ω1t) cos(kyy),

δvy1(x ′,y,t) = −c1 sin θσk sin(kxx
′ − ω1t) sin(kyy),

where the wave-number vector is defined as

�k = (kx,ky) = |�k|(cos θ, sin θ ) (6)

and the frequency of the particle oscillations ω1 is

ω1 = c1

√
k2
x + k2

y. (7)

To remain within the limits of validity of the linear theory, we

assume σk � 1, and that it is only a function of k =
√

k2
x + k2

y .

Once the shock is in the half-space x ′ � 0, the density profile
in front of it will induce density, pressure, and velocity
fluctuations downstream, and its shape will be distorted [see
Fig. 1(b)]. From now on, the fluid equations will be solved
in the system of reference comoving with the compressed
medium where the longitudinal coordinate is now indicated
by “x.”

We define the downstream dimensionless perturbations,
factoring out the small parameter σk:

δp2 = ρ2c
2
2σkp̃(x,t) cos(kyy),

δρ2 = ρ2σkρ̃(x,t) cos(kyy),

δv2x = c2σkṽx(x,t) cos(kyy), (8)

δv2y = c2σkṽy(x,t) sin(kyy),

δω2z = kyc2σkω̃z sin(kyy).

In Eq. (8), t is the time and x is the longitudinal coordinate
as measured in the compressed fluid frame. The quantities ṽx

and ṽy correspond to the longitudinal and transverse velocities,
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respectively, and ρ̃ and p̃ represent the dimensionless density
and pressure perturbations. The function ω̃z indicates the
dimensionless vorticity generated behind the shock. We also
define the dimensionless time τ = kyc2t . The linearized equa-
tions of motion in the compressed fluid frame, in dimensionless
form, are

∂ρ̃

∂τ
= − ∂ṽx

∂(ky x)
− ṽy,

∂ṽx

∂τ
= − ∂p̃

∂(ky x)
, (9)

∂ṽy

∂τ
= p̃,

representing, the mass, x-momentum, and y-momentum con-
servation equations, respectively. Furthermore, the conserva-
tion of entropy holds if we assume adiabatic flow behind the
shock, which leads us to

∂p̃

∂τ
= ∂ρ̃

∂τ
. (10)

The dynamics of the perturbed quantities in the whole
compressed fluid is governed by the wave equation. Combining
the above conservation equations (9) and using Eq. (10), we
get the wave equation:

∂2p̃

∂τ 2
= ∂2p̃

∂(kyx)2
− p̃. (11)

At t = 0+, a shock is transmitted to the right into the perturbed
half-space and a neutrally stable sound wave is reflected back
inside the region x < 0, as shown in Fig. 1(b). As the shock
wave travels in a nonuniform fluid, the shock shape will be
corrugated. We therefore define the shock ripple amplitude
as ψs(y,t), which measures its deviation from planarity. The
shock ripple oscillates in time, generating pressure fluctuations
that propagate with the local sound speed into the compressed
fluid. The sound waves generated by the shock oscillation
can be stable or evanescent, depending on the ratio kx/ky ,
the shock Mach number M1, and the gas compressibility γ

[15,17,19]. As a downstream boundary condition, we assume
that no sound wave hits the shock surface from behind, that is,
the shock travels isolated. At the surface x = 0, pressure and
normal velocity are continuous. However, the distorted front
generates vorticity and entropy perturbations and the neutral
sound wave to the left does not. Hence, the x derivatives of
ṽy and ρ̃ are discontinuous at x = 0. It is not difficult to get
the following relationships just to the right of the left-traveling
sound wave [17,19]:

ṽx + p̃ = 0,
(12)

ṽy = 0.

The boundary conditions at the shock are obtained after
linearizing the Rankine-Hugoniot (RH) conditions and using
the continuity of the tangential velocity. We write them here
for the particular case of preshock acoustic modulation:

dξs

dτ
= γ + 1

4M2
p̃2 − M2R

2
ρ̃1 + M2R

M1
ṽx1 + RM2(γ − 1)

4M2
1

p̃1,

(13)

ṽx2 = M2
1 + 1

2M2
1 M2

p̃2 − M2(R − 1)

2
ρ̃1 + M2R

M1
ṽx1

− RM2
2 + 1

2M2M
2
1

p̃1, (14)

ṽy2 = M2(R − 1)ξs + M2R

M1
ṽy1, (15)

ρ̃2 = 1

M2
1 M2

2

p̃2 + ρ̃1 − 1

M2
1 M2

2

p̃1, (16)

where Eq. (13) represents the mass conservation equation,
Eqs. (14) and (15) correspond to the longitudinal and trans-
verse momentum conservation, respectively, and Eq. (16) is
the energy equation. Here, ξs is the dimensionless shock ripple
amplitude, defined by ξsσk = kyψs .

1. Initial and boundary conditions

To get the perturbed quantities in the compressed fluid, we
solve the wave equation (11) together with the adequate bound-
ary conditions. To this end, we need to specify them at the
weak discontinuity (x = 0) and at the shock front [x = xs(t) =
(D − U )t]. We need the initial value of the pressure pertur-
bation behind the shock to solve the complete temporal dy-
namics of the shock front perturbation. Using Eqs. (12)–(16),
it is easy to see that

p̃s0 = M2
2 R + 1 + M2

2 M2
1 (R − 1) − 2M2

2 M1R cos θ

2M2
1 M2 + M2

1 + 1
σk,

(17)

where p̃s0 is the initial shock pressure perturbation at t = 0+.
Furthermore, it is clear that the initial shock ripple amplitude
is ξs0 ≡ 0, as the shock front is planar in shape when it arrives
at x = 0. As we have seen before, the distorted shock front
is a moving boundary and it is convenient to solve the fluid
equations by means of the coordinate transformation suggested
in Ref. [22] and used in Refs. [17,19,23,24]:

kyx = r sinh χ,
(18)

τ = r cosh χ.

It is straightforward to see that χ = const represents a planar
front defined by x = c2t tanh χ . The shock front coordinate
is therefore given by tanh χs = M2, and from Eq. (18) we
get

τ = rs cosh χs = rs√
1 − M2

2

. (19)

The wave equation (11) is now rewritten as

r
∂2p̃

∂r2
+ ∂p̃

∂r
+ rp̃ = ∂h̃

∂χ
, (20)

where h̃ is an auxiliary function defined by

h̃ = 1

r

∂p̃

∂χ
. (21)
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The boundary conditions at the shock front Eqs. (13)–(16) can
be recast as

1

rs

(
∂p̃

∂χ

)
χs

= −M2
1 + 1

2M2
1 M2

dp̃s

drs

− M2
2 (R − 1)√
1 − M2

2

ξs

− σk

Aσ√
1 − M2

2

sin (ζacrs), (22)

dξs

drs

= γ + 1

4M2

√
1 − M2

2

p̃s + σk

Bσ√
1 − M2

2

cos (ζacrs), (23)

where the coefficients Aσ and Bσ are

Aσ =
[
M2

2 R + M2
1 M2

2 (R − 1) + 1

2M2M
2
1

− M2R

M1
cos θ

]

×
(

cos θ − 1

M1

)
RM2

sin θ
− M2

2 R

M1
sin θ, (24)

Bσ =
(

γ − 2M2
1 − 1

4M2
1

)
M2R + M2R

M1
cos θ, (25)

and where ζac is a dimensionless frequency that characterizes
the periodicity of the preshock density inhomogeneity. Its
value is given by

ζac =
(

cos θ − 1

M1

)
RM2√
1 − M2

2

1

sin θ
, (26)

where (0 < θ < π ) and (−∞ < ζac < ∞). For steady
perturbations in front of the shock such as those studied in
Refs. [15,17–19], modes with inclinations θ and π − θ would
induce the same oscillation frequency at the shock front.
However, for the case studied here, a sound wave moving
upstream with 0 < θ < π/2 has a lower relative velocity to
the shock wave than the sound wave with its wave-number
vector oriented with π − θ . Thus, the two acoustic fronts
would make the shock oscillate with different frequencies,
and the corresponding dimensionless frequencies ζac will be
different for the two orientations. If we consider a very strong
shock, the term 1/M1 can be dropped in the above formula and
we see that ζac is equivalent to the dimensionless frequency
of the preshock vorticity [17] and preshock density [19]
problems. Furthermore, in the very strong shock limit, also
the linearized RH equations become equal for the preshock
density problem and the preshock acoustic case considered
here. Therefore, we expect to get the same scaling laws for
the downstream quantities at very large Mach numbers, either
for entropic perturbations or acoustic waves upstream. This
is natural, because for very strong shocks, it is D � c1 and
the shock front “sees” essentially frozen perturbations in both
cases. From Eq. (26), we see that the incidence angle θ can
also be thought of as a function of ζac. In fact, it is convenient
for future calculations to express θ as

cos θ = R2M2
2

M1
[
R2M2

2 + ζ 2
ac

(
1 − M2

2

)]

×
⎛
⎝1 + ζac

M1

√
1 − M2

2

RM2

√
1 − M2

2

R2M2
2

ζ 2
ac + M1 − 1

M1

⎞
⎠

(27)

or, equivalently,

sin θ = −
RM2

√
1 − M2

2

M1
[
R2M2

2 + ζ 2
ac

(
1 − M2

2

)]
×
⎛
⎝ζac − RM1M2√

1 − M2
2

√
1 − M2

2

R2M2
2

ζ 2
ac + M1 − 1

M1

⎞
⎠ .

(28)

2. Laplace transform

In order to solve the wave equation (20) and the linearized
RH [Eqs. (22) and (23)], we use the Laplace transform over
the variable r . We define the Laplace transform of any quantity
φ:

�(χ,s) =
∫ ∞

0
φ(χ,r) exp(−sr)dr. (29)

We use the variable q defined by s = sinh q, and then the wave
equation (20) together with Eq. (21) can be rewritten as

∂

∂q
(cosh q P̃ ) + ∂H̃

∂χ
= 0,

(30)
∂

∂χ
(cosh q P̃ ) + ∂H̃

∂q
= 0.

After some algebra, the following decomposition for the
pressure (P̃ ) and pressure gradient (H̃ ) is obtained [22,24]:

P̃ (χ,q) = F1(q − χ ) + F2(q + χ )

cosh q
,

(31)
H̃ (χ,q) = F1(q − χ ) − F2(q + χ ),

where the functions F1 and F2 must be determined with
the help of the boundary and initial conditions. As was
demonstrated in previous works [24], F1 represents the sound
waves emitted by the shock front and F2 represents the sound
waves that arrive at the shock front from behind [22,25]. In our
case, where the shock is isolated, F2 is a constant, and its value
is determined with the aid of the initial conditions Eq. (17). At
the shock front, the following equation holds:

H̃s(q) = cosh qP̃sq − 2F2. (32)

We also transform Eqs. (22) and (23) by using the Laplace
transform:

H̃s(s) = −M2
1 + 1

2M2
1 M2

[sP̃s(s) − p̃s0] − M2
2 (R − 1)√
1 − M2

2

ξ̄s

− σk

Aσ√
1 − M2

2

ζac

s2 + ζ 2
ac

, (33)

sξ̄s(s) − ξs0 = γ + 1

4M2

√
1 − M2

2

P̃s(s)

+ σk

Bσ√
1 − M2

2

s

s2 + ζ 2
ac

, (34)
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where ξ̄s = ∫∞
0 ξs(r) exp(−sr)dr . In our case, ξs0 = 0, be-

cause the shock shape is planar when it reaches the perturbed
region (x ′ � 0). Using Eq. (32), it can be seen that 2F2 = p̃s0.
After some additional algebra, we get an exact closed-form
expression for the Laplace transform of the shock front
pressure fluctuations P̃s , given by

P̃s(s) =
(
M2

1 + 1 + 2M2
1 M2

)
p̃s0 s

2M2
1 M2s

√
s2 + 1 + (

M2
1 + 1

)
s2 + M2

1

+ 2M2
1 M2 ασ s[

2M2
1 M2s

√
s2 + 1+(M2

1 +1
)
s2+M2

1

](
s2+ζ 2

ac

) .
(35)

The coefficient ασ is given by

ασ = −σk

√
1 − M2

2 Aσζac + M2
2 (R − 1)Bσ

1 − M2
2

, (36)

where Aσ and Bσ are defined in Eqs. (24) and (25).

