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Immiscible displacement of oil by water in a microchannel: Asymmetric flow behavior
and nonlinear stability analysis of core-annular flow
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The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica
microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous
silicone oil. Only water then was injected into the channel. We describe our flow observations based on the
two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an
oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which
resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and
formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased
with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the
water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under
all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and
no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability
analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects,
the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of
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where Wew and Weo are the Weber numbers of the water and the oil phases, respectively, and

ao is the unperturbed water core radius made dimensionless by the channel radius.

DOI: 10.1103/PhysRevE.85.026309 PACS number(s): 47.15.Rq

I. INTRODUCTION

When a more viscous fluid is displaced by a less viscous
fluid in a channel, the interface between the two fluids forms
a finger. While the finger moves, it leaves a film of the more
viscous fluid on the channel wall. This phenomenon is known
as viscous fingering and was studied for the first time by
Saffman and Taylor in a Hele-Shaw cell [1]. Viscous fingering
frequently occurs in nature and in many engineering problems,
including the immiscible displacement of oil in petroleum
reservoirs. The past studies have usually been conducted in
Hele-Shaw cells or in microchannels to approximate the flow
in petroleum reservoirs [2,3].

Viscous fingering has been studied extensively mainly to
predict the thickness of the film deposited on the channel wall.
The phenomenon has been well documented in this regard
and some correlations have been developed for film thickness
prediction [4–8]. However, the thickness of the finger may not
always match the predicted value and fluctuations in the finger
width have been reported [9]. Perturbations at the interface
were observed both in experiments [10–12] and in numerical
simulations [13,14]. The stability of the viscous finger is also
an important phenomenon to study. An unstable finger breaks
up into droplets whereas a stable finger remains continuous
and keeps growing [3].

In this work, we studied the displacement of viscous sili-
cone oil by water in a microchannel. The focus of the previous
studies has been more on the motion of a viscous finger front. In
the present work, we continued the immiscible displacement
experiments until the oil was completely displaced and the
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water occupied the entire channel. After the water finger
had reached the channel outlet, the flow regime changed
from fingering to core-annular flow where the water core was
surrounded by an oil film. Although initially the flow regime
was symmetric, the displacing water core shifted toward one
side of a channel and asymmetric perturbations were observed
at the interface with time. To the best of our knowledge,
such flow behavior has not been reported in previous works.
Under these experimental conditions, we have not observed
any breakup and droplet formation during injection of water
in the core. We will also discuss the stability of the displacing
fluid based on nonlinear and linear stability analyses.

II. EXPERIMENTAL DETAILS

A. Materials

Silicone oil from Sigma Aldrich’s 200 fluid series and
deionized water were used as the working fluids. The air-
oil surface tension and oil-water interfacial tension were
21 mN/m and 43 mN/m at 20 ◦C, respectively. The densities
of the two fluids were close ( ρwater

ρoil
= 1.03 at 20 ◦C), while the

oil was highly viscous compared to water ( μwater

μoil
= 0.0012 at

20 ◦C).
A circular fused silica microchannel (Polymicro Technolo-

gies) used in the experiments was 7.0 cm long and had an
inner diameter of 250 μm. Both fluids were wetting and the
contact angles for the oil-channel and water-channel were 25◦
and 30◦, respectively. A schematic diagram of the apparatus is
given in Fig. 1.

B. Experimental facility

The microchannel was first filled with silicone oil and then
only water was injected into the microchannel to displace the
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FIG. 1. A schematic of the experimental apparatus.

oil. As shown in Fig. 1, a pneumatic pump was used to inject
water into a previously oil-saturated microchannel. The pump
consisted of a nitrogen gas cylinder and a cylindrical stainless
steel water reservoir. The reservoir was partially filled with
water and was pressurized at the top by using a compressed
nitrogen gas for water injection into the microchannel. A
pressure transducer measured the pressure at the microchannel
inlet and the channel outlet was open to the atmosphere.

A video camera was used to capture images of the water-
silicone oil flow. To minimize the entrance and exit effects on
the flow patterns observed, all images were captured in the
middle of the channel at 140 diameters (3.5 cm) downstream
of the channel inlet. Since a circular microchannel was used,
optical correction was required to capture undistorted and clear
images of the fluid interface near the channel wall. To this end,
the microchannel was placed between two flat glass plates and
the gap between the two plates was filled with the same silicone
oil to best match the refractive index of the microchannel [15].

