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In this work, a pseudocompressible approximation relevant for turbulent mixing flows encountered in shock
tubes is derived. The asymptotic analysis used for this purpose puts forward the role played by four dimensionless
numbers on the flow compressibility, namely, the turbulent, deformation, stratification, and buoyancy force Mach
numbers. The existence of rapid distortion and diffusion-dissipation regimes is also accounted for in the analysis.
Some consequences of the derived pseudocompressible approximation on statistical turbulence models are
discussed. In particular, the evolutions of the density variance and flux are examined, as well as the turbulent
transport of energy. The different aspects of this study are assessed by performing a direct numerical simulation
of a shock tube flow configuration.
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I. INTRODUCTION

The asymptotic analysis of low-Mach-number flows, for
which the instantaneous fluid velocity is small compared to the
sound speed, plays a significant role in a wide variety of fields,
ranging from geophysical flows (ocean and atmosphere [1–3])
to engine combustion (aeronautics and automotive industry
[4]), supernova explosions [5–7], or inertial confinement
fusion experiments [8]. The main purpose of these asymptotic
analyses is to formulate an approximation of the real flow
that allows one to filter out acoustical phenomena. Depending
on their field of application and their range of validity, these
approximations are referred to in several ways: low-Mach,
anelastic, quasicompressible or pseudocompressible, quasi-
isobaric, Boussinesq, Boussinesq-Oberbeck, etc. We will
hereafter use pseudocompressible as a generic term referring
to all of these approximations.

Pseudocompressible approximations can have very differ-
ent expressions depending on the context in which they are
applied. However, they usually share two common points.
First, the pressure fluctuations relative to a given deterministic
reference state become negligible with respect to velocity fluc-
tuations and/or fluctuations of other thermodynamic quantities.
In contrast, the fluctuating pressure gradient plays an important
role and cannot be neglected. Second, the velocity divergence
can be related to the evolution of the said deterministic
reference state. This relationship allows one to derive from
the momentum equation a Poisson equation for the fluctuating
pressure.

These properties of pseudocompressible approximations
have a deep impact on the formulation of statistical turbulence
models. For instance, most closures for the fluctuating pressure
gradient used in second order [9] or probability density
function models [10,11] are derived by using the previously
mentioned Poisson equation. Furthermore, for variable density
turbulent flows, the relationship to the velocity divergence
allows for an explicit treatment of some compressibility
effects. These effects can then be taken into account in a model
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without any additional closure [12,13]. Finally, as the pressure
fluctuations are negligible, the derivation of a statistical model
only requires the description of the statistics of the remaining
thermodynamical quantities (e.g., density and concentrations)
to correctly predict the turbulent flow even if it is compressible
and density variable.

The consequences of pseudocompressible approximations
on statistical turbulence models have been studied in detail
in many fields [11–15]. However, it seems that no analysis
has been dedicated to variable density turbulent mixing
flows encountered in shock tubes. Andronov et al. [16]
explicitly used a pseudo-compressible-like hypothesis when
they derived their second-order model. Nevertheless, their
approach remains semiempirical and does not clarify the origin
and the validity of their approximations.

The primary reason for this lack of investigation comes from
some specificities of shock tube flows that are unaccounted
for in usual pseudocompressible approximations. First, the
reference state about which the asymptotic analysis is derived
is neither static [1] nor obeying a pseudocompressible ap-
proximation [6]: It is strongly compressible and depends on
space and time. Second, density fluctuations due to species
mixing as well as polytropic index fluctuations must be
taken into account. The amplitudes of these fluctuations are
non-negligible with respect to their mean values. Third, the
fluids are not necessarily perfect gases and their equations
of state play a crucial role [17]. Finally, the compression or
rarefaction waves traveling in shock tube flows can induce
regimes of rapidly distorted turbulence (RDT) [18]. This point
is important since it has been shown [19–22] that mean flow
deformations in the RDT regime modify the compressibility
properties of the flow and may invalidate pseudocompressible
approximations. In shock tubes, the RDT regime results from
the action of baroclinic forces rather than from mean flow
deformations. The effect of these forces in the RDT regime on
the pseudocompressible approximation and its validity does
not seem to have been thoroughly studied and requires some
precision.

Thus, the purpose of this work is first to derive a pseu-
docompressible approximation relevant to turbulent mixing
flows encountered in shock tubes, that is to say, accounting
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for the specificities described above, and then to examine the
consequences of this approximation on some properties of
statistical turbulence models used for predicting shock tube
flows. To this aim, we first proceed to an asymptotic analysis
based on the evolutions of the fluctuations of velocity, density,
and pressure. From this analysis, four dimensionless numbers
are shown to play a role in the flow compressibility: the
turbulent Mach number, the deformation Mach number, the
stratification Mach number, and the buoyancy force Mach
number. We show that the asymptotic developments are
different depending on whether or not the flow evolves under
RDT conditions. Indeed, the validity conditions and the order
of the fluctuating pressure are not the same depending on
the considered regime. Despite these differences, a single
expression of the fluctuating velocity divergence that is valid
in the pseudocompressible limit for both regimes.

We then illustrate the implications of the pseudocompress-
ible approximation on turbulence modeling by considering
second-order one-point turbulence models dedicated to shock
tube flows [23–26]. We show that the pseudocompressible
approximation allows one to specify unambiguously some
production terms appearing in the evolution equations of the
density variance and density flux of these models. In addition,
the pseudocompressible approximation also leads to a direct
closure of the turbulent transport term appearing in the mean
energy equation.

These results are evaluated by comparison with a numerical
simulation of a shock tube flow. This simulation includes
a diffusion-dissipation phase and a countergradient transport
phase resulting from the interaction with a rarefaction wave.

II. FLOW DESCRIPTION

A. Instantaneous equations

We consider a flow state that is defined by its density
ρ, velocity U , internal energy e, and species mass fractions
{Yα, α = 1, . . . ,Ns}. These variables evolve according to
Navier-Stokes equations [27]

∂ρ

∂t
+ Uj

∂ρ

∂xj

= −ρ∇ · U, (1)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= − 1

ρ

∂P

∂xi

− 1

ρ

∂σij

∂xj

, (2)

∂e

∂t
+ Uj

∂e

∂xj

= ε − P

ρ
∇ · U − 1

ρ

∂Qj

∂xj

, (3)

∂Yα

∂t
+ Uj

∂Yα

∂xj

= − 1

ρ

∂Fα
j

∂xj

, (4)

where P is the pressure, σij is the viscosity tensor, Fα
j

is the molecular diffusion flux of scalar α, and Qj is the
molecular heat flux. The viscous dissipation rate ε is defined as
ρε = −σijSji , where Sij is the instantaneous strain-rate tensor
Sij = (∂Ui/∂xj + ∂Uj/∂xi)/2. For the sake of conciseness,
the velocity divergence ∂Uj/∂xj is denoted by ∇ · U , with
the help of the nabla operator.

We assume that the pressure is a function of density, energy,
and mass fractions

P ≡ P (ρ,e,Y ). (5)

This function is supposed to be differentiable. Then, the pres-
sure evolution is derived by differentiating Eq. (5) with respect
to time and by substituting Eqs. (1)–(4) into the resulting
expression. After using some of Maxwell’s thermodynamical
relations, one obtains

∂P

∂t
+ Uj

∂P

∂xj

= −γ1P∇ · U + Dp, (6)

with

Dp = (γ3 − 1)

[
ρε − ∂Qj

∂xj

+ hα

∂Fα
j

∂xj

]
+ γ3Pα

[
− 1

ρ

∂Fα
j

∂xj

]
,

(7)

γ1 = ρ

P

∂P

∂ρ

∣∣∣∣
s,Y

= ρ

P
a2, γ3 = 1 + 1

ρ

∂P

∂e

∣∣∣∣
ρ,Y

, (8)

Pα = ∂P

∂Yα

∣∣∣∣
ρ,T ,Y �=Yα

, hα = ∂h

∂Yα

∣∣∣∣
ρ,T ,Y �=Yα

, (9)

where s is the entropy, h is the enthalpy, a is the sound speed,
and T is the temperature. The quantities Pα and hα play the
role of a pressure and an enthalpy specific to the scalar α.
The generalized polytropic indices γ1 and γ3 are introduced
in Refs. [28,29]. In a perfect gas, γ1 and γ3 are equal to the
ratio γ of the constant pressure specific heat Cp to the constant
volume specific heat Cv:

γ = Cp

Cv

, Cv = ∂e

∂T

∣∣∣∣
ρ,Y

, Cp = ∂h

∂T

∣∣∣∣
P,Y

.