3. Inverse Laplace transform

The complete evolution of the shock pressure perturbations
as a function of the dimensionless time τ is obtained by
means of the inverse Laplace transform of Eq. (35), after an
integration in the complex plane. We formally write

p̃s(rs) = 1

2πi

∫ b+i∞

b−i∞
P̃s(s) exp(srs)ds, (37)

where b is a real number to the right of the singularities of
P̃s(s), and i is the imaginary unit (i2 = −1). To get an algebraic
expression from (37), we close the integration contour to the
left and use the residue theorem, taking care of the singularities
enclosed by the integration path. For a shock moving into an
ideal gas, the only singularities of P̃s(s), as can be seen from
Eq. (35), are the branch points at s = ±i and the poles at
s = ±iζac [17,19]. The branch point singularities represent
the generation of evanescent sound wave perturbations, which
decay asymptotically in time like t−3/2, in much the same
way as Bessel functions. On the other hand, the imaginary
poles give rise to asymptotic constant amplitude oscillations.
These permanent oscillations of the shock ripple are due to the
perturbations in velocity distributed periodically upstream. In
addition, the denominator 2M2

1 M2s
√

s2 + 1 + (M2
1 + 1)s2 +

M2
1 never contributes with additional singularities that could

result in permanent oscillations for an ideal-gas equation of
state [25]. After some algebra, we get

p̃s(rs) = −2p̃s0

π

∫ 1

0
fp(z) cos(zrs)dz + 2ασ

π

∫ 1

0
fp(z)

×
[

cos(zrs) − cos(ζacrs)

ζ 2
ac − z2

]
dz, (38)

where the auxiliary function fp is given by

fp(z) = 4M4
1 M2

2 z2
√

1 − z2

4M2
1 M2

2 z2(1 − z2) + [(
M2

1 + 1
)
z2 − M2

1

]2 . (39)

The asymptotic behavior of p̃s can be calculated by studying
the residues of Eq. (35) at the imaginary poles s = ±iζac. The
modes that have |ζac| < 1 are called long-wavelength modes
and the modes with |ζac| > 1 are called short-wavelength
modes, as done in previous works [17,19]. The reason will
become apparent later on when studying the sound emission
downstream by the corrugated shock front. With the help of
the exact Laplace transform of the shock pressure perturbations
Eq. (35), it is not difficult to obtain the time asymptotic for
both branches:

p̃s(τ � 1) ∼=
⎧⎨
⎩

el1 cos(ζacrs) + el2 sin(ζacrs), |ζac| � 1,

es cos(ζacrs), |ζac| � 1,

(40)

where rs = τ

√
1 − M2

2 , and the coefficients el1, el2, and es

are

el1 = 2M2
1 M2

[
M2

1 − (
M2

1 + 1
)
ζ 2

ac

]
ασ

4M4
1 M2

2 ζ 2
ac

(
1 − ζ 2

ac

)+ [
M2

1 − (
M2

1 + 1
)
ζ 2

ac

]2 ,

el2 = 4M4
1 M2

2 ζac

√
1 − ζ 2

ac ασ

4M4
1 M2

2 ζ 2
ac

(
1 − ζ 2

ac

)+ [
M2

1 − (
M2

1 + 1
)
ζ 2

ac

]2 , (41)

es = − 2M2
1 M2 ασ

2M2
1 M2ζac

√
ζ 2

ac − 1 + (
M2

1 + 1
)
ζ 2

ac − M2
1

.

The coefficients el1, el2, and es are formally equivalent to those
shown in Eq. (47) in Ref. [17] and Eq. (26) in Ref. [19]. The
only difference lies in the different values of ασ here Eq. (36)
and αv and αe in Refs. [17,19], respectively. In Fig. 2(a),
we plot the shock pressure evolution for the long-wavelength
regime (|ζac| < 1) for an incident shock with M1 = 2 that
travels through air (γ = 7/5), and the incoming sonic front

0 10 20 30 40

−0.4

−0.2

0

0.2

0.4

0.6
p̃s(τ � 1) p̃s(τ)

p̃s

τ
0 10 20 30 40

−0.1

−0.05

0

0.05

0.1 p̃s(τ � 1) p̃s(τ)

τ

p̃s

(a) (b)

FIG. 2. Asymptotic and exact shock pressure (p̃s) for an ideal gas with adiabatic index γ = 7/5 and shock strength M1 = 2.0, and an
incident angle of θ = π/4 corresponding to ζac = 0.552 285 (a) and θ = π/8 corresponding to ζac = 2.088 61 (b).
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upstream is oriented with θ = π/4, whereas in Fig. 2(b) we
are in the short-wavelength regime (|ζac| > 1), with an incident
angle θ = π/8. We can also calculate the analytical expression
for the shock ripple evolution. If we integrate Eq. (13) in time,
we obtain

ξs(rs) = (γ + 1)p̃s0

πM2

√
1 − M2

2

∫ 1

0

fp(z)

z
sin(zrs)dz

+ βσ

ζac

√
1 − M2

2

sin(ζacrs) + (γ + 1)ασ

πM2

√
1 − M2

2

×
∫ 1

0

fp(z)

ζ 2
ac − z2

[
sin(zrs)

z
− sin(ζacrs)

ζac

]
dz. (42)

The asymptotic expression for the shock front ripple can also
be easily obtained substituting (35) into (13) and integrating,

ξs(rs) ∼=
{

jl1 sin(ζacrs) + jl2 cos(ζacrs), |ζac| � 1,

js sin(ζacrs), |ζac| � 1.
(43)

The coefficients are

jl1 = βσ + el1

ζac

√
1 − M2

2

, jl2 = − el2

ζac

√
1 − M2

2

,

(44)
js = βσ + es

ζac

√
1 − M2

2

.

B. Sound waves emitted by the shock front downstream

1. Pressure perturbations of the running acoustic waves emitted

downstream when |ζac| > 1/

√
1 − M2

2

In the preceding subsection, we have shown how the
shock oscillations generate pressure perturbations at the shock
front. In the domain of the variable rs , the shock oscillates
with dimensionless frequency ζac. If ζac < 1, the pressure
perturbations generated by the shock wave are evanescent and
decay in time like t−3/2 at any position behind the shock.
Nevertheless, in the short-wavelength regime (ζac > 1), the
sound waves can escape from the shock front filling the space
behind it in the form of stable traveling fronts. To understand
the behavior of the pressure field downstream, we make a
more detailed study of the information provided by the Laplace
transform P̃ (χ,q). In the following discussion, we concentrate
on the situation with |ζac| > 1. In fact, we write the Laplace
function P̃ at any given value of the coordinate χ :

P̃ (χ,q) = cosh(q + χs − χ )

cosh q
P̃s(q + χs − χ ), (45)

where it is not difficult to realize [see Eq. (35)] that the right-
hand side has a denominator of the form

sinh2(q + χs − χ ) + ζ 2
ac

= [sinh(q + χs − χ ) + iζac][sinh(q + χs − χ ) − iζac].

(46)

After some additional algebra, we see that this term would
contribute with imaginary poles at certain imaginary complex
values for the Laplace variable s, which we call s = ±iζχ

(hence contributing with constant amplitude oscillations) if

and only if the following relationship holds:

|ζac| � cosh(χs − χ ). (47)

If condition Eq. (47) is fulfilled, the mathematical surface
defined by x/t = c2 tanh χ exhibits stable pressure oscilla-
tions. The frequency of those oscillations in the domain of the
separable coordinates r,χ , which we named ζχ , is obtained
by solving the following equation: sinh(q + χs − χ ) = iζac

(we remind the reader that sinh q = ζχ ). We define εac by
|ζac| = cosh εac and obtain

ζχ = cosh(εac − χs + χ ) = cosh(εac − χs) cosh χ

+ sinh(εac − χs) sinh χ. (48)

Therefore, the asymptotic pressure perturbations at any value
of χ are given by

p̃(χ,r) ∼= es cos(ζχr) = es cos[cosh(εac − χs)τ

− sinh(χs − εac)kyx]. (49)

Here, es is the asymptotic amplitude of the pressure per-
turbations at the shock front defined in Eq. (41). Looking
inside the argument of the last equation, we realize that the
function given in Eq. (49) represents propagating planar fronts
in the (x,τ ) plane. If 0 < εac < χs (equivalently 1 < |ζac| <

cosh χs = 1/
√

1 − M2
2 ), the waves are emitted to the right,

which then follow the shock front with a streamwise speed
given by c2M2 tanh χ < c2M2. This last result is consistent
with the fact that no sound waves impinge on the shock from
behind. On the other hand, if |ζac| > cosh χs (equivalently
εac > χs), the sound waves are emitted to the left. In the
absence of a reflecting surface at x = 0, those waves escape
toward x = −∞. The above Eq. (49) can be rewritten as

p̃(x,τ ) = es cos
(
ζ1τ − kac

x x
)
, (50)

where the frequency of oscillation of the compressed fluid
particles downstream (when |ζac| > 1) can be seen to be equal
to

ζ1 = ζac − M2

√
ζ 2

ac − 1√
1 − M2

2

, (51)

and the longitudinal downstream wave acoustic wave number
kac
x is

kac
x

ky

= M2ζac −√
ζ 2

ac − 1√
1 − M2

2

. (52)

Note the close formal analogy with Eqs. (54) and (55) of
Ref. [17] and Eqs. (29) and (30) of Ref. [19].

There are three characteristic values for |ζac|. If |ζac| = 0,
then the upstream longitudinal wave number kx = 0, which
means that the perturbations ahead of the shock consist in
sonic waves running parallel to the shock front. This particular
case has been studied in detail in Ref. [15]. The opposite
case is when ky = 0, which corresponds to |ζac| = ∞. This
situation arises for upstream sonic waves traveling along the
longitudinal axis, either impinging on the shock wave or trying
to escape from it. For this case, the downstream perturbation
field is 1D as there is not transverse flow, and the dynamics
of these perturbations can be also obtained by using the
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Riemann invariants as discussed in Ref. [26] for linear acoustic
perturbations. It is easy to see that this approach gives the same
results as Eqs. (41) and (51) for the short-wavelength branch
for the case of |ζac| = ∞ (see Appendix A).

2. Critical angles

It is clear that each value of ζac corresponds to a particular
value of the the angle θ that the wave-number vector �k of
the incoming sound wave upstream forms with the x axis. The
condition |ζac| > 1 is equivalent to saying that θ belongs to any
of the two intervals 0 < θ < θ1 or θ2 < θ < π . The values of
θ1 and θ2 can be obtained from Eqs. (27) and (28), by making
ζac = ±1, and are given by

cos θ1 = (γ + 1)M3
1

2γM4
1 − γM2

1 + 3M2
1 − 2

+
(
M2

1 − 1
)(

γM2
1 − M2

1 + 2
)

2γM4
1 − γM2

1 + 3M2
1 − 2

√
2
(
γM2

1 + 1
)

γM2
1 − M2

1 + 2
,

(53)

cos θ2 = (γ + 1)M3
1

2γM4
1 − γM2

1 + 3M2
1 − 2

−
(
M2

1 − 1
)(

γM2
1 − M2

1 + 2
)

2γM4
1 − γM2

1 + 3M2
1 − 2

√
2
(
γM2

1 + 1
)

γM2
1 − M2

1 + 2
.

Both values agree with the expression given in Eq. (3) of
Ref. [10]. The angles θ1 and θ2 are called critical angles.

Upstream modes with angles between θ1 and θ2 do not
generate traveling waves downstream, as their perturbations
run parallel to the shock surface and decay in the longitudinal
direction [15,17,19]. However, for 0 < θ < θ1 or θ2 < θ < π ,
the shock oscillates and radiates running pressure fluctuations
downstream. In contrast to Refs. [17,19], the two critical angles
θ1 and θ2 here are not symmetric with respect to the shock
surface. That is, in general it is θ2 
= π − θ1. This is because
the upstream waves with θ < π/2 have positive longitudinal
velocities in the laboratory frame trying to escape from the
shock, and the modes with θ > π/2 move toward the shock,
and hence their relative velocities are different. As a result,
because of the Doppler shift, the value of ζac(θ ) is different
from ζac(π − θ ), which also explains the difference between
θ1 and θ2. These arguments do not apply to Refs. [17,19], as
in those works the upstream modes are frozen to the fluid and
the relative velocity of the modes oriented with θ and π − θ

is exactly the same.
It is interesting to discuss the temporal transition of

the shock perturbations toward the asymptotic regime. As
previously commented, the poles of the Laplace transform at
s = ±iζac give rise to stable asymptotic oscillations, shown
in Eqs. (40) and (41). In addition, the branch points at
s = ±i are responsible of an asymptotic behavior similar
to the asymptotic decay of Bessel functions. In fact, using
Watson’s lemma to study the asymptotic contribution of the
branch points of P̃s(s) [27], we get the following trend for large
times:

(p̃s)τ�1
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

el1 cos
(
ζacτ

√
1 − M2

2

)+ el2 sin
(
ζacτ

√
1 − M2

2

)
+ (

τc

τ

)3/2 [
cos

(
τ

√
1 − M2

2

)− sin
(
τ

√
1 − M2

2

)]+ O(τ−5/2), |ζac| � 1,

es cos
(
ζacτ

√
1 − M2

2

)
+ (

τc

τ

)3/2 [
cos

(
τ

√
1 − M2

2

)− sin
(
τ

√
1 − M2

2

)]+ O(τ−5/2), |ζac| � 1,

(54)

where τc is a characteristic dimensionless time that describes the transition to the asymptotic stage. Its value is different for each
branch:

τc
∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
1−M2

2

[
p̃s02M2

1 M2

(
M2

1 +2M1M2+1
)(

ζ 2
ac−1

)
−4M4

1 M2
2 αac

√
π

(
2M2

1 +1
)2(

ζ 2
ac−1

)√
e2
l1+e2

l2

]2/3

, |ζac| � 1,

1√
1−M2

2

[
p̃s02M2

1 M2

(
M2

1 +2M1M2+1
)(

ζ 2
ac−1

)
−4M4

1 M2
2 αac

√
π

(
2M2

1 +1
)2(

ζ 2
ac−1

)
|es |

]2/3

, |ζac| � 1.

