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The probability densities of the mean recurrence time, which is the average time needed for a system to recur to
apreviously visited neighborhood, are investigated in various dynamical regimes and are found to be in agreement
with those of the finite-time Lyapunov exponents. The important advantages of the former ones are that they are
easy to estimate and that comparable short time series are sufficient. Asymmetric distributions with exponential
tails are observed for intermittency and crisis-induced intermittency, while for typical chaos, the distribution has
a Gaussian shape. Further, the shape of the distribution distinguishes intermittent strange nonchaotic attractors
from those appearing through fractalization and tori collision mechanisms. Furthermore, statistics performed
on the peaks in the frequency distribution of recurrence times unveil scaling behavior in agreement with that
obtained from the spectral distribution function defined as the number of peaks in the Fourier spectrum greater
than a predefined value. The results of the present recurrence statistics are of relevance in classifying different
dynamics and providing important insights into the dynamics of a system when only one realization of this system
is available. The practical use of this approach for experimental data is shown on experimental electrochemical

time series.
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I. INTRODUCTION

The concept of recurrences in dynamical systems has its
origin from the work of Poincaré [1] who has shown that,
under certain conditions, the orbit of a dynamical system
returns arbitrarily into a neighborhood of each of its former
points with probability one. A recurrence plot (RP) is a
graphical representation of a matrix which receives the value
one when the flow visits the vicinity of its previous points and
is zero otherwise [2], events that are termed as recurrence and
nonrecurrence, respectively. An example of a RP is given in
Fig. 1, where the values one and zero are respectively plotted
as gray and white dots.

Different recurrence quantification measures based on the
statistical properties of the structures in the RPs have been
introduced and applied to various fields ranging from earth
sciences, via biology, to sociology [3.,4]. In particular, the dis-
tributions of the lengths of vertical and diagonal lines formed
by the recurrence points have been exploited in delineating
different dynamical transitions that have been observed in
various systems [3]. Recurrence-based techniques serve as
remarkable tools in analyzing short, noisy, and observational
time series [3]. The present work deals with statistics related
to the vertical lines formed by the nonrecurrence points and
therefore to the recurrence time.

The recurrence time (RT), defined as the time needed for
a trajectory of a dynamical system to recur to a previously
visited neighborhood, can be extracted from a RP. We have
shown that the vertical nonrecurrence points, which are the
white vertical lines in a RP, are a possible estimator of
the RT [5]. Statistics developed on RTs have shown that the
probability density function of RTs for well-developed chaos
is exponential and some scaling laws relating the mean RT
to the information dimension of chaotic attractors have been

1539-3755/2012/85(2)/026217(10)

026217-1

PACS number(s): 05.45.Pq, 05.45.Tp, 05.45.Ac

reported [6]. Furthermore, measures of complexity based on
RTs were successfully applied to detect nonstationarity in
time series and dynamical transitions from regular to chaotic
behavior via strange nonchaotic dynamics [5-7].

Strange nonchaotic dynamics (SND) has been the subject
of much interest, since it was reported by Grebogi et al. [8]. In
the presence of a quasiperiodic forcing, SND usually appears
as an intermediate stage between order and chaos in dynamical
systems. Mechanisms for the birth of strange nonchaotic
attractors (SNAs) in dynamical systems and tools for their
characterization were reported in Ref. [9]. Among them,
the distribution of finite-time Lyapunov exponents (FTLEs)
[10,11] is widely used to characterize SNAs [12-18] and to
distinguish the mechanisms of their birth. FTLEs measure
the rate of separation of volume elements in the phase space
and are computed over finite-time segments along a given
trajectory [10-13]. A variant of these exponents, namely
scale-dependent Lyapunov exponents, has been introduced and
used to distinguish chaos from noise [19]. The distribution of
FTLEs gives rise to typical structures for different dynamical
behavior and has been applied to characterize the dynamics in
a number of physical situations [10-18].