III. FLOW BEHAVIOR

A. Continuous water injection

Figure 2 shows the flow regimes observed in one experi-
ment. All the images were captured in the middle of the channel
at different times from the start of the water injection. The
channel was first filled with oil [Fig. 2(a)], and then water was
injected into the channel. The water finger displaced the oil at
the center of the microchannel and left a continuous oil film
on the channel wall [Fig. 2(b)].

Here, we define the initial capillary, Reynolds, and Weber
numbers of the water phase based on the actual velocity of the
water finger as follows:

Cawi = μwVwi

σ
, (1)

Rewi = ρwVwiD

μw

, (2)

Wewi = ρwV 2
wiD

σ
, (3)

where μw is the viscosity of the water, Vwi is the velocity of the
finger nose at the center of the channel, σ is the liquid-liquid
interfacial tension, ρw is the density of the water, and D is the
channel diameter. Table I gives the initial capillary, Reynolds,
and Weber numbers of the water phase for the experiments

FIG. 2. (Color online) Flow patterns at Cawi = 4.8 × 10−5 and
Caw = 9 × 10−3 observed in the middle of the channel (top view) at
different times from the start of the water injection: (a) the channel
filled with stagnant oil; (b) the water finger displacing the oil at
the core; (c) the oil film was left evenly on the channel wall and
the oil-water interface was smooth; (d-1) symmetric perturbations
formed at the interface; (d-2) the wavelength increased; (e) the water
core shifted from the center and the flow became asymmetric; (f) the
water core touched one side of the channel; (g) the oil was completely
displaced.
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TABLE I. Test conditions.

Observations in the middle of the channel

Water finger Start of asymmetric
Cawi Rewi Wewi Pi (kPa) Caw Rew Wew first observed (s) Start of perturbations (s) behavior (s)

2.0 × 10−6 0.02 4.1 × 10−8 103 8.3 × 10−4 8.3 0.007 714 Not observed Not observed
3.6 × 10−5 0.38 1.4 × 10−5 112 5.4 × 10−3 55 0.3 91 145 183
4.8 × 10−5 0.48 2.3 × 10−5 120 9.0 × 10−3 91 0.8 50 82 103
1.7 × 10−4 1.7 3.0 × 10−4 163 3.4 × 10−2 339 11.5 11.5 16 18
3.6 × 10−4 3.6 1.3 × 10−3 225 6.7 × 10−2 672 45 5.2 6.8 7.1−10.8a

5.0 × 10−4 5.1 2.6 × 10−3 297 1.0 × 10−1 1001 100 2.3 3.3 3.3−88a

aDuring these time periods, both symmetric and asymmetric perturbations were observed.

carried out in this study. The results presented in Fig. 2 are for
Cawi = 4.8 × 10−5.

The unperturbed water core was thinner at higher water
flow rates. This is consistent with the Bretherton scaling that
predicts the oil film thickness to increase with the increased
speed of the finger nose [4]. As shown in Fig. 3, the initial
dimensionless radius of the water core, a0, can be predicted by
the semiempirical correlation of Eq. (4) suggested in Ref. [7]
with 3% error. The radius of the water core was divided by the
channel radius, R, to be made dimensionless,

ao = 1 − 1.34 × ka
2/3
i

1 + (
2.5 × 1.34 × ka

2/3
i

) . (4)

Here, kai is the capillary number of the form μoVwi

σ
where

μo is the viscosity of the displaced fluid, i.e., oil. Under the
conditions tested in this study, the dimensionless ao varied
between 0.7 and 1. The minimum film thickness we were able
to determine from the images was 3 μm and films thinner
than this limit were not visually observable. At the lowest flow
rate tested in this work at Cawi = 2.0 × 10−6, the water core

FIG. 3. Comparison of the measured initial water core radius with
Eq. (4).

occupied the entire channel and the film left on the wall was
too thin to be observed (Fig. 4). To reach such a low water
flow rate, the nitrogen gas cylinder was removed from the
pneumatic pump and, thus, the only pressure applied for water
injection was hydrostatic, created by the height of the water
column in the reservoir and the water flowed into the channel
by gravity.