However, in the general case, γ �= γ1 �= γ3. To conclude
the flow description, we give expressions for the molecular
transport fluxes that are valid at least in the case of perfect
gases [27]:

σij = −κ∇ · Uδij − 2η
(
Sij − 1

3∇ · Uδij

)
, (10)

Fα
j = −ρD(α) ∂Yα

∂xj

for α = 1, . . . ,Ns − 1,

FNs

j = −
Ns−1∑
α=1

Fα
j , (11)

Qj = −λ
∂T

∂xj

+
∑

α

hαFα
j , (12)

where λ is the thermal conductivity, κ and η are the bulk and
shear viscosity of the fluid, and D(α) is the diffusion of the
scalar α in a Fickian approximation.

B. Dimensionless equations for the fluctuations

The goal of this section is to make dimensionless the
evolution equations for the fluctuation of velocity U ′′, density
ρ ′, and pressure P ′. The key parameters acting on the
compressibility of the turbulent field are thus presented.

We remind the reader that for variable density flows, it is
usual to work with both Favre (density weighted) and Reynolds
(unweighted) statistics. Reynolds and Favre averages of a
quantity Q are respectively denoted by Q and Q̃ and are linked
by the identity Q̃ = ρQ/ρ. Reynolds and Favre fluctuations
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are respectively denoted by Q′ and Q′′ and are related by
Q′′ = Q′′ + Q′.

Dimensional equations for U ′′, ρ ′, and P ′ are straightfor-
wardly obtained from Eqs. (1), (2), and (6) with classical
techniques [15]. We directly introduce their dimensionless
formulations, which are useful for the asymptotic study;
however, first, we need to define characteristic scales for
fluctuating quantities as well as for mean quantities, mean
gradients, and finally space and time.

1. Characteristic scales

Let v, �, and ϒ be the characteristic scales of the
fluctuations of velocity U ′′, density ρ ′, and polytropic index
γ ′

1. Let also ρ0, P0, and γ10 be the mean scales of density,
pressure, and index γ1. Then, the characteristic sound speed
is a0 = √

γ10P0/ρ0. Furthermore, let G0 be the scale of mean
acceleration, S0 that of the mean strain rate, and L0 that of the
mean density gradient. Finally, let � denote the characteristic
spatial scale of the turbulent field and t0 the temporal scale of
the flow. The time t0 is not necessarily equal to the turbulent
time defined as τ = �/v.

The corresponding dimensionless quantities are

t∗ = t

t0
, x∗ = x

�
, u′′∗ = U ′′

v
, ρ ′∗ = ρ ′

�
, γ ′

1
∗ = γ ′

1

ϒ
,

p′∗ = P ′

P0
, ρ∗ = ρ

ρ0
, P

∗ = P

P0
, γ ∗

1 = γ 1

γ10
,

1

ρ

∂P

∂xi

∣∣∣∣∗ = 1

G0

1

ρ

∂P

∂xi

,
∂Ũi

∂xj

∣∣∣∣∗ = 1

S0

∂Ũi

∂xj

,

1

ρ

∂ρ

∂xi

∣∣∣∣∗ = L0
1

ρ

∂ρ

∂xi

.

Notice that P ′ is not nondimensionalized in the same way as
other fluctuating variables. Indeed, in the asymptotic analysis,
the order of ρ ′, γ ′

1, and U ′′ is imposed by hypotheses, whereas
the order of P ′ is deduced from analysis.

Molecular transport terms do not play an important role
in the asymptotic analysis, so a simplified approach is used
to make them dimensionless. Let η0 be a characteristic
dynamic viscosity and Pr a characteristic Prandtl number of
the flow. We assume that molecular transport terms can be
nondimensionalized with

σ ∗
ij = �

vη0
σij , D∗

p = ρ0�
2

P0

Pr

η0

ρ0

�
Dp.

2. Dimensionless equations

For the sake of simplicity, the asterisk superscripts are
dropped in the following. With this convention, the dimen-
sionless equations for U ′′, ρ ′, and P ′ are

1

ξ

Dρ ′

Dt
= −

[
1

ε�

]
ρ∇ · u′ −

[
M2
n

MaMt

]
u′′

j

∂ρ

∂xj

−
[
Ms
Mt

]
ρ ′∇ · U − ρ∇ · u′′, (13)

1

ξ

Du′′
i

Dt
= −

[
1

γ10M
2
t

]
1

ρ

∂p′

∂xi

−
[
Ms
Mt

]
u′′

j

∂Ũi

∂xj

+
[
Ma
Mt

]
ρ ′

ρρ

∂P

∂xi

+ 1

ρ

∂

∂xj

(ρũ′′
i u

′′
j )

−
[

1

Ret

] {
1

ρ

∂σ ′
ij

∂xj

− ε�

ρ ′

ρρ

∂σ ij

∂xj

}
, (14)

1

ξγ10

Dp′

Dt
= −γ 1P∇ · u′ −

[
MaMt
ε�

]
u′

j

∂P

∂xj

−
[
εγ Ms
Mt

]
γ ′

1P∇ · U −
[
Ms
Mt

]
γ 1p

′∇ · U

−[εγ ](γ ′
1∇ · u′ − γ ′

1∇ · u′)P

−
[
εγ Ms
Mt

]
(γ ′

1p
′ − γ ′

1p
′)∇ · U

−γ 1(p′∇ · u′ − p′∇ · u′)

−[εγ ](γ ′
1p

′∇ · u′ − γ ′
1p

′∇ · u′)

− 1

γ10
p′∇ · u′ + 1

γ10

∂

∂xj

(p′u′
j ) + ε�

Pr Ret

D′
p.

(15)

Three dimensionless numbers characterize the turbulent
fluctuations intensity: the turbulent Mach number and the
ratios of fluctuations to averages of density ε� and polytropic
index εγ . They are defined as

Mt = v

a0
, ε� = �

ρ0
, εγ = ϒ

γ10
.

Furthermore, three other numbers characterize the interaction
between the mean fields and the turbulent field. These Mach
numbers are related to the strain, the stratification, and the
acceleration:

Ms = S0�

a0
, Mn = N0�

a0
, Ma = A0�

a0
,

where N0 is the Brunt-Väisällä frequency and A0 is the
buoyancy force frequency:

N0 =
√∣∣∣∣G0

L0

∣∣∣∣, A0 = G0ε�

v
.

The term Ms compares the deformation time scale S−1
0 to

the acoustic propagation time scale �/a0, Mn compares the
baroclinic effects time scale N−1

0 (due to density stratification
and acceleration field [30]) to the acoustic time scale, and Ma
compares the buoyancy force times scale A−1

0 to the acoustic
time scale. The frequency A0 is not as usual as S0 or N0 in the
literature, so we recall its meaning: A−1

0 is the time required
for a fluid particle of relative density ε� in an acceleration
field G0 to reach the velocity v characteristic of turbulent
fluctuations. In other words, A0 is a measure of the buoyancy
force’s intensity with respect to turbulence.

Together with these three Mach numbers, we introduced a
dimensionless number ξ comparing the evolution time scale
of the turbulent field to the time scale of turbulent nonlinear
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effects:

ξ = t0

τ
.