(55)

We see that the characteristic time grows unbounded when the
angle of incidence of the upstream sound wave is very close
to any of the critical angles |ζac| ∼= 1. This means that it takes
longer for the shock perturbations to reach the asymptotic
stable oscillations shown in Eq. (40) when θ ∼= θ1,θ2. Ideally,
for an incidence angle exactly equal to the critical angle,
an infinite time would be required to achieve the asymptotic
stable oscillations of constant amplitude far downstream. This
behavior may explain the difference observed in Fig. 2 of
Ref. [10] between their numerical results and the linear theory.

C. Velocity perturbations generated downstream

As we can see from the RH Eqs. (13)–(16), the shock front
generates velocity perturbations. In this section, we study the
perturbed velocity at the weak surface discontinuity x = 0,
the vorticity generated behind the shock, together with the
corresponding rotational velocity field. Finally, the acoustic
velocity field is studied. These results will be necessary for the
calculation of the statistical averages of the different physical
quantities in Sec. III.
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1. Richtmyer-Meshkov growth at x = 0

As has been shown in Refs. [17,19], after the shock
front enters the nonhomogeneous region, the weak surface
discontinuity becomes RM unstable, even though the surface
x = 0 is not a material surface separating different fluids. In
fact, once the shock crosses it, vorticity is generated between
the shock surface and the weak discontinuity. On the contrary,
no vorticity is generated behind the neutrally stable sonic wave
that gets reflected to the left at t = 0+. As a consequence,
the mathematical surface x = 0 gets rippled at t = 0+, and it
separates two different regions of the same fluid: rotational
flow to the right and irrotational flow to the left of it. As
the shock front progresses into the inhomogeneous fluid,
pressure fluctuations fill the whole space downstream affecting
the dynamics of the fluid elements at x = 0. In fact, the

pressure perturbations emitted by the shock will modify
the tangential velocity at the weak discontinuity, enhancing
ripple growth in a manner similar to RM growth [15,24].
We can get the exact behavior of the weak discontinuity
ripple as a function of time by using the Laplace transform
of the fluid equations downstream, as has been already done
in Refs. [17,19]. We take the Laplace transform of the x

component of the Euler equation (13) with the aid of Eq. (45),
evaluated at χ = 0, and we get the function Ṽxi , the Laplace
transform of the x component of the velocity at x = 0:

Ṽxi = Ṽx(χ = 0,s) = −cosh(χs + sinh−1 s)

s

× P̃s(χs + sinh−1 s). (56)

It can be rewritten as

Ṽxi = −
[(

M2
2 + 1

)
s
√

s2 + 1 + 2M2s
2 + M2

]
(
M2

2 + 1
)
s2 + (

1 − M2
2

)
ζ 2

ac + M2
2 + 2M2s

√
s2 + 1

β00
[(

M2
2 + 1

)
s2 + (

1 − M2
2

)
ζ 2

ac + M2
2 + 2M2s

√
s2 + 1

]+ β20

s(−β10s2 + s
√

s2 + 1 − β11)
,

(57)

where the coefficients β00, β10, β11, and β20 are, respectively,

β00 = 2M2
1 M2 + M2

1 + 1

M2
(
2M2

1 M2
2 + 4M2

1 + 2
) p̃s0,

β10 = −M2
1

(
5M2

2 + 1
)+ M2

2 + 1

2M2
[
M2

1

(
M2

2 + 2
)+ 1

] ,

(58)

β11 = − M2
1

(
2M2

2 + 1
)+ M2

2

2M2
[
M2

1

(
M2

2 + 2
)+ 1

] ,
β20 = − M2

1

(
M2

2 − 1
)

M2
1

(
M2

2 + 2
)+ 1

ασ .

As we did before with the Laplace transform of the shock pressure perturbations, Eq. (35), the exact temporal evolution of the
normal velocity at the weak discontinuity since τ = 0 is formally given by [27]

ṽxi(τ ) = 1

2πi

∫ c+i∞

c−i∞
Ṽx(χ = 0,s) exp(s τ )ds. (59)

To compute the above expression, we proceed as has been done with Eq. (37). We recognize a pole at s = 0 that induces constant
growth in time, given by the corresponding residue. The constant asymptotic velocity induced by the pole at s = 0 is [27]

ṽ∞
xi = − P̃s(s = sinh χs)√

1 − M2
2

= −M2
(
2M2

1 M2 + M2
1 + 1

)[(
1 − M2

2

)
ζ 2

ac + M2
2

]
p̃s0 + 2M2

1

(
1 − M2

2

)
M2

2 ασ(
2M2

1 M2
2 + M2

1 + M2
2

)[(
1 − M2

2

)
ζ 2

ac + M2
2

] . (60)

Besides, there is the possibility of a pole at s = ±iζ1, as
happened in Eq. (14). In fact, the function P̃s(q + χs) may give
rise to running waves to the left, if |ζac| > 1/

√
1 − M2

2 . These
acoustic waves induce an irrotational motion in the whole
fluid downstream, affecting the weak discontinuity ripple,
and making it oscillate with frequency ζ1 superposed to the
constant growth of Eq. (60). Summing up, the asymptotic
behavior of the ripple at x = 0 can be described according to
the value of ζac as

ṽxi(τ � 1) ∼=
{

ṽ∞
xi , |ζac| � cosh(χs),

ṽ∞
xi + Qac cos(ζ1τ ), |ζac| � cosh(χs),

(61)

where the constant growth rate velocity ṽ∞
xi is given by Eq. (60)

and the amplitude of the harmonic oscillations is given by the
residues at the poles s = ±iζ1, in close analogy with [17,18]:

Qac = M2ζac −√
ζ 2

ac − 1

ζac − M2

√
ζ 2

ac − 1
es. (62)

There is an interesting fact regarding the formulas presented
above for the RM growth at the surface x = 0. As seen in Fig. 3,
the asymptotic linear velocity of the weak surface ripple is in
general negative. In this sense, the growth resembles that of the
RM instability at the contact surface separating different fluids
for the case of a reflected rarefaction [28,29]. As a curiosity,
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xi ṽxi(τ � 1) ṽxi(τ)
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FIG. 3. Here we plot ṽxi for M1 = 2.0 when γ = 7/5, and for an incident angle θ = π/4, ζac = 0.552 285 (a) and θ = π/6, ζac =
2.088 61 (b).

it can also be seen that the value of the asymptotic given
by Eq. (60) can be made equal to zero for certain choices
of the defining parameters γ , M1, and θ . For example, if a
shock wave with M1 = 2 travels through an ideal gas with
γ = 7/5 and the incoming acoustic wave is oriented through
an angle θ ∼= 29.503◦ (which gives ζac = 1.417 96), the growth
rate ṽ∞

xi is exactly zero. We can also calculate the temporal
evolution of the weak discontinuity ripple ξi = kψi(t). It can
be obtained with the aid of Eq. (57) by means of the Laplace
transform:

ξi(s) = Ṽxi

s
. (63)

The temporal evolution is calculated with the inverse Laplace
transform:

ξi(τ ) = 1

2πi

∫ c+i∞

c−i∞
ξi(s) exp(s τ )ds, (64)

where c is any real number to the right of the singularities of
Ṽxi . For the asymptotic behavior, we use the residues theorem
and get

ξi(τ � 1) ∼=
{

ξ∞
i0 + ṽ∞

xi τ, ζac � cosh(χs),

ξ∞
i0 + ṽ∞

xi τ + Qac
ζ1

sin (ζ1τ ) , ζac � cosh(χs).

(65)

It is noted that ξ∞
i0 is not zero, as is ξi(τ = 0+). In fact, we get

ξ∞
i0 = p̃s0

(
M2

2 − 1
)(

M2
1 − M2

2

)[
M2

1 (2M2 + 1) + 1
]

[
M2

1

(
2M2

2 + 1
)+ M2

2

]2

+ 2M2
1 M2

(
M2

2 − 1
)M2

1

[
M4

2

(
ζ 2

ac − 5
)− M2

2

(
2ζ 2

ac + 1
)+ ζ 2

ac

]− M6
2

(
ζ 2

ac − 1
)+ M4

2

(
2ζ 2

ac − 3
)− M2

2 ζ 2
ac[

M2
1

(
2M2

2 + 1
)+ M2

2

]2[
ζ 2

ac − M2
2

(
ζ 2

ac − 1
)]2 ασ . (66)

2. Vorticity generation downstream

When the shock front moves through a perturbed flow its
shape gets distorted, and to conserve the tangential momen-
tum, tangential velocity is generated behind the shock. This
mechanism is responsible for generating vorticity downstream.
In the absence of viscosity, the vorticity field generated behind
the shock remains frozen to the fluid particles, and the value at
any point x corresponds to the vorticity deposited by the shock
front at the time τ0 at which the shock arrived at position “x”:
τ0 = kyx/M2. In a 2D geometry, the dimensionless vorticity
vector behind the shock is formally defined as

�̃ωz = �ωz

kyc2
= g(kyx) sin(kyy)ẑ, (67)

where the function g is actually given by

g(kyx) = ∂

∂kyx
ṽy + ṽx, (68)

and it can be calculated using Eqs. (13)–(16) [17,19]:

g(kyxs) = �2p̃s

(
ζac

sinh χs

kyxs

)
− �4 cos

(
ζac

sinh χs

kyxs

)
.

(69)

The term �2p̃s is the vorticity contribution directly related
to the shock curvature, and the second term �4 cos (Rkxx)
takes into account the interaction between the zero-order
shock pressure and density jumps with the upstream acoustic
perturbation field. The missing coefficients �1 and �3 have
been defined [18,19] to characterize the vorticity generation
when a shock interacts with a vorticity and an entropy profile,
respectively, and they are not present in the problem discussed
here. The value of �2 is equal to [17,19]

�2 =
(
M2

1 − 1
)2
√

2γM2
1 − γ + 1

M2
1

[(
γ − 1

)
M2

1 + 2
]3/2 . (70)

It can be seen that �4 = −�2, and therefore

g(kyx) = �2

[
p̃s

(
ζac

sinh χs

kyx

)
− cos

(
ζac

sinh χs

kyx

)]
. (71)

The above expression gives the exact vorticity deposition
downstream at any value of the position x. We can cal-
culate the spatial asymptotic of the vorticity field by eval-
uating the above expression at values of x far enough
from the weak discontinuity and far from the shock surface.
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We get

g(x � λy)

∼=
⎧⎨
⎩�2

√
e2
l1 + (el2 − 1)2 cos

(
ζac

sinh χs
kyx + φrot

)
, |ζac| � 1,

�2(es − 1) cos
(

ζac

sinh χs
kyx

)
, |ζac| � 1,

(72)

where φrot is given by

φrot = arctan

(
el2

1 − el1

)
. (73)

3. Rotational velocity perturbations in the compressed fluid

The velocity perturbations can always be decomposed
into rotational and irrotational contributions. The rotational
perturbations are frozen to the fluid particles in the absence
of viscosity and are associated with the vorticity calculated
before. On the other hand, the acoustic perturbations are
irrotational fluctuations that travel into the compressed fluid
with the speed of sound. We thus make

�̃v(x,y,t) = �̃vrot(x,y) + �̃vac(x,y,t). (74)

After manipulating the fluid equations, it can be seen that
the total velocity field downstream satisfies the differential
equation:

∂2 �̃v
∂τ 2

= �∇2
2D �̃v + �∇2D × ( �∇2D × �̃v). (75)

In this subsection, we focus only on the rotational part, and
the previous differential equation becomes

�∇2
2D �̃vrot = −�∇2D × ( �∇2D × �̃vrot). (76)

We define the longitudinal and transverse rotational
components as

ṽrot
x (x,y) = u(x) cos(kyy),

(77)
ṽrot

y (x,y) = v(x) sin(kyy).