In the present work, we investigate the distribution of
mean recurrence times (MRTS). This distribution is computed
considering short segments of trajectory of a dynamical
system. For each segment, a RP is computed and the related
frequency distribution of RTs is extracted. The MRT is the
mean of this frequency distribution and the distribution of
MRTs is then the probability density of MRTs computed over
all the considered short segments of trajectory. We show that
the distribution of MRTs is capable of distinguishing various
dynamics ranging from typical chaos, intermittency, and crisis-
induced intermittency to different types of SNAs. In particular,
the distribution of MRTs shows typical characteristic shapes
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FIG. 1. (Color online) RP illustrating the estimators of RT's (black
arrows), based on (a) distance between starting points [6] and (c) white
vertical lines [5]. For vertically extended recurrence structures, both
estimators differ and present upper and lower limits of the Poincaré
RT, which would be actually the distance between the midpoints
of the recurrence structures (e). (b), (d), (f) Recurrence points of a
state i illustrating the differences in the estimators for the RT T.
(b) The estimator T as defined by Gao [6] corresponds to the time
distance between the first points falling into the neighborhood of
state i (herei — 2 and i + Tg — 2). (d) The estimator Ty as defined
by white vertical lines [5] corresponds to the time distance between
the last and first points falling into the neighborhood of state i (here
i +2andi 4+ Ty + 2). (f) The Poincaré RT T for the illustrated case.

depending on the underlying dynamics. The distribution has
a Gaussian shape for a typical chaos. For intermittency and
crisis-induced intermittency, the distributions are asymmetric
and possess an exponential tail. Among the different routes
to SNAs, we have considered the Heagy-Hammel (HH)
route [20], the fractalization of a torus (FT) [21], and the
intermittency (IT) [18]. The distribution of MRTs is found to
be asymmetric for SNAs created through these mechanisms;
however, for intermittent SNAs an exponential tail or a slow
decay in the tail is observed. We note that, in addition to
the good agreement of the distribution of MRTs with that of
FTLEs, MRTs have the advantage of their easy estimation also
for real-world data, which are usually short and noisy.
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Furthermore, in this work, in analogy with the spectral
distribution function, we quantify the peaks in the frequency
distribution of RTs extracted from RPs. We have found that
quasiperiodic dynamics and SND show a logarithmic and a
power law behavior, respectively, in agreement with that of
their spectral distribution function [22]. In the following, we
demonstrate our results in the logistic map in the regimes of
typical chaos, type-I IT and crisis-induced IT and transitions
to SNAs (for the above three routes and also in a Duffing
oscillator). To corroborate the practical application of the
proposed recurrence statistics to real-world data, we illustrate
it on experimental data from an electrochemical cell.

The paper is organized as follows. After explaining how
RTs and MRTs can be extracted from RPs in Sec. II, the
characteristic distributions of MRT's corresponding to different
dynamics are presented in Sec. III. We describe in Sec. IV
the statistics on the peaks in the frequency distribution
of RTs. These recurrence based statistics are applied to
electrochemical experimental data in Sec. V. This is followed
by a summary in Sec. VL.

II. RECURRENCE TIME AND MEAN RECURRENCE
TIME EXTRACTED FROM RPS

A. Recurrence time

Given a trajectory, {X;}~_,, of a dynamical system where
X; € R", the RP efficiently visualizes its recurrences and can
be formally expressed by the matrix