The resistance against the water flow was higher at the
beginning of the experiments while the water displaced the
oil at the center of the channel [Fig. 2(b)] which resulted in
an initially low water velocity. This is primarily because the
water had to displace a column of highly viscous oil out of the
channel. The resistance against the flow was decreasing while
the water finger was approaching the channel outlet. Figure 5
shows the time variation of the pressure at the channel inlet
under different test conditions. The initial sharp decrease in the
pressure drop, which was more noticeable at higher flow rates,
was due to the oil displacement by the finger nose at the center
of the channel. After the water finger reached the channel
outlet and formed a fully core-annular flow, the pressure drop
changed more smoothly with time. Since the resistance against
the flow decreased, the water flow rate increased which resulted
in higher capillary, Reynolds, and Weber numbers. Here, we
define a second group of dimensionless numbers for the water
phase based on the average superficial velocity of the water,
V̄w, after the finger nose reached the channel exit:

Caw = μwV̄w

σ
, (5)

Rew = ρwV̄wD

μw

, (6)

Wew = ρwV̄ 2
wD

σ
, (7)

FIG. 4. The water finger at Cawi = 2.0 × 10−6 observed in the
middle of the channel, at 714 s after the start of the water injection.
The oil film on the channel wall is too thin to be observed.
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FIG. 5. Variation of the pressure at the channel inlet with time.

Assuming that the oil velocity is negligible compared to
the water velocity, the average superficial velocity of the water
can be calculated by dividing the mixture of the oil and water
flow rate, Qm, by the channel cross-sectional area:

V̄w = Qm

1
4πD2

. (8)

The results presented in Fig. 2 were at Caw = 9.0 × 10−3.
As given in Table I, the values of Caw are up to three orders of
magnitude higher than those of Cawi .

At first, the water core was uniform in radius [Fig. 2(c)],
but perturbations started to grow at the oil-water interface with
time and formed travelling waves at the interface [Fig. 2(d)].
Generally, the formation of the interfacial perturbations took
time. Depending on the channel length and the experimental
condition, the interfacial waves could appear either during the
immiscible displacement or in the core-annular flow regime.
In this work, under the experimental conditions we tested with
a 7-cm microchannel, the initial symmetric perturbations were
observed in the core-annular flow regime.

The initiation and growth of perturbations took place earlier
and faster, respectively, at higher water flow rates. Also, the
speed at which the waves travelled along the oil-water interface
increased with an increase in the water flow rate (Table II).
The maximum wave speed we were able to measure by image
analyses was 140 mm/s. Also, the maximum wavelength that

FIG. 6. The water core fluctuation between the sides of the
channel at Caw = 3.4 × 10−2.

could be measured was 5.6 mm ( λ
R

= 45). The wavelengths
and wave speeds at Caw = 6.7 × 10−2 and Caw = 10−1 were
higher than this limit and are not reported in Table II.

In each experiment, the interfacial wavelength increased
with time. The first wavelength, λa , and also the last sym-
metric wavelength observed at the interface λz, are shown
in Figs. 2(d-1) and 2(d-2). The wave speed also increased
with time (Table II). The increases in the wavelength and
wave speed could be due to the increase in the water flow
rate with time. This observation is in agreement with the
results of the nonlinear stability analysis that will be presented
later.

It should be noted that all descriptions of the flow pattern
given are based on the two-dimensional images captured
from the system. Although the initiation of disturbances was
axially symmetric [Fig. 2(d)], these perturbations did not
grow uniformly and the oil-water interface became asymmetric
[Fig. 2(e)]. The time at which the system became asymmetric
in each experiment is given in Table I. Also, the water core
tended to shift toward one side of the channel and leave a
thicker oil film on the other side. At low water flow rates
(Cawi � 4.8 × 10−5), the water core remained closer to one
side, while at high flow (Cawi � 1.7 × 10−4) rates, the core
position fluctuated between the sides of the channel (Fig. 6).

TABLE II. Comparison of the initial (λa) and last symmetric (λz) wavelengths and wave speed with the results of the nonlinear (λf 1) and
linear (λf 2) stability analyses.

Initial wave formed Last symmetric wave observed

Cawi Caw
λz

λa
Times (s) Speed (m/s) λa

λf 1

a λa

λf 2
Times (s) Speed (m/s) λz

λf 1

b λz

λf 2

0.03 4.5 1.09 162 9.4 × 10−5 0.91 0.91 193 1.02 × 10−4 0.93 1.02
0.04 7.5 1.84 95.5 2.5 × 10−4 0.71 0.71 102 5.43 × 10−4 1.13 1.31
0.14 28.2 2.37 16.7 3.4 × 10−3 0.83 0.83 18.2 7.95 × 10−3 3.60

aλf 1 is calculated with the initial velocities in the immiscible displacement flow regime.
bλf 1 is calculated with the values of a0 given by Eq. (4) and velocities after the finger reached the channel exit.
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In each experiment, we looked at the channel from a fixed
angle either from the side or top. In all the experiments, as
long as the oil film was thick enough to be observed, the flow
became asymmetric with time. However, since simultaneous
observations of flow from different angles could not be made,
it is theoretically possible that the flow would have become
asymmetric in the plane of our observation while it remained
symmetric in another plane.