As the rotational velocity field is incompressible, the
relationship v(x) = −u′(x) holds, where the prime indicates
differentiation with respect to the argument. Using (68), (76),
(77), and the incompressibility condition, it is easy to get the
ordinary differential equations satisfied by u and v:

d2u

d(kyx)2
− u = −g(kyx), (78)

d2v

d(kyx)2
− v = g′(kyx). (79)

We concentrate on the solution of (76), as v is obtained from
u by differentiation. The most general solution of (76) is
written in the form

u(kyx) = A exp(−kyx) + up(x), (80)

where up is a particular solution and the constant A is chosen
to match the value of the asymptotic velocity at x = 0,

given by Eq. (61). After some algebra, and using Eq. (38), a
particular solution can be written as

up(kyx) = 2�2
(
2M2M

2
1 − M2

1 − 1
)
p̃s0 sinh2 χs

π
(
2M2M

2
1

)
×
∫ 1

0

[
fp(z)

z2 + sinh2 χs

cos

(
kyx

sinh χs

z

)]
dz

+ �4 sinh2 χs

sinh2 χs + ζ 2
ac

cos

(
kyx

sinh χs

ζac

)

+ 2�2ασ

π

∫ 1

0

fp(z)ju(z,x)(
z2 − ζ 2

ac

) dz, (81)

where the auxiliary function ju is

ju(z,x) = sinh2 χs

ζ 2
ac + sinh2 χs

cos

(
kyx

sinh χs

ζac

)

− sinh2 χs

z2 + sinh2 χs

cos

(
kyx

sinh χs

z

)
, (82)

and we note that the argument ζackyx/ sinh χs is not equal to
Rkxx, as happened in Refs. [17,19] with ζ0kyx/ sinh χs . From
the arguments given above, it is clear that in order to match
the velocity perturbation at x = 0, we have the following
expression for the asymptotic longitudinal velocity in the
compressed fluid:

u(kyx) = up(kyx) − ṽ∞
xi exp(−kyx). (83)

The solution up is important very near the weak discontinuity
surface x = 0 and becomes negligible far away from it. The
asymptotic expressions for the components of the rotational
velocities are

ṽrot
x (x � λy,y)

∼=
{

Ql
rot cos

(
ζac

sinh χs
kyx + φrot

)
cos (kyy), |ζac| � 1,

Qs
rot cos

(
ζac

sinh χs
kyx

)
cos (kyy), |ζac| � 1

(84)

for the longitudinal component, and

ṽrot
y (x � λy,y)

∼=
{

R kx

ky
Ql

rot sin
(

ζac

sinh χs
kyx + φrot

)
sin (kyy), |ζac| � 1,

R kx

ky
Qs

rot sin
(

ζac

sinh χs
kyx

)
sin (kyy), |ζac| � 1

(85)

for the transverse component, where it is assumed that the
point x is far enough from the interface x = 0 and also that
the shock front is far enough from x [that is, x � (D − U )t].
The quantities Ql

rot and Qs
rot are

Ql
rot =

�2

√
(el1 − 1)2 + e2

l2

1 + (
ζac

sinh χs

)2 , (86)

Qs
rot = �2(es − 1)

1 + (
ζac

sinh χs

)2 , (87)

and φrot is defined in Eq. (73).
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4. Irrotational velocity perturbations downstream

The acoustic part of the velocity field satisfies the homoge-
neous wave equation:

∂2 �̃vac

∂τ 2
= �∇2

2D �̃vac. (88)

When |ζac| < 1, the solution to the previous equation is actu-
ally an evanescent sound wave that vanishes asymptotically in
time like t−3/2 at any position x behind the front. On the other
hand, when |ζac| > 1/

√
1 − M2

2 , the solutions to Eq. (50) add
an oscillating contribution to vx , for τ � τ0(x), in the whole
fluid downstream. These oscillations travel as planar fronts
with a definite orientation in space toward x = −∞. In fact,
the function ṽac

x can be written, asymptotically in time, as

ṽac
x (x � λy,y,τ � τ0) = Qac cos

(
ζ1τ − kac

x x
)

cos (kyy),

(89)

ṽac
y (x � λy,y,τ � τ0) = es

ζ1
sin

(
ζ1τ − kac

x x
)

sin (kyy), (90)

where Qac is given in Eq. (62).

D. Density perturbations generated downstream

The perturbed density field behind the shock front can be
decomposed as the sum of entropic and acoustic contributions.
In the absence of thermal conduction, the entropy nonunifor-
mities remain frozen to the fluid particles, and the acoustic
waves travel downstream as shown in the preceding subsection.
We write

ρ̃(kyx,τ ) = ρ̃en(kyx) + ρ̃ac(kyx,τ ). (91)

The dimensionless acoustic fluctuation is given by Eq. (50):

ρ̃ac(kyx,τ ) = p̃(kyx,τ ), (92)

and the entropic term can be obtained with the aid of Eq. (13)
after subtracting the acoustic part:

ρ̃en(kyx) =
(

1

M2
1 M2

2

− 1

)
p̃s

⎛
⎝kyx

√
1 − M2

2

M2

⎞
⎠

+
(

1 − 1

M2
1 M2

2

)
δρ1(kyx)

ρ1
. (93)

The asymptotic entropic density perturbations behind the
corrugated shock front are thus

ρ̃en(x � λy) ∼=
{

Ql
en cos

(
ζac

sinh χs
kyx + φen

)
, |ζac| � 1,

Qs
en cos

(
ζac

sinh χs
kyx

)
, |ζac| � 1,

(94)

where

Ql
en =

(
1 − M2

1 M2
2

)
M2

1 M2
2

√
(el1 − 1)2 + e2

l2, (95)

Qs
en =

(
1 − M2

1 M2
2

)
M2

1 M2
2

(es − 1). (96)

It can be seen that

φen = φrot = arctan

(
el2

1 − el1

)
. (97)

We realize that there is no shift between the vorticity and the
entropy modes downstream, as opposed to the situation found
in shock/vorticity [17] and shock/entropy [19] interactions. In
the case studied here, there is no vorticity and entropy ahead
of the shock front, and hence there is no shift in the spatial
distributions of vorticity or entropy perturbations downstream.

E. Acoustic flux

The short-wavelength modes induce downstream sound
emission in the form of running sonic waves. Therefore,
acoustic energy is continuously radiated downstream. In order
to calculate the emitted energy flux, we proceed similarly as
in Refs. [17,19]. Let us denote the energy flux by �q, which in
the compressed fluid system of reference is equal to [30]

�q = c2E�kac, (98)

and the energy density E is given by

E = ρ2c
3
2p̃

2. (99)

The value of p̃ above is given by the asymptotic expression
for the pressure field downstream. In addition, with the help of
Eq. (50), we get the components of the vector �kac downstream.
We note that the intervals ζac � 1 and ζac � −1 give different
results. This is a consequence of the fact that upstream
waves with θ < θ1 induce shock oscillations with frequencies
different from the upstream waves impinging on the shock
surface with θ > θ2. Mathematically, this is represented by
the fact that the positive square root determination is to be
used for θ < θ1 and the negative determination for θ > θ2. We
have

�kac = kac
x x̂ + kyŷ√(
kac
x

)2 + k2
y

= (cos θac, sin θac,0)

(100)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
M2ζac−

√
ζ 2

ac−1

ζac−M2

√
ζ 2

ac−1
,

√
1−M2

2

ζac−M2

√
ζ 2

ac−1
,0

)
, ζac � 1,

(
M2ζac+

√
ζ 2

ac−1

ζac+M2

√
ζ 2

ac−1
,

−
√

1−M2
2

ζac+M2

√
ζ 2

ac−1
,0

)
, ζac � −1.

As in some experiments the shock front remains steady
with respect to the laboratory walls and the gas upstream
is convected toward the shock, it is convenient to analyze
the emitted acoustic flux in the system of reference in which
the shock is at rest. It is clear that in the shock system of
reference, all the sound waves with |ζac| > 1 escape from the
shock to the left. Nevertheless, due to the change of the system
of reference, the direction of propagation of energy by the
sonic wave does not coincide with �kac. In fact, the energy flux
is rewritten now as

�q = �vacEs, (101)

in which �vac = c2k̂ + (U − D)x̂ and Es is the energy density
in the shock system of reference. Following [30], we write

Es = (M2 − cos θac)E. (102)
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The average of the above expression (101) over the angle φ on
the shock surface gives, in units of ρ2c

3
2,

〈q̃x〉φ = 〈qx〉φ
ρ2c

3
2

= e2
s

2
(1 − M2 cos θac)(M2 − cos θac). (103)

Even though the expression for the flux remains formally
similar to the acoustic fluxes studied in Refs. [17,19] for the
cases of preshock vorticity and preshock entropy, as functions
of ζac or ζ0, there is an intrinsic difference here with regard
to the orientation of the incident acoustic front upstream
(except for very strong shocks, as discussed at the end of
this subsection). In Refs. [17,19], both intervals ζ0 � 1 and
ζ0 � −1 were symmetrical and generated the same pattern of
acoustic intensity radiated downstream. For the case of a field
of incident sound waves upstream, both intervals are no longer
symmetrical. This is due to the difference in the relative veloci-
ties of the sonic fronts that have θ < θ1 and the sonic waves that
have θ > θ2. This asymmetry makes it interesting to study the
behavior of the averaged acoustic flux as a function of the angle
θ ′ that the emitted sonic wave downstream forms with the x

axis in the shock reference frame, as there will be two branches
that will not be coincident, as happened in Refs. [17,18].
Before doing that, we need an expression of θ ′ as a function
of θac. After some algebra, we get the following expression:

cos θ ′ = cos θac − M2√
1 + M2

2 − 2M2 cos θac

. (104)

By direct substitution, we see that for |ζac| = 1, it is
cos θac = M2 and hence θ ′ = π/2. This means that, in the
limit between stable or evanescent acoustic emission |ζac| = 1,
the sound waves emitted downstream point vertically in the
shock wave reference frame. On the other hand, for |ζac| = ∞,
it is cos θac = π and hence θ ′ = π , therefore all sound waves
emitted by the shock front point horizontally backward [we
refer to the discussion after Eq. (52)]. We plot in Fig. 4
the dimensionless acoustic energy flux 〈q̃x〉φ as a function
of the emission angle θ ′ in order to study in which directions the
acoustic energy flux radiated by the shock is more important.
In Figs. 4(a) and 4(b), we show it for a shock moving into air
with shock Mach numbers M1 = 5 and 50. We notice that the
emission induced by the upstream waves pointing toward the
shock front is greater by an order of magnitude in this case.
This difference is even more accentuated for shocks that have
weak to moderate strengths. For very strong shocks, however,
the difference between the two types of orientations upstream
disappears. In fact, for a very supersonic shock, there is almost
no appreciable difference between D − c1 and D + c1, and as
a consequence the pattern of acoustic downstream emission
is almost the same in both intervals. Furthermore, the polar
emission pattern of Fig. 4(b) resembles the same behavior of
Fig. 12 in Ref. [19] for correspondingly stronger shocks.

It is also interesting to analyze the same trends for a very
compressible gas with γ = 1. For a shock moving into a highly
compressible fluid, the downstream polar emission pattern
shows the behavior shown in Figs. 4(c) and 4(d) for two
values of the incident shock strength (M1 = 5,50). For weak
to moderate shocks, both intervals are clearly asymmetric
and the more intense branch shows a peak of emission in a
direction nearly perpendicular to the shock surface. As the
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FIG. 4. Polar plots of the dimensionless acoustic energy flux
〈q̃x〉φ as a function of the emission angle θ ′ in the shock wave
reference frame for different values of adiabatic index γ = 7/5,1 and
shock strengths M1 = 5,50. The inner curve in each plot corresponds
to the downstream acoustic energy flux generated by the upstream
sonic waves traveling to the right. The outer curves are related to the
upstream sound waves traveling to the left impinging on the shock
front.

shock strength increases, both branches equalize the intensity
of the emitted sound, and the shape of both curves tends to
that of a circle of radius unity. The more intense emission is
observed for θ ′ = π , which corresponds to both ζac = ±∞.
This behavior is in contrast to that observed in Ref. [17],
where the acoustic emission normal to the shock was zero at
any shock intensity for the shock/vorticity interaction [17].

III. SHOCK WAVE TRAVELING INTO A RANDOM
ISOTROPIC ACOUSTIC FIELD

We study now the interaction of a planar shock wave with a
full spectrum of sound waves isotropically distributed in two
and three dimensions. We assume that the upstream modes
are uncorrelated. The statistical averages of the quantities
downstream are then easily calculated by assuming a uniform
distribution of the wave-number vectors in the corresponding
space, as has been done in Refs. [5,17,19]. That is, for a
2D spectrum, we assume that the probability of finding a
sound wave oriented with the angle θ is equal to dθ/π , which
means that the tips of the wave-number vectors are uniformly
distributed over the unit semicircle in the (kx,ky) plane. On the
other hand, for a 3D isotropic spectrum, we assume that the tips
of the vectors (kx,ky,kz) are uniformly distributed over the unit
sphere in the 3D (kx,ky,kz) space, and hence the probability of
finding a wave-number vector oriented according to the angles
θ and ϕ (polar angle on the shock surface) is proportional
to sin θ dθ dϕ. In the following subsections, we present the
statistical averages for the kinetic energy, acoustic energy flux,
vorticity, and density, both in two and three dimensions, and
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we show the limiting expressions obtained in the important
limits of very weak and strong shocks as well as for highly
compressible fluids. To this end, we use the 2D single-mode
theory developed in the previous section for both 2D and 3D
problems. By proper rotation of the coordinate axis on the
shock surface, we can always reduce the 3D problem to an
equivalent 2D problem. The z axis on the shock surface can
always be rotated in such a way as to make kz = 0 for any
upstream mode. Hence, in the rotated system, the shock ripple
does not depend on the z coordinate, and therefore no velocity
perturbation is generated along that direction. Therefore, a
3D upstream spectrum can always be handled with the 2D
model developed before. This trick has been extensively used
in previous works [9,10,17,19].

A. Downstream kinetic energy

Once the shock has entered the half-space x > 0, filled
with running sound waves, the shock surface gets rippled and
oscillates in time, generating pressure and velocity fluctuations
downstream. Part of these velocity perturbations are rotational
as they are associated with the vorticity field that has been
calculated in the preceding section. The amplitudes of the
x and y components of the downstream rotational velocity
field are given in Eqs. (82)–(85). The statistical average of the
downstream rotational kinetic energy per unit mass is formally
written as

Krot =
∫ [(

ṽrot
x

)2 + (
ṽrot

y

)2]
dP (θ,φ), (105)

where dP (θ,φ) is the probability density function that de-
scribes the distribution of the wave-number vectors over
the upstream spectrum. As discussed before, we distinguish
between isotropic 2D and 3D spectra. The corresponding
probability densities are

dP2D = 1

π
dθ,

(106)

dP3D = 1

2
sin θ dθ,

where, thanks to isotropy condition, we assume rotational
symmetry in ϕ for the 3D case. As shown in the preceding
section, all the quantities downstream can be expressed as
functions of ζac. Therefore, it is convenient also to express the
probability densities in terms of ζac for both two and three
dimensions. That is, we can write

dP2D/3D = J2D/3D(ζac)dζac, (107)

where the functions J2D/3D are obtained working out the
expressions given in Eqs. (26)–(28):

J2D(ζac) = − 2
(
M2

1 − 1
)
M2

πM1

√
1 − M2

2

sin2 θ

cos θ − M1
,

(108)

J3D(ζac) = −
(
M2

1 − 1
)
M2

M1

√
1 − M2

2

sin3 θ

cos θ − M1
.