In particular, evolution and nonlinear time scales are different
in the rapid distortion regime.

Finally, the terms related to molecular transport are charac-
terized by the turbulent Reynolds number

Ret = ρ0v�

η0
.

III. ASYMPTOTICS OF LOW-TURBULENCE
MACH NUMBERS

In this section, we perform an asymptotic analysis with
respect to the Mach number for a mixture governed by
Eq. (13)–(15) subject to fluctuations of its density and
polytropic index γ1. The goal of this analysis is to clarify
the conditions under which a pseudocompressible limit can
be reached and then to express the properties of pressure and
velocity divergence fields in this limit.

First, it is clear that a pseudocompressible limit can exist
only if pressure fluctuations equilibrate with their environment
on time scales much smaller than all other characteristic times.
This means that the pseudocompressible limit can be reached
only if

Mt � 1, Ms � 1, Mn � 1, Ma � 1. (16)

If any one of these conditions is not fulfilled, acoustic effects
occur.

Since several small parameters appear, it is necessary to
specify their relative order before proceeding to an asymptotic
analysis. This issue is actually linked to the existence of two
possible regimes for the turbulent flow. These two regimes
are defined by the Froude numbers associated with the
deformation Fu and the baroclinic effects Fg , respectively,

Fu = 1

S0τ
= Mt

Ms
, Fg = 1

N0τ
= Mt

Mn
.

When Fu � 1 and Fg � 1, i.e., Ms � Mt and Mn � Mt, the
flow undergoes only weak accelerations or deformations. This
is the diffusion-dissipation regime. In contrast, when Fu � 1
or Fg � 1, i.e., Mt � Ms or Mt � Mn, the flow undergoes
strong accelerations or deformations. The interaction between
the mean and the turbulent flows becomes dominant with
respect to the interaction of the turbulence with itself (for
instance, with respect to straining and sweeping [31]). This is
the rapid distortion regime of turbulence.

These definitions lead to two important points. First, there
are limitations to the coexistence of the RDT regime and
pseudocompressible approximation. Indeed, the conditions
Ms � 1 and Mn � 1 from Eq. (16) imply

Fu � Mt, Fg � Mt. (17)

In order for the pseudocompressibility assumption to remain
valid, accelerations and deformations cannot become too
strong.

Second, the ordering of Mach numbers depends on the
flow regime. Then, the asymptotic developments are different

in the RDT regime and in the diffusion-dissipation regime.
Both cases should be treated separately.

A. Asymptotics in the diffusion-dissipation regime

The diffusion-dissipation regime is defined from the condi-
tions

Ms � Mt, Mn � Mt, Ma � Mt. (18)

The relevant time scale in that regime is the turbulent time τ

since nonlinear effects are dominant. It leads to set ξ = 1 in
Eqs. (13)–(15).

Assuming that the turbulent Mach number Mt is small
with respect to 1, the pseudocompressible conditions (16)
are fulfilled. The fluctuating quantities U ′′, ρ ′, p′, and γ ′ are
developed as functions of Mt according to

q ′ = q(0) + Mtq(1) + M2
tq(2) + O

(
M3
t
)

for any fluctuating quantity q ′. The fluctuating density equa-
tion (13) is compatible with these developments under the
condition

Mn �
√
MaMt � Mt. (19)

Injecting the developments into Eq. (14) and collecting
terms of O(M−2

t ) and O(M−1
t ) leads to the classical result [2]

∂p(0)

∂xi

= ∂p(1)

∂xi

= 0.

Thus, the fluctuating pressure follows the usual decomposition
p′ = pc(t) + ph(t,x) [2] where pc(t) = p(0)(t) + Mtp(1)(t)
is a spatially constant pressure of order 0 and ph(t,x) =
M2
t p(2)(t,x) is an hydrodynamical pressure of order 2.

Spatially constant fluctuating pressure with variations of
the order of the mean pressure are unlikely to occur in shock
tubes, so we exclude that case. A rigorous argument can be
provided when a spatial ergodicity hypothesis can be invoked,
such as in the case of homogeneous turbulence or shock
tube experiments with homogeneity directions. Indeed, when
ensemble averaging coincides with spatial averaging, pc(t)
becomes its own mean value pc(t) = pc(t). Since pc is the
dominant component of a fluctuating pressure with zero mean,
one can conclude that pc = 0.

In the following, pc is consequently assumed to be 0. Then,
there is only one fluctuating pressure component left of order
M2
t:

p′ = M2
t p(2)(t,x). (20)

The instantaneous pressure splits into

P = P (t,x) + M2
t P ′(2)(t,x).

This decomposition is slightly different from the usual one [2]
since the dominant component of the instantaneous pressure
can vary in space and have any evolution, including a fully
compressible one. Both decompositions coincide only when
the mean flow itself obeys a low-Mach-number approximation.

In the next step, the result of Eq. (20) is inserted in Eq. (15).
Two cases must be distinguished. In the first one, we assume
that density and polytropic index fluctuations are strong:

ε� ∼ εγ ∼ 1.
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This leads, at order 0, to

∇ · u′(0) =
[

ε�

Pr Ret

]
1

γ1P
D′(0) −

[
εγ Ms
Mt

]
γ

′(0)
1

γ1
∇ · U

−[εγ ]

(
γ

′(0)
1

γ1
∇ · u′(0) − γ

′(0)
1

γ1
∇ · u′(0)

)
. (21)

Then, the velocity divergence depends, at first order, on
the molecular transport as well as on the variations of the
polytropic index and mean velocity divergence. The first term
on the right-hand side of Eq. (21) shows that the volume of
a fluid particle is modified by the molecular diffusion of heat
and species. The second term of Eq. (21) is related to the
volume adjustment of a mass element undergoing compression
or dilatation and having a polytropic index different from its
environment. The last term comes from the nonlinearity of
the coupling between the velocity divergence and polytropic
index.

In the second case, density and polytropic index fluctuations
are assumed to be weak

ε� ∼ εγ ∼ Mt.

This leads, at orders 0 and 1, to

∇ · u′(0) = 0, (22)

∇ · u′(1) = −
[
Ma
ε�

]
u

′(0)
j

1

γ1P

∂P

∂xj

−
[
εγ Ms

M2
t

]
γ

′(0)
1

γ1
∇ · U

+
[

ε�

MtPr Ret

]
1

γ1P
D′(0)

p . (23)

The divergence is then of order 1. It depends on molecular
transport and polytropic index variations as well as on velocity
fluctuations: The first term of Eq. (23) expresses the volume
adjustment of a mass element moving along a pressure
gradient.

B. Asymptotics in the rapid distortion regime

We now look at the rapid distortion regime of turbulence,
which is defined by

Ms � Mt or Mn � Mt. (24)

First, we will consider the case Ms � Mn. In that regime, the
relevant time scale is that of baroclinic effects t0 = N−1

0 . This
leads to ξ = Fg = Mt/Mn in Eqs. (13)–(15).

Conditions (24) imply that Mt is no longer the relevant
parameter to perform an asymptotic development. Instead,
fluctuating variables are expanded according to the stratifi-
cation Mach number Mn:

q ′ = q(0) + Mnq(1) + M2
nq(2) + · · · .

The fluctuating density equation (13) requires a compatibility
condition for this expansion to be possible:

Ma ∼ Mn. (25)

Conditions (24) imply that Mt is at least of order 2. Denoting
by n � 2 the order of Mt, the fluctuating velocity (14) leads to

∂p(0)

∂xi

= ∂p(1)

∂xi

= ∂p(2)

∂xi

= · · · = ∂p(n)

∂xi

= 0

and as in the preceding section

p(0) = p(1) = p(2) = · · · = p(n) = 0.

Thus, we finally obtain

p′ = MnMt p(n+1)(t,x). (26)

Hence the order of the fluctuating pressure in the RDT regime
is different from the one in the diffusion-dissipation regime
(20). In particular, it satisfies p′ � M2

t.
Inserting Eq. (26) into Eq. (15) leads to an algebraic

expression for the velocity divergence. Three cases can be
distinguished.