The asymmetric flow behavior was not due to gravity since
the top and side views of the flow exhibited similar behavior.
The low value of Bond number (Bo = 4 × 10−4) defined
below confirms that the gravity was negligible compared to
other forces in the present system:

Bo = �ρgD2

σ
, (9)

where �ρ is the difference between the densities of the two
fluids and g is the gravitational acceleration.

Once the water core became off-center, the drag forces
were not uniform all around the interface and this could result
in the asymmetric nature of the waves. Figure 7 shows how
symmetric deformations at the interface were dragged and
sheared at different rates and became asymmetric. Also, the
interface may become wavy due to shear instability at high
water flow rates (Rew � 95) [15]. Once the velocity difference
across the interface becomes sufficiently large, the interface
can become unstable and wavy.

Understanding the asymmetric flow behavior of the water
core requires further experimental and numerical investiga-
tions. However, the shift of the water core toward one side
of the channel might be due to drag force minimization. As
experimentally shown in Ref. [16], the drag force on a solid
replica of a Taylor bubble that was placed in a liquid stream in
a vertical tube decreased when the bubble was displaced from
the tube axis. Similarly, in the current experiments, the shift of

FIG. 7. (Color online) Flow patterns at Cawi = 4.8 × 10−5 and
Caw = 9 × 10−3, symmetric flow became asymmetric.

FIG. 8. (Color online) Variation of the maximum water core
diameter with time.

the water core from the center could decrease the overall drag
force acting on the interface.

The water core displaced the oil by pushing it and dragging
it at the oil-water interface. The oil film thickness diminished
and the water core diameter increased with time. Figure 8
shows how the maximum water core diameter, dmax, changed
with time under different test conditions [dmax is shown on
Fig. 2(d-1) as an example]. At the beginning of the experiments
when water was displacing a large oil volume in the core,
the water finger was initially thicker at lower flow rates and
the finger nose displaced the oil over a larger cross section.
However, at higher flow rates the water finger displaced the oil
over a smaller cross section but at a higher rate. Also, the drag
force at the lateral oil-water interface was higher at higher flow
rates and more oil was dragged at the interface. As shown in
Fig. 8, the complete displacement of the oil occurred faster at
the higher water flow rates.

To show how the oil film thickness changed with time, the
maximum film thicknesses on both sides [h1,max and h2,max

where h1,max � h2,max as shown in Figs. 2(d-1) and 2(e)] were
measured and the results are presented in Fig. 9. Initially, when
the water core was at the center of the channel, h1,max and h2,max

were equal. The maximum film thickness increased when the
perturbations formed at the interface [compare Figs. 2(c) with
2(d)]. Both h1,max and h2,max then decreased while the oil
was being dragged and pushed out by the water. Once the
water core was shifted from the center, it left a thinner oil
film on one side and the values of h1,max and h2,max began
to differ [Fig. 2(e)]. As shown in Fig. 9, the difference was
larger at lower water flow rates, implying that the eccentric
flow behavior became more noticeable at lower water flow
rates.

The wave height decreased faster on the thinner oil film
[Fig. 2(e)] and the water core first touched the side of the
channel where the film was thinner [Fig. 2(f)]. The wave height
on the thicker oil film also decreased with time while the film
was dragged. Finally, the water completely displaced the oil
layer and occupied the entire microchannel [Fig. 2(g)].
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FIG. 9. (Color online) Variation of the maximum oil film thick-
nesses on opposite sides of the channel with time.