R, ;=006 —I%—X;I), i,j=1,...,L, (1)
where 6 is a predefined threshold, ®(-) is the Heaviside
function, and ||-|| denotes a norm (here the maximum norm).
In the coordinate (i, j) of the RP, we can choose black to plot a
point if R; ; = 1 and white otherwise. As already mentioned,
a RT is the time needed for a trajectory of a dynamical system
to return into the neighborhood of a previously visited point
in the phase space. Poincaré RTs can be estimated directly
from a RP, since the distance between recurrence points in
a column of the RP corresponds to the duration until a state
recurs. However, due to consecutive points on a phase space
trajectory falling into the neighborhood of the considered state
(resulting in vertically extended structures in the RP; cf. Fig. 1),
some of these RT's correspond to the tangential motion but not
to the dynamics of the system [3]. Therefore, Gao [6] has
suggested to remove such consecutive recurrence points in a
column of the RP when measuring RTs. This estimator of RT's
coincides with the vertical distance between the starting point
of a recurrence structure with the starting point of the next
recurrence structure, as shown in Figs. 1(a) and 1(b). Such
RTs have been called RTs of second type [6].

We have recently proposed another estimator for the RT
which is based on the length of the white vertical lines in
a RP [5]. This estimator corresponds to the vertical distance
between the end point of a recurrence structure and the starting
point of the next one, as illustrated in Figs. 1(c) and 1(d). Note
that both Gao’s and the white vertical lines approaches for
estimating RTs differ from the Poincaré RTs if the recurrence
structures have some vertical extensions (i.e., lines of thickness
larger than 1, for example, for highly sampled continuous
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systems [3]). For such cases the Poincaré RT would be better
estimated by using the (vertical) midpoints of the recurrence
structures [Figs. 1(e) and 1(f)]. The RT as defined by Gao is,
therefore, an upper limit and the RT based on white vertical
lines is a lower limit of the Poincaré RT.

All the three previously defined estimators allow a reliable
computation of the RT from RPs and they give similar
results as long as the recurrence structures in the RP are
mainly not vertically extended. In the present work, we
have chosen the definition based on the white vertical lines
because it is straightforward. Moreover, for the systems and
their corresponding parameter values considered in this work
we usually do not encounter vertical extensions in the RPs
constraining us to use the estimator described in Figs. 1(e)
and 1(f).

B. Mean recurrence time

For a given trajectory of length L, the MRT M| is obtained
by computing the mean of the frequency distribution p(k) of
white vertical lines of lengths k as

_ Ziike)
Y P

The distribution of MRTs is obtained by dividing a given
trajectory into short segments of length N and computing the
MRT corresponding to each segment. The probability density
P(M,N) of MRTs computed over all the short segments is
defined as the probability that M takes a value between M
and M 4 dM and it reveals typical structures depending on
the nature of the underlying dynamics, as we demonstrate in
the next section. To investigate how the distribution of MRT's
changes with changes of parameters § and N, we consider the
variance of MRTs.

The recurrence statistics proposed in this work depend on
the threshold § used to compute the recurrence matrix of
Eq. (1). For very small §, the RP has less or even no recurrence
points leading to a lack of enough information embedded in
the recurrence structures of the underlying system. Increasing
§ increases the number of recurrence points and other diagonal
or vertical recurrence structures in the RP. A further increase of
§ still increases the number of recurrence points and can lead to
thicker diagonal lines or a merging of some diagonal lines. As a
consequence, some peaks in the frequency distribution p(k) are
no longer existing or are reduced and the distribution becomes
simpler. In such situations, it can give rise to a reduction of
the MRT and a reduction of its variance. Further increase to
very large § produces RPs in which almost every point is a
neighbor of every other point, which, in turn, results in a loss
of meaningful recurrence structures.

On the other hand, very small or high § values do not
always lead to difficulties. It has been shown, for example,
that in the presence of noise large thresholds are preferable
because such thresholds preserve structures in the RP [3].
The choice of § depends not only on the dynamics but also
on the considered system under study. A lot of effort have
been devoted to provide approaches for reliably choosing
8. Several methods have been reported in the literature
([3,4,23,24], to cite a few) and they were successfully applied
for different systems and dynamics also from real life. It
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would be pretentious to say that the choice of § has been
investigated for all the existing systems; however, for a broad
band of systems and dynamics, the available approaches in
the literature make it possible to make a reliable choice.
Throughout this work, we have fixed § as a certain percentage
of the standard deviation o of the data and whose value is
specified at appropriate places in the paper.