In the first case, density and polytropic index fluctuations
are large ε� ∼ εγ ∼ 1. Then, at order 0,

Mt
Mn

∇ · u′
∣∣∣∣(0)

= −
[
εγ Ms
Mn

]
γ

′(0)
1

γ1
∇ · U

−
[
εγ

Mt
Mn

](
γ

′(0)
1

γ1
∇ · u′

∣∣∣∣(0)

− γ
′(0)
1

γ1
∇ · u′

∣∣∣∣(0)
)

.

(27)

The main contribution to the velocity divergence comes in that
case from polytropic index fluctuations.

In the second case, density fluctuations are large but not the
polytropic index ones ε� ∼ 1 and εγ ∼ Mt. Then, at orders 0
and 1,

∇ · u′(0) =
[

ε�

PrRet

]
1

γ1P
D′(0), (28)

∇ · u′(1) = −
[
Msεγ

MnMt

]
γ

′(0)
1

γ1
∇ · U +

[
ε�

Pr Ret

]
1

γ1P
D′(1)

p .

(29)

These results show that even in the RDT regime the effects
of molecular diffusion on the velocity divergence cannot be
neglected if density fluctuations are large. This may appear
to be in contradiction with the RDT limit concept; however,
this is not the case. The main action of the velocity divergence
occurs in the density fluctuation equation (13), where ∇ · u′
is one order smaller than the other terms depending on mean
gradients (if ε� ∼ 1) and therefore can be neglected.

The last case corresponds to weak fluctuations of density
and polytropic indices ε� ∼ Mt and εγ ∼ Mt. Then, at orders
0 and 1,

∇ · u′(0) = 0, (30)

∇ · u′(1) = −
[
MaMt
Mnε�

]
u

′(0)
j

1

γ1P

∂P

∂xj

−
[
Msεγ

MnMt

]
γ

′(0)
1

γ1
∇ · U .

(31)

Under these hypotheses, the divergence of the fluctuating
velocity is determined uniquely by terms depending on mean
gradients. In contrast to the preceding case, its contribution to
the density fluctuations evolution is this time non-negligible.

Finally, we mention briefly the case Mn � Ms. The expan-
sion then uses Ms as a parameter. The pressure becomes of
order MsMt. The velocity divergence can be approximated
with a formula identical to that obtained in the case Ms � Mn.
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C. Synthesis

The asymptotic analysis of the pseudocompressible limit
is different depending on the regime considered: RDT or
diffusion dissipation. However, common characteristics can be
found. Indeed, even if the validity conditions are not identical
[Eqs. (19) and (25)], they mainly involve the conditions (16).
Note that in the diffusion-dissipation regime, a small value of
turbulent Mach number Mt is sufficient in order for conditions
(16) to be fulfilled, whereas it is not the case in the RDT
regime.

Then, even if the orders of the fluctuating pressure are not
the same in both regimes, the following relation is always met
in the pseudocompressible limit:

p′

P0
� Mt. (32)

Finally, in both regimes the fluctuating velocity divergence can
be approximated by

∇ · u′ = −u′
j

1

γ1P

∂P

∂xj

− γ ′
1

γ1
∇ · U + 1

γ1P
D′

p

−
(

γ ′
1

γ1
∇ · u′ − γ ′

1

γ1
∇ · u′

)
. (33)

This expression is also valid when both density and polytropic
index fluctuations are of main order. The last term on
the right-hand side involves the velocity divergence so that
Eq. (33) is an implicit relation. However, when polytropic
index fluctuations become weak (εγ ∼ Mt) this nonlinear term
becomes negligible with respect to the other contributions and
the relation becomes explicit.

D. Validity for shock tube experiments

An important question is to know whether the validity
conditions of the pseudocompressible approximation [see
Eq. (16)] can be met in typical shock tube experiments such as
the ones of Poggi et al. [32]. No precise and definitive answer
can be given, as the variety of phenomena encountered in shock
tubes is very wide. Nonetheless, some general comments can
be made.

Indeed, we recall that in typical shock tube experiments, tur-
bulent mixing zones are created by some interfacial instability
and are subsequently submitted to interactions with shocks
as well as compression and rarefaction waves. The latter can
induce RDT phases. In between interactions, turbulence is left
to decay and undergoes a regime of diffusion-dissipation.

For diffusion-dissipation phases, the validity conditions
(16) are fulfilled as soon as the turbulent Mach number
Mt is weak. In practice, it is generally difficult to get even
moderate turbulent Mach numbers in shock tube experiments,
so the pseudocompressible approximation is indeed relevant
for diffusion-dissipation phases.

In contrast, the pseudocompressible approximation be-
comes meaningless when a shock wave interacts with a
turbulent mixing zone. The interaction creates an acoustic
field that is initially strongly correlated to the nonacoustic
field. Later on, acoustic and nonacoustic fields become
uncorrelated anew. Indeed, the acoustic waves do not travel
at the material speed, so they are evacuated out of the mixing

zones. The acoustic-nonacoustic decorrelation time scale is
on the order of the turbulent time scale. As a result, the
pseudocompressible approximation cannot be used for about
one turbulent characteristic time after shock passage.

As for RDT phases, it is not possible to get a general result
a priori. The pseudocompressible validity depends on the
strain, the stratification, and the acceleration of the mean
flow, which depend on the experimental conditions. It is only
possible to estimate it for given experimental configurations.

The preceding discussion concerns only the turbulent stage
of shock tube experiments. It is indeed the main focus of
this work. A few words can nonetheless be added on the
early linear and nonlinear phases of the Richtmyer-Meshkov
instability happening before the turbulent stage [33]. First of
all, let us emphasize that the asymptotic analysis detailed in
this study is directly derived from the compressible Navier-
Stokes equations. These equations can describe the linear,
nonlinear, and turbulent phases of the Richtmyer-Meshkov
instability. As a consequence, the asymptotic analysis detailed
in this study is valid for all of these phases. Thus, the
pseudocompressible approximation will apply to the linear
and nonlinear phases of the Richtmyer-Meshkov instability
provided conditions (16) are met. During these early phases,
mean gradient effects usually become negligible after the
shock has crossed the initial interface. Then, we can conclude
that the pseudocompressible approximation will be relevant
to the early phases of the Richtmyer-Meshkov instability
provided the initial postshock turbulent Mach number is small.
This is almost always the case in shock tube experiments.

We now focus again on the turbulent regime of shock tube
experiments. The considerations we made on this turbulent
regime can be illustrated with the experiments of Poggi et al.
[32]. The experimental setup is a shock tube filled with SF6
in one part of the tube and air in the other part. A turbulent
mixing zone is produced by a shock wave of Mach 1.45 (in the
SF6) hitting the initial interface between SF6 and air. Other
interactions with shock or rarefaction waves occur later due to
wall reflections.

This experiment has been simulated with the Grégoire-
Souffland-Gauthier (GSG) second-order turbulence model
[23]. Comparisons shown in Ref. [23] are globally satisfying.
We consequently expect the results obtained with the GSG
model, and described hereafter, to yield, at least, correct orders
of magnitude. This is sufficient for analyzing the validity
conditions (16).

Figures 1(a) and 1(b) respectively show the evolution of the
Mach numbers Mt, Ms, Mn, and Ma and the Froude numbers Fu

andFg in the shock tube experiment of Poggi et al. [32]. These
dimensionless numbers are calculated with the GSG model in
the center of the mixing zone produced by the shock crossing
the SF6-air interface. To interpret Fig. 1 we use the value 0.3
as a threshold for the condition small relative to 1. This choice
is frequent in the literature, at least for Mach numbers [2,4].