At all the flow rates tested in this study, as long as the water
was continuously injected into the channel, the water core was
always stable. No water core breakup was observed and the
water always formed a continuous phase. However, in similar
experiments carried out in Ref. [3] at 2.9 × 10−6 � Cawi �
4.1 × 10−5 in a microchannel with an I.D. of 54 μm, the water
core breakup always took place. Generally, the interfacial
forces competed with inertia to make the water core unstable
[15]. In core-annular flows, the interfacial tension forces
tend to minimize the energy by breaking the water core into
droplets and decreasing the interfacial area between the two
fluids. These forces form symmetric interfacial deformations
[Fig. 2(d-1)] and try to pinch the water core. On the other hand,

FIG. 10. Breakup of a stable water core into droplets after stop-
ping the flow: (a) asymmetric continuous flow at Caw = 3.2 × 10−2;
(b) formation of symmetric perturbations at 180 s after the flow was
stopped; (c) breakup of a water core at 740 s after the flow was
stopped.

the inertia tended to keep the water core continuous. In this
work, while the oil was being displaced, the water flow rate
and inertia and, consequently, the capillary number increased
with time. When the perturbations appeared at the interface,
the increase in the inertia was sufficiently large to keep the
water core stable and also made the system asymmetric. This
indicates that inertia can have an important effect on the flow
stability and also morphology [17,18]. However, at low values
of Cawi in Ref. [3], the interfacial forces were dominant and
the water core breakup occurred.

B. Stopping the water injection

Generally, the system may remain stable while the water
flow is maintained, but if the flow is stopped, the water core
breakup can occur due to capillary instability [19]. In one
experiment, after the observation of the asymmetric flow
behavior in the system, we stopped the water flow rate.
The symmetric perturbations appeared again and then the
water core broke up, as shown in Fig. 10. This suggests
that the asymmetric behavior is one of the characteristics of
core-annular flow caused by inertia. Although the force due
to interfacial tension was always present in the system, the
inertia kept the water core continuous as previously reported
in Ref. [15]. Once the water flow was stopped, however, there
was no inertia to resist the interfacial tension force, and the
symmetric deformations of the oil-water interface caused by
interfacial tension finally broke up the water core into droplets.
It is also noted that the oil film surrounding the water core needs
to be sufficiently thick so the breakup of the water core can
take place. We will discuss the stability of the system in the
next section.

IV. STABILITY ANALYSIS

Here, we perform a nonlinear stability analysis on core-
annular flow to predict the wavelength of perturbations formed
at the oil-water interface. We use a similar approach as
Ref. [20] to make the equations dimensionless. The following
scales were used: channel radius, R, as the characteristic
length, W ∗ =

√
σ

ρoR
as characteristic velocity, R

W ∗ as char-

acteristic time, and P ∗ = ρoW
∗2 as characteristic pressure.
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Generally, in the present notation, we use V as the velocity and
U as the dimensionless velocity. Also, V̄ and Ū are the average
velocities. The dimensionless Navier-Stokes equations for
both phases are

l

(
∂Uw

∂t
+ Uw

∂Uw

∂z

)
= −dPw

dz
+ m

Re∗
1

r

∂

∂r

(
r
∂Uw

∂r

)
,

(10)
∂Uo

∂t
+ Uo

∂Uo

∂z
= −dPo

dz
+ 1

Re∗
1

r

∂

∂r

(
r
∂Uo

∂r

)
, (11)

where subscripts w and o represent water and oil, respectively,
z is the dimensionless coordinate in the flow direction, U is the
dimensionless z component of velocity, P is the dimensionless
pressure, Re∗ is the dimensionless Reynolds number of the
form ρoW

∗R
μo

, l = ρw

ρo
is the density ratio, m = μw

μo
is the viscosity

ratio, t is the dimensionless time, and r is the dimensionless
radius (Re∗ = 0.007, l = 1.03, m = 0.0012 in this work).

The notation used in this analysis is for the case where the
more viscous fluid is the outer fluid and the value of m is less
than unity. If the inner fluid is more viscous, the subscripts w

and o can be interchanged in Eqs. (10) and (11). Also, m, l,
and Re∗ can be replaced with m̂, l̂, and Rê∗, where m̂ = 1

m
,

l̂ = 1
l
, and Rê∗ = ρwW ∗R

μw
[20].

The velocity profiles of the two fluids in laminar core-
annular flow are given by

Uw = Ūw

(a2 − r2) + m(1 − a2)
a2

2 + m(1 − a2)
, 0 � r � a, (12)

Uo = Ūo

r2 − 1
1
2 (a2 − 1)

, a � r � 1, (13)

where Ūw and Ūo are the dimensionless cross section-averaged
water and oil velocities, respectively, and a is the dimension-
less radius of the water core, which could be a function of
time. At the interface, the oil and water velocities are equal,
i.e., Uw = Uo at r = a. Since Eqs. (12) and (13) satisfy this
condition, one can find the relation between the averaged oil
and water velocities, Ūw and Ūo.