The length N of the segments trajectory also plays a role
in the present recurrence statistics. To apply the statistics it
is necessary that the chosen N contains sufficiently enough
dynamics for a reliable computation of the RP. We expect
that for very short N, just small pieces of the underlying
attractor are considered. The probability that each of the
short considered segments displays a different dynamics (or
each segment has information that no other has) is high.
The similarity (S) in the amount of information or dynamics
reflected by the short trajectory segments is then rather low.
The frequency distribution p(k) (therefore, MRT) will then
change drastically over the segments. The variance of MRT's
can then be large. Increasing N increases the considered
portions of the underlying attractor. It is becoming possible to
observe common pieces of information or dynamics reflected
in the trajectory segments. This increase of S is also reflected
in p(k) (therefore in MRT) and it can lead to a decay of the
variance. Further increase of N increases S. For N large
enough such that almost all the underlying (or the entire)
attractor is covered by each segment, S in all the segments
[hence in the respective p(k) and MRT] is very high and one
may then expect further decay of the variance.

In the following, in order to compare and to correlate the
typical structures of the distribution of MRTs corresponding
to a particular dynamics, the distribution of FTLEs is also
estimated. Contrary to the asymptotic Lyapunov exponent
computed over long intervals of time, FTLEs depend on the
initial conditions and their distributions depend on the length
of the time series over which the FTLEs are computed [25].

III. DISTRIBUTIONS OF MRTS IN CHAOTIC,
INTERMITTENCY AND CRISIS DYNAMICS
AND THROUGH TRANSITIONS TO SNAS

A. Typical chaos

To clarify the notion of typical chaos, we use the properties
of correlation functions which play an important role in
characterizing chaotic systems. For systems exhibiting typical
chaotic dynamics the corresponding correlation functions
decay exponentially, whereas for systems exhibiting well
developed chaos the decay of correlations is slower than
exponential. It has been shown that for typical chaos the central
limit theorem [26] holds for a number of averaged quantities
including FTLEs [13,14]. It implies that the distribution of
FTLEs is Gaussian. Now we show that the distribution of
MRTs acquires a Gaussian distribution as that of the FTLEs in
a typical chaotic regime of the logistic map,

Xn+1 = len(l - xn)a (3)

for the value a = 3.7 at which one encounters bands of
unstable periodic orbits which are absent in the fully developed
chaos which occurs at « = 4. Distributions of MRTs and
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FIG. 2. (Color online) Probability density of (a) MRTs and
(b) FTLEs, computed from the logistic map Eq. (3), with « = 3.7
giving rise to a typical chaos and the threshold § = 0.10, where o is
the standard deviation of the data. For each case a Gaussian (dashed
red line) is fitted on the distribution.

FTLEs are estimated from a trajectory consisting of 10
segments where each segment is of length N = 2000 samples.
The probability densities P(M,N) of MRTs and P(A,N) of
FTLEs are shown in Figs. 2(a) and 2(b), respectively. The
distribution of MRTs displays a Gaussian shape as reported
in the case of FTLEs for a typical chaos [16]. The Gaussian
b2
fit to the distributions using the function f(x) = ae_% (for
the values of a = 0.032, b = 12.56, and ¢ = 0.17 for MRT's
and a = 0.029, b = 0.355, and ¢ = 0.007 for FTLEs) are also
shown in Figs. 2(a) and 2(b). The parameters a and b are the
height of the curve’s peak and the position of the center of the
peak, respectively, while ¢ controls the width of the bell.