The incident angle θ is considered a function of ζac using
both Eqs. (27) and (28). For arbitrary values of γ and M1,
the probability densities either in two or three dimensions are

asymmetric functions of ζac with respect to the axis ζac = 0.
For very strong shocks, they are completely symmetric and
agree with the same functions used in the preshock density
problem [see Eqs. (65) and (127) of [19]]. As the asymptotic
behavior depends on the value of ζac, we split the integrals that
define the statistical averages in long- (|ζac| < 1) and short-
wavelength (|ζac| > 1) contributions. For the averages of the
rotational kinetic energies in two and three dimensions, we
deduce, for the long-wavelength branch,

Kl
2D = 1

2

∫ 1

−1

(
1 + ζ 2

ac

sinh2 χs

) ∣∣Qrot
l

∣∣2J2D(ζac)dζac,

(109)

Kl
3D = 1

2

∫ 1

−1

(
1 + ζ 2

ac

sinh2 χs

) ∣∣Qrot
l

∣∣2J3D(ζac)dζac,

and for the short-wavelength interval,

Ks
2D = 1

2

∫ −1

−∞

(
1 + ζ 2

ac

sinh2 χs

) ∣∣Qrot
s

∣∣2J2D(ζac)dζac

+ 1

2

∫ ∞

1

(
1 + ζ 2

ac

sinh2 χs

) ∣∣Qrot
s

∣∣2J2D(ζac)dζac,

(110)

Ks
3D = 1

2

∫ −1

−∞

(
1 + ζ 2

ac

sinh2 χs

) ∣∣Qrot
s

∣∣2J3D(ζac)dζac

+ 1

2

∫ ∞

1

(
1 + ζ 2

ac

sinh2 χs

) ∣∣Qrot
s

∣∣2J3D(ζac)dζac.

We also calculate the acoustic kinetic energy generated down-
stream. The averaged acoustic contribution to the turbulent
kinetic energy downstream is formally given by

Kac
2D = 1

2

∫ −1

−∞
e2
s J2D(ζac)dζac + 1

2

∫ ∞

1
e2
s J2D(ζac)dζac,

Kac
3D = 1

2

∫ −1

−∞
e2
s J3D(ζac)dζac + 1

2

∫ ∞

1
e2
s J3D(ζac)dζac,

(111)

where only modes with |ζac| > 1 are considered, and the value
of es is given in Eq. (41). In Fig. 5, we show the different com-
ponents for the kinetic energy amplification compared with the
results shown by Mahesh et al. in Fig. 8 of [10]. Care must be
taken with the different normalization of the upstream veloc-
ities. In Eq. (5) we have used c1, while c2 is used in Ref. [10].

1 2 3 4 5
0

2

4

6

8

10

12
Kac

3D × c22
c21

Krot
3D × c22

c21

K3D × c22
c21

Mahesh et al [10]

M1M1

K3D

FIG. 5. (Color online) 3D kinetic energy contributions as a
function of the shock strength M1 and for γ = 7/5, superposed with
the results shown in Fig. 8 of [10].
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FIG. 6. (Color online) 2D and 3D kinetic energy contributions as a function of the shock strength M1 and for γ = 7/5.

Therefore, the kinetic energy amplification obtained here, K3D,
is related with their corresponding parameter q2 as follows:
q2 × c2

1 = K3D × c2
2. In Fig. 5, we observe a perfect agreement

between the different contributions to the kinetic energy given
by Eqs. (109)–(111) and the results shown in Ref. [10]. In
Figs. 6(a) and 6(b), we show the different contributions of the
averaged total kinetic energy as a function of the shock strength
for a shock moving into air. We notice that for weak shocks,
the acoustic contribution is dominant, but for strong shocks
the rotational part becomes more important, as also noticed
in Ref. [10]. Both K2D and K3D look quite similar, and the
differences between them reside in an overall scaling factor.
The acoustic contribution rises rapidly for very weak shocks
and later reaches an asymptotic limit that depends on γ . The
rotational contribution also approaches an asymptotic value for
the very strong shocks that depends on γ . For the shock moving
in air, Kac

2D tends to 0.111 612 when M1 � 1, and the 3D value
is 0.085 96. The total turbulent kinetic energy value for very
strong shocks into air is equal to 1.569 05 in two dimensions
and 2.2138 in three dimensions. In Fig. 7, we show the behavior
of Kac

2D and Kac
3D as a function of γ and M1. We observe that for

very weak shocks (M1 − 1 � 1), the amplification factor does

not depend on the gas compressibility γ . On the other hand, it
can also be seen that the acoustic kinetic energy decreases for
gases with low compressibility. In Fig. 8, we show the behavior
of the 2D and 3D downstream total kinetic energy (K2D/3D =
Kl

2D/3D + Ks
2D/3D + Kac

2D/3D) as a function of γ and M1. From
both figures [Figs. 8(a) and 8(b), or posteriorly in Figs. 10(a)
and 10(b)], we notice that the turbulent kinetic energy grows
unbounded in highly compressible gases (γ = 1). In real gases,
where viscosity and thermal conduction effects are taken into
account, the kinetic energy will be bounded in that limit. As can
be inferred from the previous figures, the turbulent kinetic en-
ergy is bounded for strong shocks, except perhaps in the highly
compressible limit. Making adequate Taylor series expansions
of the defining integrals, we can study the exact asymptotic
behavior of the statistical averages downstream in the im-
portant physical limits of strong shock (M1 � 1) and highly
compressible fluid (γ − 1 � 1). We show in Appendix B
the different components of those expressions in three dimen-
sions. For the strong shock limit, we refer to Eqs. (B1)–(B4),
and for γ − 1 � 1 we refer to Eqs. (B5)–(B8). The strong
shock limit for the total turbulent kinetic energy Eq. (B4) can
be further simplified in the limits γ − 1 � 1 or γ � 1:

K3D(γ,M1 � 1) ∼=
⎧⎨
⎩
√

2
γ−1

[
ln
(

2
γ−1

)− 1
]+ π − 1 + O[(γ − 1)1/2], γ − 1 � 1,

29−6
√

2
15

1
γ 2 + O

(
1

γ 5/2

)
, γ � 1.

(112)

In Figs. 9(b) and 10(b), we compare the above formulas shown in the strong shock limit together with M1 = 5 and 10 shocks.
The corresponding 2D plots are also shown in Figs. 9(a) and 10(a) for completeness, even though the corresponding asymptotic
formulas are not shown. We remark here again that in the strong shock limit, the interaction of a shock with an isotropic field
of acoustic waves gives the same results as the interaction with an isotropic field of density/entropy perturbations, as discussed
in the preceding section. This can be confirmed by comparing the equations above in the limit M1 � 1 with the corresponding
formulas for the preshock entropy problem [see Eqs. (130)–(134) of [19]]. For a very strong shock, the nonadiabaticity of the
upstream perturbations is irrelevant as far as downstream perturbation generation is concerned. In Fig. 11, we plot the acoustic
contribution for highly compressible gases and also for γ = 1.01 and 1.1, either in two or three dimensions as a function of the
shock strength. We observe that for weak shocks, all the curves are coincident because there is no γ dependence in that limit.
In Fig. 12, we plot the total kinetic energy amplification K2D and K3D in the limit γ − 1 � 1. As we deduce from Fig. 10, the
curve is unbounded when γ → 1. The highly compressible gases limit Eq. (B8) can still be simplified in the limits M1 − 1 � 1
and M1 � 1:

K3D(γ − 1 � 1,M1) ∼=
{

1 + 82+196
√

2−120 ln 2
30 (M1 − 1) + O[(M1 − 1)2], M1 − 1 � 1,

2M1 ln M1 + M1
(
ln 4 − 5

3

)+ π − 1
3 + O

(
1

M1

)
, M1 � 1.

(113)
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FIG. 7. (Color online) Kac
2D and Kac

3D as a function of the shock strength M1 and γ .

FIG. 8. (Color online) K2D and K3D as a function of the shock strength M1 and γ .
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FIG. 9. Kac
2D and Kac

3D in the strong shock limit, and also for some finite values of the Mach number as a function of γ .
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FIG. 10. K2D and K3D in the strong shock limit, and also for some finite values of the Mach number as a function of γ .
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FIG. 11. Kac
2D and Kac

3D in the high compressibility limit (γ − 1 � 1), and also for some low values of γ as a function of the shock
strength M1.

We notice that the strong shock scaling in the above formula
is the same (∼M1 ln M2

1 ) as the strong shock scaling observed
in the highly compressible limit of the problem studied in
Ref. [19], in agreement with the previous discussion. The
weak shock limit for arbitrary values of γ is dominated by
the acoustic contribution:

K3D(γ,M1 − 1 � 1)

∼= 1 + 98
√

2 − 191

15
(M1 − 1) − 4(M1 − 1)

× ln(M1 − 1) + O[(M1 − 1)2]. (114)

B. Acoustic flux

We calculate the average of the acoustic flux radiated
downstream in a system that moves with the shock front. In the
same way as was done in previous works [17,19], we define
the average intensity downstream as the angle average of the
expression given by Eq. (103),

I ac
3D = 〈qx〉φ,θ = ρ2c

3
2σ

2
k

2

∫ θ1

0
e2
s (1 − M2 cos θac)

× (M2 − cos θac) sin θ dθ + ρ2c
3
2

2

∫ π

θ2

e2
s

× (1 − M2 cos θac)(M2 − cos θac) sin θ dθ. (115)

We normalize the above intensity with the average acoustic
intensity incident on the shock upstream. It is calculated
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FIG. 12. K2D and K3D in the high compressibility limit (γ = 1), and also for some low values of γ as a function of the shock strength M1.

using the same formulas as above, where M2 is substituted
by M1:

I inc
3D = ρ1c

3
1

2
σ 2

k

∫ π

0
(1 − M1 cos θ )

× (M1 − cos θ ) sin θ dθ = 4M1

3
ρ1c

3
1. (116)

In two dimensions, the average acoustic intensity flux is

I inc
2D = 2

π

ρ1c
3
1

2
σ 2

k

∫ π

0
(1 − M1 cos θ )

× (M1 − cos θ ) dθ = 3M1ρ1c
3
1. (117)

The relative acoustic flux downstream is defined as

S2D/3D = I ac
2D/3D

I inc
2D/3D

. (118)

In Figs. 13(a) and 13(b), we show the acoustic energy flux
as a function of the shock strength for a shock moving into
air. In Fig. 14, we show the behavior of S2D and S3D as
a function of γ and M1. By making a Taylor expansion,
as with the turbulent kinetic energy, it can be seen that
for very strong shocks, the relative acoustic flux grows
proportional to M2

1 . In the limit M1 � 1, we get Eq. (B9).
If we compare Eq. (B9) with Eq. (142) in Ref. [19], we
find the following relationship: S3D(γ,M1 � 1) = (3/8)M2

1 ×
S3D(γ,M1 � 1). In addition, for the 2D case [Eq. (94)
in Ref. [19]], it can be deduced that S2D(γ,M1 � 1) =
3M2

1 × S2D(γ,M1 � 1). Equation (B9) can be simplified in
the limits of highly compressible and highly incompressible
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FIG. 13. 2D and 3D acoustic energy flux as a function of the shock strength M1 and for γ = 7/5.

fluids:

S3D(γ,M1 � 1) ∼=
{{ 3

4
√

2

√
γ − 1 − 3

4 (γ − 1) + O[(γ − 1)3/2]
}

M2
1 + O(M1), γ − 1 � 1,[

3
20

√
2

1
γ 3 + (

17
40

√
2

− 11
35

)
1
γ 3 + O

(
1
γ 4

)]
M2

1 + O(M1), γ � 1.
(119)

It is interesting to compare the function S2D/M2
1 and S3D/M2

1 in the strong shock limit with the same function at other finite values
of the shock strength (M1 = 5,10). We show this comparison in Fig. 15(b). We observe a maximum of S2D(M1 � 1)/M2

1
∼= 0.0726

at γ = 1.152 in two dimensions and a maximum value of S3D(M1 � 1)/M2
1

∼= 0.067 433 7 at γ = 1.102 81 in three dimensions.
On the other hand, the acoustic energy flux is expressed as a function of M1 for highly compressible gases in Eq. (B10), which
can be further simplified in the weak and strong shock limits as

S3D(γ − 1 � 1,M1) ∼=
⎧⎨
⎩

1 − 7(64
√

2−33)
20 (M1 − 1)3 + O[(M1 − 1)4], M1 − 1 � 1,

3M1
4 − 3(4+π)

8 + 11
2M1

+ O
(

1
M2

1

)
, M1 � 1.