In Fig. 1, one first observes a phase of initialization of
turbulence corresponding to the interaction of the shock wave
with the interface at t = 0 ms (the choice of time origin
in Ref. [32]). Then, it is seen that the mixing zone evolves
most of the time in a diffusion-dissipation regime. Conditions
(16) are then fulfilled since the turbulent Mach number is
small.
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FIG. 1. (Color online) Simulation of the shock tube experiment
of Poggi et al. [32] with the GSG second-order model [23]: (a) Mach
numbers and (b) Froude numbers in the middle of the mixing zone
with respect to time.

Furthermore, one can notice a RDT phase (F < 0.3) begin-
ning at t ≈ 2.3 ms. This RDT regime is due to stratification and
not to mean flow straining. During this RDT regime, conditions
(16) are fulfilled, except the condition Ma � 1. Indeed a value
Ma ∼ 0.4–0.5 is reached. It can be expected that acoustic
effects occur during this phase, but remain moderate. Finally,
reshocks are observed at t ≈ 1.2 and 1.8 ms, indicating the
times when the pseudocompressible approximation definitely
cannot be applied.

IV. CONSEQUENCES OF THE PSEUDOCOMPRESSIBLE
APPROXIMATION ON STATISTICAL MODELS

The purpose of this section is to show how the asymptotic
results derived so far can help improve second-order one-point
models used for predicting shock tube experiments such as
those of Grégoire et al. [23], Banerjee et al. [24], Besnard et al.
[25], or Andronov et al. [26]. A detailed review on one-point
models for variable density flows, including second-order
models, is also presented by Chassaing et al. [34]. We hereafter

emphasize two aspects of these models that are impacted by
the pseudocompressible approximation. The first one concerns
the evolution of the density flux and variance and the second
one concerns the transport of enthalpy.

A. Density flux and variance evolutions

All the aforementioned models aim at predicting the
evolutions of the joint correlations of velocity and density or
of a subset of equivalent quantities. For instance, the model of
Grégoire et al. [23] is derived by closing evolution equations
for the Reynolds stresses ũ′′

i u
′′
j , density variance ρ ′2, and

density flux u′′
i = −ρ ′u′

i/ρ.
The evolutions of the latter two quantities are intimately

linked to the fluctuating velocity divergence. More precisely,
up to second-order correlations and viscous effects, the
evolutions of ρ ′2 and u′′

i are given by

∂ρ ′2

∂t
+ Ũj

∂ρ ′2

∂xj

= −2ρ ρ ′∇ · u′ − 2ρ ′2∇ · ˜U + 2ρu′′
j

∂ρ

∂xj

+ (third-order terms), (34)

∂u′′
i

∂t
+ Ũj

∂u′′
i

∂xj

= u′
i∇ · u′ − u′′

j

∂Ũi

∂xj

− ρ ′2

ρ2

1

ρ

∂P

∂xi

+ ũ′′
i u

′′
j

1

ρ

∂ρ

∂xj

+ ρ ′

ρ

1

ρ

∂P ′

∂xi

+ ρ ′

ρ

∂σ ′
ij

∂xj

+ (third-order terms + viscous terms). (35)

One can see that the only second-order unclosed term in the
density variance evolution is the correlation ρ ′∇ · u′ and that
the correlation u′

i∇ · u′ appears as a source term in the equation
for the turbulent density flux.

These two quantities can be straightforwardly modeled
by using the pseudocompressible expression of the velocity
divergence (33). Neglecting all third-order correlations, we
obtain

ρ ′

ρ
∇ · u′ = u′′

j

1

γ1P

∂P

∂xj

+ γ ′′
1

γ1
∇ · U − 1

γ1P
D′′

p, (36)

u′
i∇ · u′ = −ũ′′

i u
′′
j

1

γ1P

∂P

∂xj

− γ ′
1

γ1
u′

i∇ · U + 1

γ1P
u′

iD′
p.

(37)

The main interest in these relationships is to make explicit
the dependence of the two unknown correlations ρ ′∇ · u′

and u′
i∇ · u′ on the mean pressure and velocity gradients.

Equations (36) and (37) also introduce a dependence on the
equation of state through the fluctuations of the polytropic
index γ1, whose correlations with the density and velocity
can be easily expressed by a proper linearization. Finally,
molecular mixing is also involved in these expressions through
the correlations of D′

p with density and velocity.
In most of the mentioned second-order models [23–25],

the only terms that are implicitly accounted for when closing
ρ ′∇ · u′ and u′

i∇ · u′ are the molecular mixing terms. They
are generally closed in the form of dissipation terms for the
density variance and density flux. For turbulent flows close
to equilibrium, this is certainly a sufficient approximation.
However, in the context of shock tube experiments, the role
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played by the mean pressure and velocity gradients is crucial
and should not be neglected. This assertion can be checked by
considering the interaction of a homogeneous turbulent field
with an isentropic mean flow, such as a rarefaction wave. In
that case, the pressure gradient terms in Eqs. (36) and (37)
cancel out with the production of ρ ′2 and u′′

i by mean density
gradients. Furthermore, the mean velocity gradient term in
Eq. (36) becomes the only source of density variance. Thus,
for the particular case detailed here, the evolutions of ρ ′2 and
u′′

i would not be consistent if the mean pressure and velocity
gradient terms were neglected in Eqs. (36) and (37).

B. Turbulent enthalpy transport

Another key aspect of the turbulent models used in shock
tube experiments lies in the closure of the turbulent transport
of enthalpy (or energy, depending on the precise model
formulation). Most often the enthalpy flux ũ′′

i h
′′ is closed due

to a gradient diffusion assumption. In contrast, the density flux
follows an evolution equation, which, in some circumstances,
can yield countergradient transport. However, the enthalpy
and density flux are intimately linked. For instance, for an
isobaric isotemperature mixture of perfect gases, they are
directly proportional to one another.

The pseudocompressible approximation allows one to
express the enthalpy flux in a more coherent way. Indeed, the
asymptotic analysis of Sec. III gives a rationale for neglecting
pressure fluctuations in the equation of state of the flow. Then,
the enthalpy fluctuation can be linearized and expressed as a
function of the density and concentration fluctuations. As a
result, one obtains the following expression for the enthalpy
flux, after neglecting third-order correlations:

ũ′′
i h

′′ =
[

γ 1

γ 3 − 1

P

ρ

]
u′′

i −
[

γ 3

γ 3 − 1

Pα

ρ
− hα

]
ũ′′

i Y
′′
α . (38)

The connection between the enthalpy and density fluxes is thus
made explicit, as well as its dependence on the concentration
fluxes. Such an expression can, in principle, be used in the
models proposed in Refs. [23–26].

V. DIRECT NUMERICAL SIMULATION OF THE
INTERACTION OF A RAREFACTION WAVE

WITH A MIXING ZONE

In order to check the hypotheses and consequences of
the pseudocompressible approximation, we perform three-
dimensional direct numerical simulations (DNSs) with the
TRICLADE code. Different numerical methods are available
in this massively parallel code. Here we use a conservative
finite-difference scheme based on the work of Daru and Tenaud
[35]. The same method was employed in our previous work
[36,37] involving simulations of turbulent mixture interactions
with shock waves.

The TRICLADE code solves Eqs. (2)–(4) in conservative
form. The equation of state (5) is obtained for a mixture of
perfect gases by assuming that the mixture is isothermal and
obeys Dalton’s law of partial pressures. Denoting for each
perfect gas the adiabatic exponent by γα and the constant

volume specific heat by cvα , the equation of state (5) can be
written as

P = (γ − 1)ρe for γ − 1 =
∑Ns

α=1(γα − 1)cvαYα∑Ns

α=1 cvαYα

. (39)

In the present case, only a binary mixture is considered,
which means Ns = 2. The molecular transport fluxes (10)–(12)
are simplified by using Stokes assumption that κ = 0 and
assuming a single viscosity and conductivity coefficient for
both gases; since Ns = 2, there is only a single interspecific
diffusion coefficient.