We substitute Eqs. (12) and (13) into Eqs. (10) and (11),
respectively, multiply by rdr, and then integrate Eq. (10) from
r = 0 to r = a and Eq. (11) from r = a to r = 1. Integrating
these equations allows us to work with the average velocities
instead of velocity profiles [21]. This makes the analysis
simpler since the oil and water velocities are functions of r , z,
and t while the average velocities are only functions of z and
t . The integrated Navier-Stokes equations are

l
∂

∂t

(
Ūw

a2

2

)
+ 1

2
l

∂

∂z

(
Ū 2

w

a2

2

)

= −dPw

dz

(
a2

2

)
+ m

Re∗ Ūw

(
−2a2

m(1 − a2) + a2

2

)
, (14)

∂

∂t

(
Ūo

1 − a2

2

)
+ 1

2

∂

∂z

(
Ū 2

o

1 − a2

2

)

= −dPo

dz

(
1 − a2

2

)
− 4

Re∗ Ūo, (15)

The mass conservation equations for the two fluids are

− d

dz
(Ūwa2) = d

dt
(a2), (16)

d

dz
Ūo(1 − a2) = d

dt
(a2), (17)

Considering only the z-dependent perturbations, we use the
perturbations of the form

a′ = aoε exp(ωt + ikz), (18)

Ū ′
w = ευw exp(ωt + ikz), (19)

Ū ′
o = ευo exp(ωt + ikz), (20)

where ao is the radius of the unperturbed water core made
dimensionless by the channel radius, ω is the dimensionless
growth rate, k = 2π

λ
is the dimensionless wave number, and

λ is the dimensionless wavelength. The primes denote the
perturbations. υw and υo can be found in terms of ω, ao, and λ

by inserting Eqs. (18)–(20) into Eqs. (16) and (17).
Also, the perturbed dimensionless normal stresses must

balance at the interface,

∂

∂z
(P ′

w − P ′
o) = − 1

We∗
∂

∂z

(
a′

a2
o

+ ∂2a′

∂z2

)
, (21)

where We∗ is the Weber number of the form ρoW
∗2

R

σ
equal

to 1. Equation (21) couples Eqs. (14) and (15) since it gives
the relation between the perturbations in pressures of the two
fluids. After introducing the perturbations into Eqs. (14), (15),
and (21), Eqs. (14) and (15) can be combined into a single
equation by using Eq. (21). Ignoring the second- and higher-
order perturbation terms and also all the imaginary terms, this
single equation results in the following dispersion relation for
the growth rate:

Aω2 + Bω + C1 = 0, (22)

where the constants A, B, and C1 are

A = 2

(
l + a2

o

1 − a2
o

)
, (23)

B = 8

Re∗

[
2a2

o(
1 − a2

o

)2 + m(
m

(
1 − a2

o

) + a2
o

2

)
]

, (24)

C1 = ao

We∗ k4 −
(

1

aoWe∗ − lŪ 2
w − a2

o

1 − a2
o

Ū 2
o

)
k2, (25)

or

C1 = 1

We∗

[
aok

4 −
(

1

ao

− 1

2
Wew − a2

o

2
(
1 − a2

o

)Weo

)
k2

]
.

(26)

Here, We∗ = ρoW
∗2

R

σ
= 1 and Wew = ρwV

2
wD

σ
and Weo =

ρoV
2
oD

σ
are the Weber numbers calculated with the proper-

ties and average velocities of water and oil, V w and V o,
respectively.
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Between the two roots of Eq. (22), we choose the one that
gives the asymptotic solution where ω goes to zero when k

goes to zero. The solution to Eq. (22) is

ω = − B

2A
+

√(
B

2A

)2

− C1

A
. (27)

The critical wavelength, λc1, at which the growth rate is
zero and the fastest-growing wavelength, λf 1, at which the
growth rate is maximum can be given by Eqs. (28) and (29):

λc1 = 2πao

(
1√

1 − ao

2

(
Wew + Weo

a2
o

1−a2
o

)
)

, (28)

λf 1 = 2
√

2πao

(
1√

1 − ao

2

(
Wew + Weo

a2
o

1−a2
o

)
)

. (29)