(120)

Figure 16 shows the acoustic energy flux in the highly
compressible gases limit, together with the acoustic flux at
other values of the adiabatic index (γ = 1.01,1.1). Finally, we
show next the scaling for very weak shocks at arbitrary values
of γ :

S3D(γ,M1 − 1 � 1)

∼= 1 − 7(64
√

2 − 33)

20
(M1 − 1)3 + O[(M1 − 1)4], (121)

where we realize the same trend as the acoustic kinetic energy
in that limit, that is, no dependence on γ at the leading order.

C. Downstream vorticity generation

When the shock enters the nonuniform region, its shape
gets rippled and vorticity is generated as discussed in Sec. II.

To calculate the downstream vorticity averages, we use
Eqs. (67)–(72) for the asymptotic vorticity field amplitudes.
In two dimensions, we have

〈
ω̃2

z

〉 = σ 2
k × W2D. (122)

For the 3D average, we normalize the downstream vorticity
with respect to kc2, which adds an additional factor sin2 θ

inside the integrals. In addition, we note that there is no
vorticity perpendicular to the shock surface, as there is none
upstream. Hence, the vorticity vector downstream will be
parallel to the shock surface:

〈
δω2

⊥
(kc2)2

〉
= σ 2

k × W3D, (123)

FIG. 14. (Color online) S2D and S3D as a function of the shock strength M1 and γ .
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FIG. 15. S2D and S3D in the strong shock limit, and also for some finite values of the Mach number as a function of γ .

where the functions W2D and W3D are given by the
integrals

W2D = 2

π

∫ θ1

0
�2

2(es − 1)2 sin2 θ dθ + 2

π

∫ θ2

θ1

�2
2

[
e2
l1

+ (el2−1)2] sin2 θ dθ+ 2

π

∫ π

θ2

�2
2(es − 1)2 sin2 θdθ,

W3D =
∫ θ1

0
�2

2(es − 1)2 sin3 θ dθ +
∫ θ2

θ1

�2
2

[
e2
l1+(el2−1)2

]
× sin3 θ dθ +

∫ π

θ2

�2
2(es − 1)2 sin3 θ dθ. (124)

In Figs. 17(a) and 17(b), we show the different contributions
of the averaged vorticity for a shock into air as a function
of the shock strength. In Fig. 18(a), we show the behavior
of the 2D downstream squared vorticity as a function of γ

and M1. The same is done in Fig. 18(b) for the 3D case.
We obtain the following strong shock asymptotic expressions
for the long- and short-wavelength branch in Eqs. (B11) and
(B12). The explicit formulas also agree with those shown in

Eqs. (160)–(163) in Ref. [19] for the 3D shock/entropy
interaction. The total vorticity generation in this limit is
given in Eq. (B13), which can be simplified in the highly
compressible and highly incompressible limits as

W3D(γ,M1 � 1) ∼=
⎧⎨
⎩

8
3(γ−1)2 + O

[
1

(γ−1)3/2

]
, γ − 1 � 1,

4
3γ 2 + O

(
1
γ 3

)
, γ � 1.

(125)

The strong shock-limiting curves in two and three dimensions
are shown in Fig. 19, where they are also compared with
the curves corresponding to other finite values of the shock
strength (M1 = 5,10). We observe that both W2D and W3D

diverge for highly compressible gases in the strong shock
limit. On the other hand, for highly compressible gases, the
long- and short-wavelength branches have the asymptotic
expansions shown in Eqs. (B14) and (B15), and the sum of
both contributions is given in Eq. (B16). This formula can be
reduced to much more simplified expressions for very weak
and very strong shocks:

W3D(γ − 1 � 1,M1) ∼=
{

(M1 − 1)6
[

14848
√

2−4134
15 − 64 ln(M1 − 1)

]+ O[(M1 − 1)7], M1 − 1 � 1,

4
5M4

1 + 2M3
1 ln M1 + M3

1

(
2 ln 2 − 103

15

)+ 16
5 M2

1 + O(M1), M1 � 1.
(126)

In Fig. 20, we compare Eq. (B16), the highly compressible gases limit, with other values of γ .
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FIG. 16. S2D and S3D in the high compressibility limit (γ = 1), and also for some low values of γ as a function of the shock strength M1.
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FIG. 17. (Color online) 2D and 3D vorticity generation contributions as a function of the shock strength M1 and for γ = 7/5.

D. Density amplification

From Sec. II, we know that the density field behind the
shock can be decomposed into the entropic and the acoustic
component. We calculate now the amplification of the averaged
density perturbations squared either in 2D or 3D. We define
the dimensionless density amplification factor as〈

δρ2
2

〉
〈
δρ2

1

〉 = R2

〈
ρ̃2

2

〉
〈
ρ̃2

1

〉 = R2G. (127)

The entropic part of the function G is split into the long- and
short-wavelength branches as

Gl
2D =

∫ 1

−1

∣∣Ql
en

∣∣2 J2D(ζac)dζac,

Gl
3D =

∫ 1

−1

∣∣Ql
en

∣∣2 J3D(ζac)dζac, (128)

Gs
2D =

∫ −1

−∞

∣∣Qs
en

∣∣2 J2D(ζac)dζac +
∫ ∞

1

∣∣Qs
en

∣∣2 J2D(ζac)dζac,

Gs
3D =

∫ −1

−∞

∣∣Qs
en

∣∣2 J3D(ζac)dζac +
∫ ∞

1

∣∣Qs
en

∣∣2 J3D(ζac)dζac,

(129)

and the acoustic contribution is

Gac
2D = Kac

2D =
∫ −1

−∞
e2
s J2D(ζac)dζac +

∫ ∞

1
e2
s J2D(ζac)dζac,

Gac
3D = Kac

3D =
∫ −1

−∞
e2
s J3D(ζac)dζac +

∫ ∞

1
e2
s J3D(ζac)dζac.

(130)

In Figs. 21(a) and 21(b), we show the different contributions
to the averaged density amplification (Gl

2D/3D, Gs
2D/3D, Gac

2D/3D,

and G2D/3D = Gl
2D/3D + Gs

2D/3D + Gac
2D/3D) as functions of the

shock strength for a shock moving into air. We notice that
G2D tends to 0.477 236 when M1 � 1, and the 3D value is
0.451 896. In Fig. 22(a), we show the behavior of G2D as a
function of γ and M1. The same is done in Fig. 22(b) for the 3D
case. In Figs. 21 and 22, we observe how the acoustic
contribution is dominant for weak shocks either in two or three
dimensions. From Fig. 21, we see that the total density field
reaches a constant value for very strong shocks and becomes a
function of γ . As in the previous subsections, we discuss here
the asymptotic behavior of the density amplification factor
in the strong shock limit. In order to do so, we refer to
Eqs. (148)–(152) in Ref. [19], because, as was explained
before, the preshock acoustic velocity and pressure become
negligible in that limit, and therefore the density upstream
perturbations dominate the shock dynamics. For the entropic
contribution, we obtain the expressions shown in Appendix B
in Eqs. (B17) and (B18). The acoustic contributions agree with
the acoustic part of the turbulent kinetic energy Eq. (B3). The
total density amplification Eq. (B18) is the sum of the entropic
and acoustic parts, and it is simplified in the limits γ − 1 � 1
and γ � 1 as

G3D(γ,M1 � 1)

∼=
⎧⎨
⎩

1 − 5
2

√
2(γ − 1) + O(γ − 1), γ − 1 � 1,

1 − 2+√
2

3γ
+ O

(
1
γ 2

)
, γ � 1.

(131)

In Fig. 23, we show the strong shock limit for-
mula (B19) together with the values corresponding
to M1 = 5,10. We observe that for higher values of
adiabatic index γ , the curves tend to converge to
G2D/3D(γ � 1,M1 � 1) → 1, in agreement with Eq. (131).

FIG. 18. (Color online) W2D and W3D as a function of the shock strength M1 and γ .
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FIG. 19. W2D and W3D in the strong shock limit, and also for some finite values of the Mach number as a function of γ .
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FIG. 20. W2D and W3D in the high compressibility limit (γ = 1), and also for some low values of γ as a function of the shock strength M1.
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FIG. 21. (Color online) 2D and 3D density contributions as a function of the shock strength M1 and for γ = 7/5.

FIG. 22. (Color online) G2D and G3D as a function of the shock strength M1 and γ .
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FIG. 23. G2D and G3D in the strong shock limit, and also for some finite values of the Mach number as a function of γ .

The highly compressible limit (γ → 1) for the entropic part
is given in Appendix B [Eqs. (B20) and (B21)], and the
acoustic contribution agrees exactly with Eq. (B7) in this
limit. We see that in the limit γ → 1, the dominant term is
the acoustic contribution. If we go to Eq. (16), we observe
that for γ → 1, it is p̃1 ∼ ρ̃1, and hence p̃2 ∼ ρ̃2, which
means that the post-shock density perturbations are essentially
acoustic. Because of this, Gac

2D/3D is dominant over Gl
2D/3D

and Gs
2D/3D in the highly compressible limit (see Fig. 24). If

we compare this case with that studied in Ref. [19], where
the shock traveled through a nonuniform entropy field, the
limit γ → 1 implied no change in the entropic perturbations,
and therefore the entropic part of G approached unity in
this limit. As before, the total amplification factor can be
reduced to simpler expressions for very strong and very weak
shocks:

G3D(γ − 1 � 1,M1) ∼=
⎧⎨
⎩

1 + [
98

√
2−191
15 − 4 ln(M1 − 1)

]
(M1 − 1) + O[(M1 − 1)2], M1 − 1 � 1,

1 − 5
M1

+ 40
3M2

1
+ O

(
1

M3
1

)
, M1 � 1.

(132)

The weak shock limit expression for arbitrary values of γ

agrees with Eq. (114). We see that there is no dependence on
γ at the leading order for very weak shocks, in agreement with
Fig. 22.

E. Anisotropy

In Refs. [17,19], the interaction of a shock with an upstream
isotropic vorticity and an entropy field, respectively, was
studied, and it was shown there that the flow behind the
shock was generally anisotropic in velocity. We define here
the same anisotropy parameter as in those works for the 3D
perturbations:

βv = 〈ṽ2
⊥〉 − 2〈ṽ2

||〉
〈ṽ2

⊥〉 + 2〈ṽ2
||〉

= 1 − 4

〈
ṽ2

x

〉
〈ṽ2〉 + 〈

ṽ2
x

〉 . (133)
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FIG. 24. G2D and G3D in the high compressibility limit (γ = 1), and also for some low values of γ as a function of the shock strength M1.

In the preceding equation, ṽ⊥ refers to the velocity component
parallel to the shock and ṽ|| refers, actually, to ṽx . According
to Eq. (133), βv = +1 would essentially mean that 〈ṽ2

x〉 � 0,
which would imply post-shock velocity perturbations parallel
to the shock surface. On the other hand, βv = −1 means
that 〈ṽ2

x〉 � 〈ṽ2〉, and hence the velocity perturbations are
perpendicularly oriented to the shock surface. In Fig. 25(a),
we plot the previous parameter as a function of γ and M1. We
see that the anisotropy parameter varies between −1 and
+1. The behavior of the anisotropy parameter in the case
studied here is essentially different from the one shown in
Refs. [17,19]. For very strong shocks and highly compressible
gases, the anisotropy tends to 1 (totally lateral). On the
other hand, a total longitudinal anisotropy (βv = −1) is never
reached for any value γ and M1. Between these two values,
we observe that velocity isotropy conditions can be found on
the curve βv = 0 as shown in Fig. 25(b).
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FIG. 25. (Color online) (a) βv as a function of the shock strength M1 and γ . (b) Level curve for βv = 0 where the longitudinal and transverse
anisotropy zones are defined.

IV. SUMMARY

We have presented an analytical theory that describes the
linear interaction of an isolated planar shock wave with a field
of isotropic sound waves. The interaction of the shock with a
single mode is solved exactly. The wave equation downstream
is solved and the generation of pressure, velocity, and density
perturbations is described in detail, including the transient
phase before the achievement of asymptotic conditions far
downstream. The vorticity generation is described together
with the corresponding rotational velocity field. The RM
growth that ensues at the weak discontinuity is also studied,
showing that the growth resembles the classical RM growth
that occurs at a contact surface for the case of a reflected
rarefaction. The emission of sound downstream is charac-
terized as a function of the adiabatic index and the shock
strength and compared to the emission of sound in the other
two canonical problems, namely the “preshock vorticity” and
“preshock entropy” problems. The existence of two critical
angles is discussed and it is shown that the transition to
the asymptotic regime downstream takes a longer time as
the critical angles are approached. In order to deal with the
interaction of the shock front with a full spectrum of sound
waves, the usual angle averaging is performed, using the
perturbation amplitudes from the single-mode theory. In this
way, the averages of the turbulent kinetic energy, the acoustic
flux radiated downstream, and the vorticity and density squared
are studied in detail as functions of the adiabatic index γ and
the shock strength M1 for 2D and 3D isotropic spectra. Exact
asymptotic expansions of these quantities in the important
physical limits of very strong shocks, very weak shocks,
and highly compressible fluids have been written in terms
of elementary functions. The anisotropy of the downstream
perturbations has also been characterized as a function of γ

and M1, and it was found that the downstream perturbations
are mostly longitudinally anisotropic, except for some regions
where there is the possibility of transverse anisotropy. The
curves for velocity isotropy conditions have also been shown.
This work closes a series of related problems, such as those of
a shock interacting with the only three perturbation modes
that can be excited in a normal fluid: vorticity, entropy,
and sound waves. There is the possibility of addressing
additional problems with more realistic boundary conditions
downstream, such as the existence of a piston that drives the
shock and reflects back to its surface a part of the sound
waves radiated downstream. The possibility of reshocking the

turbulent flow generated by a first shock wave is also another
interesting problem amenable to an analytical solution with
the tools presented here; this is left for future works.
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APPENDIX A: INTERACTION OF A PLANAR SHOCK
WAVE WITH A LONGITUDINAL FIELD

OF SOUND WAVES

In this Appendix, we present a detailed discussion of
a shock interacting with a single-mode perturbation with
ky = 0. We analyze this particular case studying the Riemann
invariants upstream and downstream, and comparing the
results with those shown in Sec. II in the limit |ζac| → ∞.
Following the arguments given in Ref. [26] on p. 20, the
Riemann invariants J± for linear perturbations are given by

J± = �u ± �p

ρ0c0
, (A1)

where �u and �p represent the longitudinal velocity and
pressure perturbations in the fluid. The values of ρ0 and c0

correspond to the background values of density and speed of
sound, respectively. Along the two families of characteristics
C± : dx

dt
= u ± c, the values of J± remain constant, and, there-

fore, the velocity �u and pressure �p acoustic perturbations
are related as

�u + �p

ρ0c0
= 2f1[x − (u0 + c0)t],

�u − �p

ρ0c0
= −2f2[x + (u0 − c0)t].