A. Flow configuration

1. Overview of the simulation

The purpose of the simulation is to study the interaction of
a rarefaction wave with a turbulent mixing zone in conditions
close to the RDT regime. To this end, the simulation unfolds
in two steps. During the first step, a turbulent mixing zone is
produced by a Richtmyer-Meshkov instability. Then, during
the second step, a rarefaction wave is sent to this mixing zone.

The configuration consists in an idealized planar shock tube
containing air and argon initially separated by a corrugated
interface. In the first step, a shock wave of moderate Mach
number (1.25) coming from the air side interacts with the
initially corrugated interface. As a result of the interaction, a
shock wave is transmitted into argon, another one is reflected
into air, and vorticity is deposited on the interface, yielding
a growth of the interface corrugation amplitude. This insta-
bility mechanism is of course known as Richtmyer-Meshkov
instability. The instability leads to the interpenetration of both
media and eventually a mixing zone appears between them.

When the transmitted and reflected shock waves are far
enough, we proceed with the second step. We extract the
mixing zone and insert a rarefaction wave in the part of the
domain containing air. That procedure is detailed as follows.
Immediately after interaction, acoustic waves reverberate
between the interface and the outgoing shock fronts, but their
amplitudes quickly decrease as the shock fronts go farther.
As a result, the flow between the mixing zone and the shock
waves eventually becomes uniform. At the time of extraction,
we choose two abscissas x− and x+ enclosing the mixing zone
but inside both uniformly shocked fluid zones. Then we erase
the shock waves by replacing all state variables for x > x+
(x < x−) by the average value of corresponding quantity at
x+ (x−). The final step consists in introducing a one-
dimensional rarefaction by analytically computing its profiles
in a single gas, the air, for an upstream state given by the state at
x−. All quantities at the abscissa downstream from the chosen
rarefaction head are then replaced by the analytical ones. Using
Galilean invariance, a longitudinal translation velocity is also
added so that the mixing zone remains in the central part of
the computational domain, with the finest mesh, for the largest
time.

The first part of the simulation is similar to other simulations
such as that of Thornber et al. [38]. As explained, it is not the
main focus of this simulation. It should only be considered as
a preliminary step needed to study the subsequent interaction
of the rarefaction wave and mixing zone.
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2. Initial conditions

(a) Preliminary step. Before the shock interaction, both air
and argon are initially at rest at standard conditions of pressure
105 Pa and temperature 290 K. The polytropic indices of air
and argon are 1.4 and 1.66, respectively. Their constant volume
heat capacities are set to 720 and 310 J kg−1 K−1, respectively.
The dynamic viscosity is μ = 5 × 10−5 kg m−1 s−1 and the
Schmidt and Prandtl numbers are on the order of 1.

The interface corrugation has a broadband spectrum with
a maximum around wavelength λmax = 1.4 × 10−3 m and a
large rms amplitude around 3.7 × 10−4 m. The shock Mach
number is Ms = 1.25, thus the velocity jump of the mean
interface due to shock interaction is �U ≈ 110 m s−1. It
is customary to define a Reynolds number based on �U as
ρ At �U λmax/μ with a value ∼1000 in our simulation. Note
that this Reynolds number has no physical meaning, just a
dimensioning interest. In contrast to the wavelength λmax, the
jump velocity �U indeed characterizes the mean flow, but not
the perturbed flow. For a single-mode initial spectrum at wave
number κ0 with amplitude a0, a meaningful Reynolds number
should rather be constructed based on the perturbation velocity
a0κ0At�U .

(b) Main step. At time tex = 3.4λmax/�U , the transmitted
and reflected shock waves are far enough from the mixing
zone to proceed with the main step of the simulation, i.e.,
the extraction of the mixing zone and the injection of the
rarefaction wave.

At that time, the mixing zone has the following charac-
teristics. First, its Atwood number is At = ρAr−ρair

ρAr+ρair
≈ 0.13. In

addition, in the middle of the mixing zone, the turbulent length
scale is �0 = k̃3/2/ ε̃ ≈ 0.3λmax and the turbulent velocity is

v0 =
√

2̃k/3 ≈ 0.03�U , where k̃ = ˜||u′′||2/2 is the average
specific kinetic energy and ε̃ is the average viscous dissipation.
The length of the mixing zone is LMZ ≈ 4.85�0. Finally, the
turbulent Reynolds number Ret = k̃2/νε̃ is slightly larger than
80 in the middle of the mixing zone. This value is weak
compared to the Reynolds number in the experiment of Poggi
et al. [32], which is of order 103 after the first interaction and
of order 104 after the first reshock. While more realistic values
of Ret would be of interest, a low Reynolds number does not
in any way impede the assessment of the pseudocompressible
approximation. More important are the values of the four Mach
numbers Mt, Ms, Mn, and Ma. Those are indeed found to be on
the order of the ones observed in shock tube experiments, as
will be detailed in the following sections (see Fig. 3).

The two abscissas enclosing the mixing zone and defining
the zone of extraction are set equal to x− ≈ −10�0 and x+ ≈
10�0, with x = 0 corresponding approximately to the center
of the mixing zone at that time. The injected rarefaction wave
has a width of 20�0, with its head placed at xH = −7�0. The
rarefaction wave, coming from the air side, has a compression
ratio (downstream air density divided by upstream air density)
equal to 0.4.

3. Numerical considerations

(a) Boundary conditions and mesh construction. The sim-
ulation is three dimensional with doubly periodic conditions
in the homogeneous directions. A Cartesian structured mesh

is used. The cross section is square with size 13.1�0 × 13.1�0

and is meshed with 400 × 400 cells. The longitudinal direction
is divided into three zones. The mixing zone evolves in a
central part of the computational domain where the cells are
cubic. In that part of length 19.65�0, there are 600 cells in
the longitudinal direction. On both sides of that central part,
domains of 240 cells with geometric progression of cell sizes
span over 100�0 so that the boundaries can be considered
as infinitely far from the mixing zone. In practice, these
boundaries are treated with zeroth-order extrapolation and
have no effect on the core region during the time interval
of the simulation.

Note that the same mesh is used for the two steps of the
computation: No interpolation is needed when going from
the preliminary to the main step. The mixing zone content
is completely unaffected by the process. Since the Reynolds
number is quite weak and high-order numerical schemes are
used, every scale involved in the problem is well resolved,
thus allowing one to compute precisely all the terms treated or
neglected in the pseudocompressible approximation.

(b) Postprocessing. As mentioned previously, the problem
is statistically one dimensional and the average operator is
defined as the plane average over cross section. Numerically,
let i ∈ [1,N‖] be the mesh index in the longitudinal direction
(spanning over N‖ cells) and j,k ∈ [1,N⊥] be the mesh indices
in the homogeneous directions (spanning over N⊥ cells). The
instantaneous local averages are obtained as

Qi =
∑N⊥

k=1

∑N⊥
j=1 Qijk

N2
⊥

,

which defines the Reynolds average from which the Favre
average and Reynolds and Favre fluctuations are obtained
according to the relations recalled in Sec. II B.

From the local values Qi , we also define an instantaneous
value in the middle of the mixing zone QMZ intended to be
representative of the abscissa where the mass fraction is one-
half, but also to behave smoothly in order to get clean temporal
evolutions. It is defined in the following way:

QMZ =
∑N‖

i=1 Qiexp
[ − (

Ỹ−1/2
δY

)2]∑N‖
i=1 exp

[ − (
Ỹ−1/2

δY

)2] .

The coefficient δY is chosen to be 2 × 10−2. Since there are
only two gases, there is no ambiguity about the mass fraction
choice.

(c) Reference scales, time, and space origins. Numerical
results will hereafter be displayed in a nondimensional
way. Reference scales are defined as follows. Densities are
normalized by ρ0 = (ρAr + ρair)/2, where ρAr and ρair are
the values in pure argon and pure air before interaction with
the rarefaction wave. The characteristic length and velocity
are chosen as �0 and v0. These have been defined in the
preceding section as the turbulent length and velocity scale
in the middle of the mixing zone at the time of extraction. The
mean characteristic time is set as τ = �0/v0.