The dependence of the variance of FTLEs on N, examined
for various dynamics in Ref. [16], has revealed a power law
behavior and an exponent of decay equal to 1.12 was reported
for a typical chaos. We have analyzed the variance of MRTs
for a broad range of N and § values, which is shown in Fig. 3.
The value of N was increased up to 9000 samples, while
6 was increased up to 0.20. This value of § is sufficient in
accordance with the rules for choosing &, which recommend
that & should be chosen as a few percent of the maximum phase
space diameter and it should not exceed 10% of the mean or
the maximum phase space diameter [23,24]. For each value of
N and §, the variance was computed over 2000 segments of
length N and it decays as shown in Fig. 3. To exemplify this
decay of the variance, N is varied as § is fixed at 0.03¢, 0.060,
and 0.1c in Fig. 4(a). Similarly, § is varied as N is fixed at
N = 2000, N = 4000, and N = 8000 in Fig. 4(b). Note that
the respective fixed values of N and § were randomly chosen
and are considered just for illustrative purposes.

FIG. 3. (Color online) Variance of MRTs in dependence on N
and § for a typical chaos in the logistic map Eq. (3), with « = 3.7.
All the axes are in log scale.
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FIG. 4. Illustration of the decay of the variance of MRT's observed
in Fig. 3 for (a) fixed thresholds § = 0.030,§ = 0.060,and § = 0.1c
as N varies and (b) fixed N = 2000, N = 4000, and N = 8000 as §
varies. Both axes are in log scale.

The variance scales as N ™"V, with yy = 0.9350 4 0.0032,
yny = 0.9766 +0.0029 and yy = 1.0053 +0.0034 for the
respectively fixed § [Fig. 4(a)]. For the fixed N, the variance
evolves as §7% just for low values of § [in Fig. 4(b)],
with y5 = 2.5599 £ 0.0117, ys = 2.5914 £ 0.0127, and ys =
2.6352 £ 0.0149, respectively. For the higher values of § [in
Fig. 4(b)] the variance keeps decaying but not as a power
law. The power law decay of the variance of MRTs as a
function of N suggests that the distribution of MRTSs narrows
as N increases. Further, this power law decay is in agreement
with that of FTLEs reported in Ref. [16]. In the next section,
distributions of FTLEs and MRTs are investigated in other
typical regimes of complex systems: IT and crisis-induced
intermittency.

B. Intermittency and crisis-induced intermittency

In chaotic systems, three different types of IT have been
reported and are related to three different inverse bifurcations
[27]. We consider here type-I IT, which appears generally close
to an inverse saddle-node bifurcation. We consider it in the
logistic map, near the period-3 window or near the tangent
bifurcation. The dynamics exhibits trajectories which stay
close to the period-3 orbit (and which form the laminar phase)
and some turbulent chaotic bursts. Its distribution of FTLEs
was reported to be asymmetric, exhibiting a sort of departure
from a normal density and an exponential tail [10,16]. The
tail part could be regarded as a contribution of trajectories
which after staying in the laminar region for some time
bounce out from this region, make an excursion in the irregular
region, and come back again into the laminar one. However,
the distributions of FTLEs for both the laminar phase and
the irregular chaotic bursts when considered separately have,
respectively, a normal density as seen, for example, for the
chaotic dynamics in Fig. 2.

We also consider crisis-induced IT. It occurs where an
unstable period-n orbit collides with a chaotic attractor
consisting of n pieces and when a chaotic attractor collides with
a chaotic saddle to form a much larger chaotic attractor [9].
The remarkable features which happen after the collision are
the sudden widening of the chaotic attractor and the reduction
of the number of its pieces. Because of the widening of the
attractor, some trajectories bounce out from the region of the
phase space where they were confined before the crisis and
make a long excursion into the new region, which was made
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FIG. 5. Probability density of (a) MRTs and (b) FTLEs, computed
using the threshold 6 = 0.10 and data from the logistic map Eq. (3),
with @ = 1 + +/8 — 1076 for which type-I IT is observed.

available by the widening of the attractor, and come back into
their starting region. These trajectories contribute to the tail
part of the distribution of FTLEs for crisis dynamics, which
was reported to exhibit a departure from a normal density and
a tail [16].