(A2)

The functions f1 and f2 refer to the isentropic perturbations
traveling to the right and to the left, respectively. We study
at first the upstream field of longitudinal waves. We rewrite
Eq. (A2) according to the notation used here, in the laboratory
frame (u0 = 0), and we get

ṽx1 + p̃1 = 2f̃1(x ′ − c1t),

ṽx1 − p̃1 = −2f̃2(x ′ + c1t).
(A3)
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For waves traveling to the right, it is f̃2 = 0 and hence ṽx1 =
p̃1, which agrees with Eq. (5) of Sec. II by making θ = 0.
On the other hand, for acoustic waves traveling to the left,
we make f̃1 = 0, which gives ṽx1 = −p̃1, which agrees with
Eq. (5) by making θ = π .

The isentropic perturbations (A2) in the compressed fluid
reference frame are recast as

ṽx2 + p̃2 = 2f̃ ′
1(x − c2t),

ṽx2 − p̃2 = −2f̃ ′
2(x + c2t),

(A4)

where the functions f̃ ′
1 and f̃ ′

2 refer to the isentropic per-
turbations downstream traveling to the right and to the left,
respectively. The amplitude of the acoustic perturbations is
determined by the boundary/initial conditions. In the problem
considered here, where the shock travel is isolated, the
function f̃ ′

1 = 0 for any case. The amplitude of f̃ ′
2 is given

by linearized Rankine-Hugoniot equations at the shock wave.
We find two possible situations depending on whether θ = 0
or θ = π .

1. Right-traveling acoustic waves

When the upstream sonic waves are traveling to the right
(θ = 0), the velocity and the pressure perturbations are related
as ṽx1 = p̃1. With the aid of Eq. (14) in Sec. II and taking into
account that f̃ ′

1 = 0, and hence ṽx2 = −p̃2, we arrive at

ṽx2 = −
(
M2

1 + 1
)
M2

2 R + 1 − M1M
2
2 (M1 + 2R)

2M2
1 M2 + M2

1 + 1
p̃1. (A5)

It is easy to see that Eq. (A5) agrees exactly with Qac in Eq. (62)
in the limit of ky = 0, or equivalently by taking ζac → +∞.
The relationship ṽx2 = −p̃2 can also be obtained by taking
ζac → +∞ in Eqs. (41) and (62). As there is no transverse
flux, the rotational contribution to the velocity field is zero,
and so the rotational contribution to the velocity field is zero
in that limit, Qrot(ζac → +∞) = 0.

We also show the density perturbations downstream. As
discussed before, they can be split into the acoustic and
entropic perturbations. The sonic fluctuations are directly
given by p̃2 = ρ̃ac

2 , and the entropic ones are obtained by
Eq. (16) after subtracting the acoustic part. Taking into account
the above Eq. (A5), we arrive at

ρ̃en
2 = −1 − M2

1 M2
2

M2
1 M2

2

×
[(

M2
1 + 1

)
M2

2 R + 1 − M1M
2
2 (M1 + 2R)

2M2
1 M2 + M2

1 + 1
+ 1

]
p̃1.

(A6)

We notice that Eq. (A6) is exactly the same as Qen in Eq. (96)
in the limit ζac → +∞.

2. Left-traveling acoustic waves

If the acoustic waves ahead of the shock are traveling to
the left impinging on the shock front, f̃1 = 0 and hence ṽx1 =
−p̃1. It modifies Eq. (14) with respect to that obtained in
Eq. (A6). The new amplitude for the velocity field downstream
is

ṽx2 = −
(
M2

1 + 1
)
M2

2 R + 1 − M1M
2
2 (M1 − 2R)

2M2
1 M2 + M2

1 + 1
p̃1. (A7)

As before, Eq. (A7) agrees with Qac in Eq. (62) by taking
ζac → −∞. The pressure is also given by ṽx2 = −p̃2. We can
observe that the absolute value of ṽx2 is greater in Eq. (A7)
than in Eq. (A5). This effect can be seen in Fig. 4 in Sec. II,
where the acoustic power emitted by the shock is larger for
the outer curves than for the inner curves. The outer curves are
due to the left-traveling upstream wave, while the inner ones
are due to the right-traveling sonic modes.

The entropic density perturbations are directly obtained
with the aid of Eqs. (16) and (A7). They are

ρ̃en
2 = −1 − M2

1 M2
2

M2
1 M2

2

×
[(

M2
1 +1

)
M2

2 R+1−M1M
2
2 (M1 − 2R)

2M2
1 M2+M2

1 + 1
+ 1

]
p̃1,

(A8)

which agrees with Eq. (96) when ζac → −∞.

APPENDIX B: 3D ASYMPTOTIC EXPRESSIONS

In this Appendix, we show the exact expressions for the
strong shock limit M1 � 1 or the high compressibility limit
γ − 1 � 1. For the quantities of interest, they are the kinetic
energy amplification, the acoustic energy flux, the vorticity
generation, and the density amplification.

1. Downstream kinetic energy

The 3D kinetic energy can be decomposed into the
rotational (long and short branches) contribution and the
acoustic contribution. In the strong shock limit M1 � 1,
the long-wavelength part is

Kl
3D(γ,M1 � 1) ∼=

√
γ − 1√

2γ
+ (γ + 1)(2 − γ )

2
√

2γ (γ − 1)
ln

(
γ + 1

γ − 1

)
,

(B1)

whereas the short-wavelength branch gives

Ks
3D(γ,M1 � 1) ∼= −3γ 2 − γ − 1

2γ − 1
+ 6γ 3 − 5γ 2 − 4γ + 1

(2γ − 1)
√

2γ (γ − 1)
+ (γ + 1)2

(2γ − 1)2√γ
tan−1

(
1√
γ

)

+ γ (γ + 1)(2γ − 3)(3γ 2 − 4γ + 2)

(2γ − 1)2
√

2γ (γ − 1)
ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]
. (B2)
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The acoustic contribution for very strong shocks scales as follows:

Kac
3D(γ,M1 � 1) ∼= −3γ 4 − 6γ 3 − γ 2 + 4γ − 1

γ (2 − γ )
+ (2γ − 1)(3γ 2 − 3γ − 5)

√
γ − 1√

2γ (2 − γ )

− 3

2
(γ 2 − 1)

√
2γ (γ − 1) ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]
. (B3)

The total kinetic energy in that limit is thus given by the sum of the previous expressions:

K3D(γ,M1 � 1) ∼= − (γ − 1)(6γ 4 − 12γ 3 − γ 2 + 7γ − 1)

γ (2 − γ )(2γ − 1)
+ 12γ 5 − 42γ 4 + 34γ 3 + 23γ 2 − 38γ + 9

(2 − γ )(2γ − 1)
√

2γ (γ − 1)

+ (γ +1)2

(2γ − 1)2√γ
tan−1

(
1√
γ

)
+ (γ + 1)(2 − γ )

2
√

2γ (γ − 1)
ln

(
γ + 1

γ − 1

)
− (γ + 1)(12γ 4 − 42γ 3 + 56γ 2 − 34γ + 9)

2(2γ − 1)2(γ − 1)

×
√

2γ (γ − 1) ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]
. (B4)

For very compressible fluids, in the limit γ − 1 � 1, the kinetic energy only depends on the incident shock strength. We get in
that limit, for the long- and short-wavelength contributions,

Kl
3D(γ − 1 � 1,M1) ∼=

(
M2

1 − 1
)3 (

6M14
1 − 4M12

1 − 21M10
1 + 18M8

1 + 9M6
1 − 21M4

1 + 18M2
1 − 5

)
3M4

1

(
M2

1 + 1
)5/2(

M4
1 + M2

1 − 1
)3

+
(
M2

1 − 1
)3(

M8
1 + 6M4

1 + 1
)

M5
1

(
M2

1 + 1
)4 ln

(
M1 +

√
M2

1 + 1
)+ 4

(
M2

1 − 1
)3(

M4
1 + 1

)
M3

1

(
M2

1 + 1
)4 ln

⎛
⎝
√

M4
1 + M2

1 − 1

M1

√
M2

1 + 1 + 1

⎞
⎠ ,

(B5)

Ks
3D(γ − 1 � 1,M1) ∼= − (M1 − 1)

3M8
1

(
M2

1 + 1
)5(

M4
1 + M2

1 − 1
)2

(
M25

1 − 4M23
1 − 32M22

1 + 61M21
1

− 318M20
1 + 250M19

1 − 418M18
1 + 237M17

1 + 75M16
1 + 87M15

1 + 96M14
1 − 34M13

1 + 854M12
1

− 318M11
1 +399M10

1 −68M9
1 − 1241M8

1 +163M7
1 + 444M6

1 − 21M5
1 − 44M4

1 − 2M3
1 + 31M2

1 − 6
)

−
(
M2

1 − 1
)

3M8
1

(
M2

1 + 1
)9/2(

M4
1 + M2

1 − 1
)3

(
5M28

1 + 18M26
1 + 148M24

1 + 290M22
1 − 193M20

1 − 495M18
1

− 496M16
1 − 758M14

1 + 1429M12
1 + 954M10

1 − 1512M8
1 + 458M6

1 − 71M4
1 + 37M2

1 − 6
)

+ 2(M1 − 1)2M4
1 (M1 + 1)2

(
M6

1 − M4
1 − M2

1 − 1
)

(
M2

1 + 1
)6
√

M4
1 − M2

1 − 1

⎡
⎣ tan−1

(√
M4

1 − M2
1 − 1

)

+ tan−1

(√
M4

1 − M2
1 − 1

M1

)
− tan−1

(√
M4

1 − M2
1 − 1√

M2
1 + 1

)⎤⎦

−
(
M18

1 − 8M16
1 + 12M14

1 + 14M12
1 − 98M10

1 + 154M8
1 − 112M6

1 + 34M4
1 + M2

1 − 2
)(

M2
1 − 1

)2

2M9
1

(
M2

1 + 1
)6

× ln

(
M1 + 1

M1 − 1

)
+ 1

2M9
1

(
M2

1 + 1
)6

(
M22

1 − 2M20
1 + 41M18

1 + 38M16
1 − 34M14

1 + 116M12
1

− 374M10
1 + 140M8

1 − 87M6
1 + 30M4

1 + 5M2
1 − 2

)
ln

(
M2

1 + 1

M2
1 − 1

)
+ 1

M9
1

(
M2

1 + 1
)6

(
M22

1 − 2M20
1

+ 41M18
1 + 38M16

1 − 34M14
1 + 116M12

1 − 374M10
1 + 140M8

1 − 87M6
1 + 30M4

1 + 5M2
1 − 2

)
× ln

(
M1 +

√
M2

1 + 1
)+ 4

(
2M14

1 + 3M12
1 + 14M10

1 + 20M8
1 − 62M6

1 + 36M4
1 − 68M2

1 + 23
)

M3
1

(
M2

1 + 1
)6
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× ln

( √
M4

1 + M2
1 − 1

M1

√
M2

1 + 1 + 1

)
+ 1

M4
1

(
M2

1 + 1
)6(

M4
1 + M2

1 − 1
)5/2

(
2M26

1 + 17M24
1 + 44M22

1

+ 136M20
1 + 143M18

1 − 466M16
1 − 514M14

1 + 392M12
1 − 136M10

1 + 219M8
1 + 538M6

1 − 736M4
1

+ 251M2
1 − 18

)
ln

( √
M4

1 − 1√
M4

1 + M2
1 − 1 + M1

)
. (B6)

We realize that the argument of tan−1(
√

M4
1 − M2

1 − 1) becomes imaginary for Mach numbers lower than
√

1 + √
5/

√
2 ∼= 1.272.