The time origin for displaying results is chosen such that the
rarefaction head reaches the middle of the mixing zone at t =
0. By middle of the mixing zone we intend the instantaneous
location where the averaged mass fraction is equal to one-half.
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FIG. 2. (Color online) Flow evolution: cross averaged air mass fraction, normalized density ρ/ρ0, and rms velocity
√

2̃k/3/v0 with respect
to the longitudinal direction x/�0 before interaction and at different times during interaction.

This location will also serve as spatial origin in the longitudinal
direction.

B. Results

We recall that the present work focuses on the rarefaction–
mixing-zone interaction. Hence, numerical results are dis-
played and commented only for the second phase of the
calculation.

1. Mean profile evolution

In order to give a general overview on the flow evolution,
spatial profiles of three cross-averaged quantities are displayed
at different times in Fig. 2 with respect to the longitudinal
direction: the air mass fraction, the normalized density ρ/ρ0,

and the normalized rms velocity
√

2̃k/3/v0.

Figure 2 allows one to see the respective positions of the
rarefaction wave and the mixing zone before and during the
interaction. The profiles before interaction can be seen in
Fig. 2(a). The density profile of this plot allows one to
identify the rarefaction incoming from the left and located
approximately between −27�0 and −7�0. The air mass fraction
profile shows that the mixing zone spans approximately
between −2.5�0 and +2.5�0. At subsequent times, displayed
in Figs. 2(b)–2(d), the mixing zone is entirely enclosed in
the rarefaction wave. The concentration field has a trivial
evolution due almost completely to the dilatation by the
rarefaction, whereas the kinetic energy undergoes much more
complex variations due to production and deproduction effects
by the mean flow. Note that the interaction creates a stable
stratification, which leads to a countergradient situation. This
explains why the kinetic energy first decreases before display-
ing a rebound (see Ref. [30] for more details on oscillating
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FIG. 3. (Color online) Mach and Froude numbers in the middle of mixing zone with respect to time.

026307-10



PSEUDOCOMPRESSIBLE APPROXIMATION AND . . . PHYSICAL REVIEW E 85, 026307 (2012)

countergradient in stably stratified flows). Such features are
characteristic of the predominance of linear production terms.

2. Dimensionless numbers

The characteristic dimensionless numbers relevant to the
pseudocompressible asymptotic analysis are the Mach and
Froude numbers as well as the ratios of fluctuations to averages
of density ε� and polytropic index εγ . In the simulation, it
was observed that ε� and εγ did not exceed 0.1 and could
consequently be considered small compared to one. As for the
Mach and Froude numbers, Fig. 3 shows their evolution in
the middle of the mixing zone as defined in Sec. V A 3. The
evolutions are not monotonic due to the simultaneous action of
three effects. First, the mean density gradient has two different
contributions, one coming from the stratification of the mixing
zone and one imposed by the rarefaction wave. Second, the
interaction produces a transmitted rarefaction wave as well
as reflected waves leading to a nontrivial evolution. Third,
turbulence reacts rapidly to the interaction.

Figure 3(a) shows whether or not the pseudocompressible
approximation is valid. Before the interaction t < 0, all Mach
numbers are weak, pseudocompressible conditions are then
fulfilled. At the beginning of the interaction, the Mach numbers
are small, except for the buoyancy force Mach number Ma,
whose value reaches 0.3. During this period, acoustic effects
could play a role. Then, the buoyancy force Mach number
decreases and all Mach numbers are weak enough so that the
pseudocompressible conditions are fulfilled again.

The Froude number evolution is shown in Fig. 3(b). Before
interaction the Froude numbers are large compared to 1;
as expected, the regime is of the diffusion-dissipation kind.
From t ≈ 0 to 3 × 10−2, the Froude number associated with
baroclinic effects is lower than 0.3. This value is chosen as a
limit value for the RDT regime. The mixing zone evolves in
a regime that is not strictly a RDT regime but an intermediate
regime where production effects are dominant and diffusion-
dissipation effects still play a role. After t ≈ 3 × 10−2 the
Froude number grows so the regime becomes closer to a
diffusion-dissipation one. To sum up, the examination of Fig. 3
lets us distinguish three phases as detailed in Table I.

3. Fluctuating velocity divergence

In this section, we illustrate the validity of the formula
(33) for the fluctuating velocity divergence and show that
it is useful for turbulent mixing modeling. More precisely,
we are interested in the two correlations required for the
closure of Reynolds stress models: u′∇ · u′, which appears
in the equation of the turbulent density flux, and ρ ′∇ · u′/ρ,
which appears in the equation of the density variance. Their
expressions derived from the pseudocompressible approxima-
tion are given by Eqs. (36) and (37). Here these correlations

TABLE I. Phases of the DNS computation.

Time Regime

[−0.05,0] pure diffusion-dissipation
[0,0.03] strong interaction
[0.03,0.15] weak interaction
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FIG. 4. (Color online) Time evolution of the correlations of
the fluctuating velocity divergence with density (a) ρ ′∇ · u′/ρ and
velocity (b) u′∇ · u′ in the middle of the mixing zone. Also shown
is a comparison between DNS and the pseudocompressible model
[Eqs. (36) and (37)].

are made dimensionless with the same characteristic length �

and velocity v of the turbulent field as before.
Figures 4(a) and 4(b) show u′∇ · u′ and ρ ′∇ · u′/ρ in the

middle of the mixing zone (location of the mass fraction of 1
2 )

with respect to time. The lines tagged “simulation” give the
computed values of the correlations and the dotted lines tagged
“model” show the pseudocompressible model predictions. The
contribution of each of the three terms on the right-hand sides
of Eqs. (36) and (37) are also given. They are denoted by
“grad(P ) contrib.” for the contribution of the mean pressure
gradient terms, “div(V ) contrib.” for the contribution of the
mean velocity divergence terms, and “dissip. contrib.” for the
contribution of molecular mixing terms.

First, it can be observed in Fig. 4 that all three contributions
related to the mean pressure gradient, the mean velocity di-
vergence, and the diffusion-dissipation regime are of the same
order of magnitude. Second, the agreement of the low-Mach-
number model (given by the sum of the three contributions)
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FIG. 5. (Color online) Spatial profiles of the correlations of
the fluctuating velocity divergence with density (a) ρ ′∇ · u′/ρ and
velocity (b) u′∇ · u′ at dimensionless time t = 3.5 × 10−2 during the
interaction with the rarefaction wave. Also shown is a comparison
between DNS and the pseudocompressible model [Eqs. (36) and
(37)].

with the exact correlation (denoted with “simulation” in Fig. 4)
is very good, except at the beginning of the interaction and also
for some weak oscillations with time in the exact correlation
curve.

These discrepancies can be explained by the fact that the
rarefaction head is a weak discontinuity: The primitive fields
(density, velocity, and pressure) are continuous, but their
longitudinal derivatives jump across the rarefaction head. A
closer examination of the fluctuating field at the rarefaction
head is possible. As for the mean flow, the fluctuating primitive
fields are continuous, but not their derivatives. In the linear
limit, jump conditions for the derivatives can be obtained with
respect to the fluctuating local values and a single unknown
constant originating from the need to specify the whole history
of the rarefaction (see the Appendix). For the simulation case,
it appears that the fluctuating velocity divergence jumps in
response to the interaction with the entropy waves constituting

FIG. 6. Fluctuating velocity divergence ∇ · u′ cross section as
computed in the simulation (top) and filtered according to the low-
Mach-number model (33) (bottom) at dimensionless time t = 3.5 ×
10−2 during the interaction with the rarefaction wave.

the upstream mixture. This production of velocity divergence
at the weak discontinuity produced by the rarefaction head
explains the strong but short disagreement with the pseudo-
compressible prediction just after t = 0.