We have investigated the distributions of MRTs and
compared them to those of FTLEs for the above dynamics.
We exemplify these distributions in the logistic map Eq. (3)
for o = 1 ++/8 — 107° close to which the dynamics is of
type-1 IT and for « = 3.7447104, at which an interior crisis
occurs. The distributions were computed using 10* segments
with N = 2000 samples each. The distributions of MRTs and
FTLEs are shown in Figs. 5 and 6 for type-I IT and crisis,
respectively. The distributions of MRTs are asymmetric with
an exponential tail as the distributions of FTLEs. For type-I
IT, we have also analyzed values of o which are not very
close to the tangent bifurcation point and the corresponding
distributions are in agreement with those shown in Fig. 5.

The dependence of the variance of FTLEs on N for the
above dynamics was reported to display a power law behavior;
however, for type-I IT a crossover was observed since the
exponents in different ranges of N go from an exponential limit
to a Gaussian limit at large N [16]. We have investigated the
dependence of the variance of MRTs on N and § for the above
dynamics. The first information we get from this investigation
is that for both dynamics the variance decays for a wide range
of § and N values, similar as in Fig. 3. We note further that this
decay is a power law as N is increased while § is kept fixed.
Finally, we note that the exponential tail in the distribution of
MRTs gradually disappears as N increases and for large N the
distribution tends to a Gaussian.
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FIG. 6. Probability density of (a) MRTs and (b) FTLEs, computed
using the threshold § = 0.10 and data from the logistic map Eq. (3),
with o = 3.744 7104 for which an interior crisis occurs.
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From the results shown up to this point, we can conclude
that the shape of the distributions of MRTs and FTLEs can be
used to distinguish typical chaos from type-I IT and crisis
dynamics. We have performed Kolmogorov-Smirnov (KS)
tests to infer how significant the distributions differ through
these dynamics. Our null hypothesis (HO) is that the distribu-
tions do not differ significantly. Comparing the distribution of
MRTs (respectively, distribution of FTLEs) for typical chaos
to that of IT [Figs. 2(a) and 5(a); Figs. 2(b) and 5(b)], the
KS test at a 1% level of significance rejects the HO with
the p values p = 0.002 and p = 5.69 x 107°, respectively.
Comparing the distributions of typical chaos to those of
crisis-induced IT [Figs. 2(a) and 6(a); Figs. 2(b) and 6(b)], the
KS test rejects the HO with the p values p = 6.12 x 1073 and
p = 1.10 x 1077, The KS tests confirm that the distributions
differ significantly through the considered dynamics. Although
the distributions for type-11T and crisis dynamics show similar
global characteristics as shown in Figs. 5 and 6, the p values
(p =9.22 x 107* and p = 0.002) obtained when comparing
their respective distributions [Figs. 5(a) and 6(a); Figs. 5(b)
and 6(b)] suggest that these distributions differ as well. Further
statistics have to be performed to distinguish them and this is
an interesting topic for future work.

C. Transitions to strange nonchaotic attractors

We focus now on the distributions of MRTs for SND. This
dynamics lies in between quasiperiodic motion and chaos. Like
in regular dynamics, the nonchaoticity is related to the absence
of sensitive dependence on initial conditions. The strangeness
refers to the fractal structure of the attractors similar to that
of chaotic attractors. SND has been reported in many systems
ranging from maps and continuous systems to experimental
devices [9]. Different mechanisms through which SNAs can
arise in a forced system have been reported. We have focused
on the following ones: (i) HH route, in which a period-doubled
torus collides with its unstable parent and a SNA is then
created [20]; (ii) FT, in which a torus becomes more and more
wrinkled until it breaks to form a SNA [21]; (iii) IT route in
which a SNA is created through a saddle-node bifurcation [18].
SND has been reported in quasiperiodically forced maps and
since two-dimensional invertible maps could be regarded as
Poincaré sections of three-dimensional flows, SND could also
be observed in flows. In the following, we exemplify the
distributions of MRTs through the above transitions to SNAs
in a map and a continuous system.