Nevertheless, the total expression remains real-valued for any M1 � 1. For the acoustic contribution, we have

Kac
3D(γ − 1 � 1,M1) ∼= 1

3M6
1 (M1 + 1)

(
M2

1 + 1
) (

M4
1 − 1

)3 (
M4

1 + M2
1 − 1

)2

(
3M29

1 − 9M28
1

+ 37M27
1 − 75M26

1 + 190M25
1 − 314M24

1 + 668M23
1 − 512M22

1 + 893M21
1 + 1513M20

1 − 499M19
1

+ 3741M18
1 − 1717M17

1 + 1063M16
1 − 1169M15

1 − 325M14
1 − 64M13

1 − 4320M12
1 + 1562M11

1

− 3154M10
1 + 483M9

1 + 5847M8
1 − 735M7

1 − 1727M6
1 + 84M5

1 + 164M4
1 + 8M3

1 − 124M2
1 + 24

)
+ 1

3M6
1

√
M2

1 + 1
(
M4

1 − 1
)3 (

M4
1 + M2

1 − 1
)3

(
3M30

1 + 62M28
1 + 337M26

1 + 1806M24
1

+ 3881M22
1 + 876M20

1 − 3542M18
1 − 3964M16

1 − 4815M14
1 + 6086M12

1 + 6057M10
1

− 6874M8
1 + 1771M6

1 − 272M4
1 + 148M2

1 − 24
)− 2

(
M2

1 − 1
)3 (

2M8
1 + M6

1 − 10M4
1 + 9M2

1 + 2
)

M7
1

(
M2

1 + 1
)5

× ln

(
M1 + 1

M1 − 1

)
+ 2

M7
1

(
M2

1 + 1
) (

M4
1 − 1

)4

(
3M22

1 + 11M20
1 + 85M18

1 + 174M16
1 + 50M14

1

+ 286M12
1 − 426M10

1 + 140M8
1 − 101M6

1 + 31M4
1 + 5M2

1 − 2
)

ln

(
M2

1 + 1

M2
1 − 1

)

+ 4

M7
1

(
M2

1 + 1
) (

M4
1 − 1

)4

(
3M22

1 + 11M20
1 + 85M18

1 + 174M16
1 + 50M14

1 + 286M12
1 − 426M10

1

+ 140M8
1 − 101M6

1 + 31M4
1 + 5M2

1 − 2
)

ln
(
M1 +

√
M2

1 + 1
)+ 4

M1
(
M2

1 + 1
) (

M4
1 − 1

)4

× (
M16

1 + 24M14
1 + 60M12

1 + 144M10
1 + 286M8

1 − 232M6
1 + 204M4

1 − 320M2
1 + 89

)

× ln

⎛
⎝
√

M4
1 + M2

1 − 1

M1

√
M2

1 + 1 + 1

⎞
⎠+ 4

M2
1

(
M2

1 + 1
) (

M4
1 − 1

)4 (
M4

1 + M2
1 − 1

)5/2

(
7M26

1 + 64M24
1

+ 189M22
1 + 402M20

1 + 515M18
1 − 406M16

1 − 1014M14
1 + 208M12

1 − 51M10
1 + 200M8

1 + 737M6
1

− 834M4
1 + 257M2

1 − 18
)

ln

⎛
⎝

√
M4

1 − 1√
M4

1 + M2
1 − 1 + M1

⎞
⎠ . (B7)

The total kinetic energy in the highly compressible limit is

K3D(γ − 1 � 1,M1) ∼= 1

3M8
1 (M1 + 1)

(
M2

1 + 1
)2 (

M4
1 − 1

)3 (
M4

1 + M2
1 − 1

)2

(
2M33

1 − 9M32
1

+ 48M31
1 − 52M30

1 + 144M29
1 − 199M28

1 + 880M27
1 − 1488M26

1 + 1941M25
1 + 1034M24

1 + 3M23
1

+ 6726M22
1 − 2317M21

1 + 2530M20
1 − 2528M19

1 + 3897M18
1 − 2122M17

1 − 6623M16
1 + 2748M15

1

− 11956M14
1 + 1888M13

1 + 12701M12
1 − 1266M11

1 − 4114M10
1 + 187M9

1 + 1848M8
1
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− 143M7
1 − 790M6

1 + 21M5
1 + 104M4

1 + 2M3
1 − 31M2

1 + 6
)

+ 1

3M8
1

(
M2

1 + 1
)3/2 (

M4
1 − 1

)3 (
M4

1 + M2
1 − 1

)3

(
5M36

1 − 5M34
1 + 199M32

1 + 166M30
1

+ 1501M28
1 + 7353M26

1 + 4076M24
1 − 3776M22

1 − 3805M20
1 − 16528M18

1 + 6603M16
1

+ 18240M14
1 − 14199M12

1 + 4823M10
1 − 2312M8

1 + 826M6
1 − 126M4

1 + 37M2
1 − 6

)

+ 2M4
1

(
M2

1 − 1
)2 (

M6
1 − M4

1 − M2
1 − 1

)
(
M2

1 + 1
)6
√

M4
1 − M2

1 − 1

⎡
⎣ tan−1

(√
M4

1 − M2
1 − 1

)

+ tan−1

⎛
⎝
√

M4
1 − M2

1 − 1

M1

⎞
⎠− tan−1

⎛
⎝
√

M4
1 − M2

1 − 1√
M2

1 + 1

⎞
⎠
⎤
⎦−

(
M2

1 − 1
)2

2M9
1

(
M2

1 + 1
)6

× (
M18

1 − 8M16
1 + 20M14

1 + 18M12
1 − 146M10

1 + 186M8
1 − 64M6

1 − 2M4
1 − 7M2

1 − 2
)

× ln

(
M1 + 1

M1 − 1

)
+ 1

2M9
1

(
M2

1 − 1
)4 (

M2
1 + 1

)6

(
M30

1 − 6M28
1 + 67M26

1 − 86M24
1 + 453M22

1

+ 1350M20
1 − 257M18

1 + 3850M16
1 − 3949M14

1 + 1686M12
1 − 1415M10

1 + 366M8
1 − 25M6

1

+ 10M4
1 + 5M2

1 − 2
)

ln

(
M2

1 + 1

M2
1 − 1

)
+ 1

M9
1

(
M2

1 − 1
)4 (

M2
1 + 1

)6

(
2M30

1 − 11M28
1 + 81M26

1

− 116M24
1 + 488M22

1 + 1359M20
1 − 333M18

1 + 3926M16
1 − 3958M14

1 + 1651M12
1 − 1385M10

1

+ 352M8
1 − 20M6

1 + 9M4
1 + 5M2

1 − 2
)

ln
(
M1 +

√
M2

1 + 1
)+ 4

M3
1

(
M2

1 − 1
)4 (

M2
1 + 1

)6

× (
3M22

1 − 9M20
1 + 48M18

1 + 53M16
1 + 130M14

1 + 795M12
1 − 610M10

1 + 757M8
1 − 817M6

1

+ 206M4
1 − 66M2

1 + 22
)

ln

⎛
⎝
√

M4
1 + M2

1 − 1

M1

√
M2

1 + 1 + 1

⎞
⎠+ 1

M4
1

(
M2

1 − 1
)4 (

M2
1 + 1

)6 (
M4

1 + M2
1 − 1

)5/2

× (
2M34

1 + 9M32
1 + 16M30

1 + 338M28
1 + 809M26

1 + 1983M24
1 + 5376M22

1 − 348M20
1 − 8461M18

1

+ 1481M16
1 − 2608M14

1 − 42M12
1 + 9159M10

1 − 7759M8
1 + 2752M6

1 − 892M4
1 + 251M2

1 − 18
)

× ln

⎛
⎝

√
M4

1 − 1√
M4

1 + M2
1 − 1 + M1

⎞
⎠ . (B8)

2. Acoustic energy flux

As was done for the kinetic energy, we show the exact limits for the acoustic energy flux given in Eq. (118). For very strong
shocks we have

S3D(γ,M1 � 1) ∼=
{

3(γ − 1)(12γ 4 − 24γ 3 − 7γ 2 + 25γ − 10)

16(2γ − 1)2(2 − γ )
− 3(6γ 4 − 15γ 3 + 2γ 2 + 13γ − 7)

√
2γ (γ − 1)

8(2γ − 1)2(2 − γ )

− 3(γ 2 − 1)(6γ 2 − 9γ + 5)

16
√

γ (2γ − 1)3
tan−1

(
1√
γ

)
+ 3(γ − 1)2(γ + 1)(6γ 3 − 3γ 2 + 1)

8γ (2γ − 1)3

√
2γ (γ − 1)

× ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]}
M2

1 + O(M1). (B9)

For highly compressible gases (γ → 1), the relative acoustic flux shows the scaling:

S3D(γ − 1 � 1,M1) ∼= 1

4M6
1 (M1 + 1)

(
M2

1 + 1
)5 (

M4
1 − 1

) (
M4

1 − M2
1 − 1

) (
M4

1 + M2
1 − 1

)2

× (
3M34

1 − 3M33
1 + 31M32

1 − 22M31
1 + 127M30

1 − 166M29
1 + 188M28

1 − 438M27
1 − 449M26

1

+ 193M25
1 − 2307M24

1 + 1802M23
1 − 1208M22
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1
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1 − 2

4
(
M2

1 + 1
)6 (
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(
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2
(
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1

(
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(
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1
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(
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√
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(
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(
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1 + 1
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)2
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⎛
⎝
√
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√
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⎞
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(
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1 + 2015M6
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⎠ . (B10)

3. Vorticity downstream

The vorticity perturbations generated downstream can also be expressed in terms of γ for very strong shocks. The long-
wavelength contribution is

Wl
3D(γ,M1 � 1) ∼= 6γ 3 − 3γ 2 − 16γ + 1

3(γ − 1)
√

2γ (γ − 1)
+ (γ − 2)(γ + 1)2(2γ − 1)

2(γ − 1)
√

2γ (γ − 1)
ln

(
γ + 1

γ − 1

)
. (B11)

In addition, the short-wavelength branch has the asymptotic,

Ws
3D(γ,M1 � 1) ∼= −15γ 4 + 6γ 3 + 29γ 2 − 6γ − 6

3(γ − 1)2
− 30γ 4 + 3γ 3 − 59γ 2 − 19γ + 5

3(γ − 1)
√

2γ (γ − 1)

+ γ (γ + 1)2(5γ 2 − 12γ + 6)

2(γ − 1)
√

2γ (γ − 1)
ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]
. (B12)
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The total averaged vorticity scales as

W3D(γ,M1 � 1) ∼= −15γ 4 + 6γ 3 + 29γ 2 − 6γ − 6

3(γ − 1)2
+ (γ + 1)(30γ 3 − 21γ 2 − 41γ + 6)

3(γ − 1)
√

2γ (γ − 1)
+ γ (γ + 1)2(5γ 2 − 12γ + 6)

2(γ − 1)
√
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× ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]
− (γ − 2)(γ + 1)2(2γ − 1)

2(γ − 1)
√

2γ (γ − 1)
ln

(
γ + 1

γ − 1

)
. (B13)

On the other hand, the highly compressible gases limit is written in terms of the shock strength M1. The long- and short-wavelength
contributions are

Wl
3D(γ − 1 � 1,M1) ∼= −

(
M2

1 − 1
)4

15M4
1

(
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1 + 1
)7/2 (

M4
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)5

(
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⎛
⎝
√
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√
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)
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⎛
⎝

√
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⎞
⎠ ,

(B14)

Ws
3D(γ − 1 � 1,M1)

(M1 − 1)2

60M8
1

(
M2
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(
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1 + 1890M14
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1 + 1386M10
1 − 423M8
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− 37546M18
1 + 27459M16

1 + 48054M14
1 − 20787M12
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1 − 14390M6
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1 − 3067M2
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⎛
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⎞
⎠ . (B15)

The total vorticity downstream is

W3D(γ − 1 � 1,M1)
(M1 − 1)2
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⎠ . (B16)

4. Density amplification

The density perturbations generated by the shock front can be split into the entropic (long- and short-wavelength intervals)
and acoustic perturbations. The strong shock limits for the long and short wavelengths are

Gl
3D(γ,M1 � 1) ∼= −

√
2(γ − 1)3/2

√
γ

+ (γ + 1)(2γ − 1)

(
γ − 1

2γ

)3/2

ln

(
γ + 1

γ − 1

)
, (B17)

Gs
3D(γ,M1 � 1) ∼= − (γ − 1)(3γ 3 − 5γ 2 − γ + 1)

γ (2 − γ )
+ (6γ 2 − 7γ − 7)(γ − 1)3/2

(2 − γ )
√

2γ

− (γ + 1)(3γ − 2)(γ − 1)3/2

√
2γ

ln

[
γ (γ − 1) + √

2γ (γ − 1)

γ (γ + 1)

]
. (B18)
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The acoustic contributions agree with Eq. (B3). The total density amplification is the sum of the contributions given
above plus Eq. (B3):

G3D(γ,M1 � 1) ∼= −6γ 4 − 14γ 3 + 3γ 2 + 6γ − 2

γ (2 − γ )
+ (γ + 1)(2γ − 1)

(
γ − 1

2γ

)3/2

ln

(
γ + 1

γ − 1
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+ (12γ 3 − 20γ 2 − 13γ + 16)

(2 − γ )
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+

√
2(γ + 1)(3γ − 1)(γ − 1)3/2

√
γ

ln
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2γ (γ − 1)

γ (γ + 1)

]
.

(B19)

The highly compressible limit (γ → 1) is given by the following expressions for the long- and short-wavelength intervals:

Gl
3D(γ − 1 � 1,M1) ∼=
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and the acoustic part is equivalent to that shown in Eq. (B7).
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