It is interesting to understand why the pseudocompressible
approach fails to reproduce this feature. This can be traced back
to the nondimensionalization of the fluctuating field. The latter
is made dimensionless with v for velocity and � for the length
so that the velocity divergence is scaled by �/v. However, at
the rarefaction head the change in mean velocity divergence
over an infinitesimally small distance makes the length scale �

irrelevant for describing the gradients of the fluctuating field.
Figures 5(a) and 5(b) are the spatial counterparts of

Figs. 4(a) and 4(b). Here, the same contributions to correlation
are plotted with respect to the dimensionless abscissas at the
dimensionless time t = 3.5 × 10−2, which means, according
to Table I, in a regime of quite strong interaction but with non-
negligible diffusion-dissipation effects. Figure 5 shows very
good agreement of the pseudocompressible approximation
over the whole turbulent mixing zone. As before, the relative
magnitude of the three contributions differs from place to
place, but the total always agrees with the exact correlation.
The only discrepancy is seen in Fig. 5(b) near abscissa 3.8
and corresponds to the location of the rarefaction head, as
explained previously. At that time, the rarefaction tail is
on the left of the mixing zone, so the latter is completely
inside the rarefaction wave, which is why the mean gradients
contributions are dominant.

In order to get a more direct comparison at the same
time, we show in Fig. 6 a cross section of the fluctuating
velocity divergence directly computed from the simulation
and as obtained from the pseudocompressible approximation.
It can be inferred that the latter acts as a filter removing all
acoustic contributions from the former. Indeed, the acoustic
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FIG. 7. (Color online) Normalized turbulent enthalpy flux h̃′′u′′/h̃
at dimensionless time t = 3.5 × 10−2 during the interaction with the
rarefaction wave. Also shown is a comparison between DNS and the
pseudocompressible model [Eq. (38)].

field radiated from the turbulent mixing zone is clearly visible
in the direct computation together with the rarefaction head
corrugation whereas they are completely removed from the
field obtained with the pseudocompressible approximation.
This figure also allows one to see that even if both correlations
u′∇ · u′ and ρ ′∇ · u′/ρ are well predicted by the model, the
total variance (∇ · u′)2 can be quite different from the pseudo-
compressible one, which retains only the low-Mach-number
part of the fluctuating velocity divergence field because the
acoustic contribution of the flow is non-negligible in these
simulations.

4. Turbulent enthalpy flux

Figure 7 shows the profile of the normalized turbulent
enthalpy flux h̃′′u′′/h̃ at the same time as in the preceding
figures. The values expected from the low-Mach-number
model according to Eq. (38) are compared to the simulated
ones and contributions from both the mass flux [ γ 1

γ 3−1
P
ρ

]u′′
i

and the concentration flux −[ γ 3
γ 3−1

Pα

ρ
− hα]ũ′′

i Y
′′
α are also

displayed. Figure 7 shows close agreement between the
computed enthalpy flux and the modeled one, except in the
middle of the mixing zone where the turbulent intensity is
larger, so some triple correlations unaccounted for become
non-negligible.

VI. CONCLUSION

In this work we derived a pseudocompressible approxima-
tion applicable in the context of shock tube experiments. In
particular, it can be applied to turbulent mixing zones with
density and polytropic index fluctuations. The mean flow can
be time and space varying as well as fully compressible.

The pseudocompressible approximation is obtained via
an asymptotic analysis under the hypotheses (16) assuming
small values of the turbulent, deformation, stratification, and

buoyancy force Mach numbers. The diffusion-dissipation and
rapid distortion regimes are treated separately. The main results
of the analysis are the order of the fluctuating pressure, which
depends on the regime under consideration, and the model (33)
for the fluctuating velocity divergence, which is valid for both
regimes.

The validity conditions of the pseudocompressible approx-
imation (16) also constitute one of the interests of our study
since they allow one to draw a line between pseudocompress-
ible and fully compressible regimes in the context of shock
tube flows. We note that these conditions were approximately
reached in the shock tube experiment of Poggi et al. [32], which
is rather typical of this kind of experiment. Of course, not all
shock tube experiments will fall within the range of application
of the pseudocompressible approximation. In particular, the
validity conditions (16) are compatible with a RDT regime
as long as it remains moderate [Eq. (17)]. More intense RDT
regimes involving acoustic phenomena may be encountered
in shock tube applications: They are almost observed in the
experiment of Poggi et al. [32].

Several consequences of the pseudocompressible approx-
imation on turbulence modeling have also been put forth.
Production terms in the density variance and flux equations
as well as the turbulent transport of energy can be made
compatible with pseudocompressible results.

The results have been validated by means of comparisons
with a numerical simulation, performed with the TRICLADE

code, of the interaction of a rarefaction wave with a turbulent
mixing zone. They are of practical interest for turbulence mod-
eling of stably or unstably stratified compressible turbulent
mixtures, such as those found in geophysical flows, engine
combustion, supernova explosions, or inertial confinement
fusion experiments.

APPENDIX: GRADIENT JUMPS AT THE RAREFACTION
HEAD

The rarefaction head is a weak discontinuity in the sense
that the primitive variables are continuous but their longitu-
dinal gradients jump across it. Assuming weak perturbations,
linearization of the equations allows one to get some insight
into the interaction of the rarefaction head with an upstream
weak turbulence.

The fluctuations of the primitive variables and also their
transverse derivatives are continuous across the rarefaction
head. The jump of the longitudinal derivative of the transverse
velocity is decoupled from the other jumps and related only
to the front corrugation. The system for the jumps of the
other longitudinal derivatives can be solved up to an arbitrary
constant C. Let us denote by x the longitudinal direction, by
xRH the location of the rarefaction head, and by ā the local
mean sound speed. For a left-facing rarefaction, denoting by
[[g]] = g(x+

RH) − g(x−
RH) the jump of g across the rarefaction

head (with the value inside minus the value outside the
rarefaction) and defining

w+
a = p′

ρ̄ā2
+ u′

ā
, w−

a = p′

ρ̄ā2
− u′

ā
, ws = p′

ρ̄ā2
− ρ ′

ρ̄
,
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the following result can be obtained:⎛⎝ [[∂x ws]]
[[∂x w+

a ]]
[[∂x w−

a ]]

⎞⎠= 1

γ − 1

∂xā

ā
(x+

RH)

×

⎛⎜⎝
2γ ′
γ

−p′

P̄
+ ρ ′

ρ̄
− (γ − 1) u′

ā
+ γ ′

γ

−3p′

P̄
− ρ ′

ρ̄
+ (γ − 1) u′

ā
− γ ′

γ
+ 4C

⎞⎟⎠
(xRH)

.

(A1)

For the one-dimensional case, the quantities w+
a and w−

a

respectively correspond to the downstream and upstream
propagating characteristics. For a single gas case, the quantity
ws is an entropy wave and its gradient is continuous across
the rarefaction front. If the upstream weak turbulent field
is assumed to be known, then [[∂xws]] and [[∂xw

+
a ]] are also

known from Eq. (A1) and shown to scale with the sound speed
gradient just downstream from xRH. This implies that the jumps
decrease as the rarefaction extension grows.

It is well known that no wave can propagate from inside
the rarefaction to the head. However, the w−

a waves travel at
the same speed as the rarefaction and the w+

a and ws waves
acts as source terms for w−

a inside the rarefaction. That is
why the value of the constant C depends on the whole history
of the rarefaction. At xRH, the evolution equation for w−

a is
an ordinary differential equation and not a partial differential
equation. It can be solved if the upstream field is known, but
many assumptions are required to get closed solutions.

The important point with respect to the validity of the
pseudocompressible approximation developed in this paper
is that the fluctuating velocity divergence jumps across the
rarefaction head and becomes immediately nonzero even if
the upstream field is divergence-free.
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