In the limit of low Re number, the Stokes approximation
can be used to describe the system [22,23]. In Stokes equations
the inertia terms, i.e., the second terms in Eqs. (10) and (11),
are neglected and the analysis becomes linear. If the stability
analysis is performed using the Stokes equations, the following
dispersion relation is obtained for the core-annular flow:

Aω2 + Bω + C2 = 0, (30)

where the constant C2 is

C2 = 1

We∗

[
aok

4 −
(

1

ao

)
k2

]
. (31)

From Eq. (30), the following critical and also the fastest
growing wavelengths can be found in the limit of low Re
number where inertia is negligible:

λc2 = 2πao (32)

λf 2 = 2
√

2πao (33)

The results of the linear analysis given by Eqs. (32) and (33)
are in agreement with the results of the classical theory of the
capillary instability of a cylindrical interface [24]. This critical
wavelength is also the same as the one given in the analysis
of viscous potential flow presented in Ref. [20]. Also, these
results are in agreement with the results of previous analyses of
core-annular flows in channels [25]. In Ref. [3], for the system
of a thin film, it was shown that the fastest-growing wavelength
would differ from Eq. (33) by a factor of 1√

1+CV
, where CV is

the ratio of van der Waals forces to interfacial tension forces.
Also, as experimentally shown in Ref. [12], when the effect of
gravity becomes considerable, the fastest-growing wavelength
would differ from Eq. (33) by a factor of 1√

1−2.5Bo2
.

Here we compare the results of the nonlinear stability
analysis that considers the effect of inertia with those of the
linear analysis in which the effect of inertia is neglected. In the
linear analysis, the growth rate is a function of the unperturbed
water core radius, Re number (Re∗), the density and viscosity
ratios, and the wave number [Eq. (30)]. In the nonlinear
analysis, the growth rate is a function of all these parameters as
well as the oil and water Weber numbers [Eq. (22)]. Figure 11
compares the stability of the present system predicted by the
two analyses. The growth rate predicted by the linear analysis,

FIG. 11. (Color online) Dimensionless growth rate, ω, vs. di-
mensionless wave number, k = 2π

λ
, for l = 1.03, ao = 0.8, m =

0.0012, Re∗ = 0.007, Wew = 0.8, and Weo = 3 × 10−5. The system
predicted by the nonlinear analysis is more stable than the one
predicted by the linear analysis.

in which the effect of inertia is neglected, is positive over
a wider range of wave numbers. Also, for a given unstable
wavelength, the growth rate of the linear analysis is higher than
that of the nonlinear analysis. This indicates that considering
the inertia effects makes the system more stable, which is
in agreement with the experimental results. Generally, inertia
tends to keep the water core continuous [15]. As mentioned
earlier, under the experimental conditions tested in this study,
as long as the water was injected into the channel, inertia kept
the water core stable. The water core breakup took place only
when the water flow was stopped.

Based on the results of the linear analysis [Eqs. (32)
and (33)], the critical and the fastest-growing wavelengths
are only a function of water core radius while in the nonlinear
analysis [Eqs. (28) and (29)], these wavelengths are functions
of the oil and water Weber numbers as well. The wavelengths
predicted by the nonlinear analysis are higher by a factor of

1√
1− ao

2 (Wew+Weo
a2
o

1−a2
o

)
compared to the values given by the linear

analysis. This is in qualitative agreement with the experimental
results where the interfacial wavelengths increased with an
increase in inertia.

A quantitative comparison between the results of Eqs. (29)
and (33) can also be made. Recalling that the relation between
the average oil and water velocities is given by Eqs. (12) and
(13) at the interface, two sets of Weber numbers for the oil
and water phases were calculated for each experiment: the
initial Weber numbers based on the velocity of the water
finger in the midsection of the channel and also the Weber
numbers based on the average water and oil velocities after the
water finger reached the channel outlet. For the experimental
conditions tested in this study, the factor, 1√

1− ao
2 (Wew+Weo

a2
o

1−a2
o

)
,

in Eq. (29) calculated based on the initial values of the Weber
numbers was very close to unity with a difference of less than
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FIG. 12. (Color online) Variation of the fastest-growing wave-
length with water Weber number; comparisons with the results of the
nonlinear analysis,

λf 1

ao
[Eq. (29)] and linear analysis,

λf 2

ao
[Eq. (33)].

0.001. In other words, both analyses predict the same results
in the limit of low initial Weber numbers. In Table III, we also
compared the predictions of our nonlinear and linear analyses
with the experimental results presented in Ref. [3] for the
immiscible displacement of oil by water in a microchannel. In
the limit of low velocities tested in Ref. [3] (Ca < 0.022), both
analyses predicted the same values of interfacial wavelengths
with a maximum difference of 0.002%. Also, in Fig. 12, the
results of the linear and nonlinear analyses for the system
of oil and water used in this study are compared with the
last symmetric wavelengths observed in the experiments.
Additional experimental results were obtained in the limit of
Wew < 3 for comparison in Fig. 12. As shown in this figure, the
results of both analyses give the same values of wavelengths in
the limit of low Weber numbers (Wew < 0.25). This indicates
that ignoring the inertia terms is a valid assumption for systems
with low Weber numbers.

Although the nonlinear and linear analyses provide similar
results for the interfacial wavelengths in the limit of low flow
rates, as given in Table II, the results of the two analyses differ
when the wavelength in Eq. (29) is calculated with the Weber
numbers based on the water and oil velocities after the water
finger reached the channel outlet. In the case of linear analysis,
the ratio of the last symmetric wavelengths in experiments to
the one given by the analysis, i.e., λz

λf 2
, is more than unity,

which indicates that the linear analysis underestimates the

TABLE III. Comparison between the results of the nonlinear (λf 1)
and linear stability (λf 2) analyses with the experimental results (λexp .)
presented in Ref. [3] for immiscible displacement of oil by water in
a circular microchannel with a 54-μm inner diameter.

Ca μw

μ0

λexp .

λf 1

λexp .

λf 2

0.022 0.006 1.005 1.005
0.01 0.013 0.997 0.997
0.0024 0.053 1.083 1.083

wavelength when the effect of inertia is not negligible. In the
case of nonlinear analysis, as shown in Fig. 12, with an increase
in the water velocity and, consequently, the Weber number,
the nonlinear analysis predicts higher wavelengths compared
to the linear analysis (Wew > 0.25). With a further increase
in the Weber number (Wew > 3), the wavelength predicted
by the nonlinear analysis approaches infinity which shows
that averaging the inertial terms by integrating Eqs. (10) and
(11) across the channel resulted in an overestimation of the
fastest-growing wavelength at the interface in this limit.

V. CONCLUSION

The immiscible displacement of a viscous oil by water in a
circular microchannel was investigated. We made flow pattern
observations based on the two-dimensional images captured
in the middle of the channel. First, a water finger flowed as
a core with an initially low capillary number, Cai , and left
an even oil film all around the channel wall. The oil-water
interface was initially smooth, but symmetric perturbations
formed at the lateral oil-water interface with time. While the
oil was being displaced at the core and the water finger was
approaching the channel outlet, the flow resistance decreased.
This resulted in a decrease in the pressure drop inside the
channel and an increase in the flow rate such that the capillary
number increased from Cai to Ca by up to three orders of
magnitude. Also, the interfacial wavelength and wave speed
increased with the increase in the water flow rate. The water
core then shifted from the center of the channel with time and
the waves at the interface became asymmetric. In the range
of the capillary number studied in this work (8.3 × 10−4 �
Ca � 10−1), water core breakup was not observed while water
was continuously injected into the channel. However, when the
water injection was stopped, the symmetric perturbations on
the oil-water interface appeared again and broke up the water
core into droplets.

We also performed nonlinear and linear stability analyses
to predict the critical and fastest-growing wavelengths for a
system of core annular flow. From these analyses, dispersion
relations were derived analytically giving the growth rate of
perturbations as a function of the viscosity and density ratios,
Reynolds number (Re∗), the water core radius as well as the oil
and water Weber numbers. The critical and the fastest-growing
wavelengths predicted by the linear analysis are only a function
of the water core radius while the wavelengths given by the
nonlinear analysis are a function of the oil and water Weber
numbers as well. The wavelengths predicted by the nonlinear
analysis were higher than those predicted by the linear analysis.
This is in qualitative agreement with the experimental results
where the interfacial wavelength increased with an increase in
inertia. A comparison between the results of the two analyses
shows that the system becomes more stable when the effect of
inertia is considered.

Since the stability of the system has been predicted to be a
function of density and viscosity ratios, interfacial tension (the
characteristic velocity and consequently the Re∗ are functions
of interfacial tension), and water core radius, a set of new
experiments with systematic variations of fluid properties and
channel radius can be performed and the results can be com-
pared with those given by the stability analysis in future work.
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