1. Transitions to SNAs in a map

We consider the following quasiperiodically forced logistic
map:

Xt = o[l + &' @/a — 1) cosRrb,)]xn(1 — x,),
Opr1 =60, + @ (mod 1), “4)

where the quasiperiodic forcing is applied by making a
rotation of the phase variable 6 with the irrational frequency
o= (/5- 1)/2. The term &'(4/a — 1) represents the forcing
amplitude. The parameters « and &' take different values
according to the mechanism through which the SNA is
created and are specified in the figure caption of Fig. 7. The
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FIG. 7. Distribution of MRTs (a), (¢), (¢) and FTLEs (b), (d), (f)
through transitions to SNAs in the logistic map Eq. (4). (a), (b) FT
route, &' = 1, o = 2.63 for torus, and o« = 2.66 for SNA; (c), (d) HH
route, &' = 0.3, @ = 3.4874 for torus, and o = 3.488 for SNA; (e),
(f) IT route, &’ = 1, « = 3.405 81 for torus, and o = 3.405 805 6 for
SNA.

distributions of FTLEs for the above system through transitions
to SNAs have been reported in Ref. [17]. Distributions of
FTLESs through transitions to SNAs in other dynamical systems
have also been investigated; however, in the works found
in the literature no clear distinction criteria on the shape of
the distribution for FT and HH routes are given. For these
mechanisms the distributions are reported to tend to a Gaussian
even though they do not fulfill all criteria of a Gaussian.
More generally, it has been observed that the distributions are
asymmetric [16-18,28,29]. However, for intermittent SNAs
clear criteria that the distribution of FTLEs fulfills are reported:
The distribution displays a departure from a Gaussian part
followed by a (stretched) exponential tail [16—18,28,29]. These
criteria allow one to distinguish intermittent SNAs from
fractalized and HH SNAs.

For each route to SNAs, we have investigated the distribu-
tions of MRTs for a torus prior to the transition to SNAs and
for a SNA just beyond the transition. The transition from a
torus to a SNA is subtle because both attractors have common
properties and a global stable dynamics. Usually the torus
very close to the transition to SNAs has visually almost the
same appearance as the SNA. One major difference between
both attractors is the fractal structure of the SNA, which
could be shown using some subtle techniques, among them
the phase sensitivity function [9]. One may then not expect a
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large difference between distributions of MRTSs on torus and
SNA in the same process except for the IT mechanism, since
intermittent SNAs are morphologically quite distinct from
those formed through the FT and HH routes. On fractalized
SNAs, points on the attractor stay close to the parent torus (see
Fig. 1 of Ref. [21]). On HH SNAs the points are distributed
within the entire region enclosed by the wrinkled bounding
tori (see Fig. 1 of Ref. [20]), while on the intermittent SNAs,
most points remain near the parent torus with sporadic large
deviations [17,18]. For each mechanism the distributions of
MRTs, computed using both coordinates x and 6, 10* segments
with N = 200 samples each and the threshold § = 0.10 (o
being the standard deviation of the x coordinate) are shown
along with the distributions of FTLEs in Fig. 7 for a torus
prior to the transition to SNAs and for a SNA just beyond the
transition. The asymmetric distributions of MRTs in Figs. 7(a)
and 7(c), and those of FTLEs in Figs. 7(b) and 7(d) correspond
to FT and HH routes, respectively. In Figs. 7(e) and 7(f) both
distributions are also asymmetric; however, a clear deviation
from a normal density and a pronounced tail are observed.
These are typical characteristics of IT.

We have performed KS tests to infer how significantly
the distributions for intermittent SNAs differ from those of
fractalized and HH-SNAs. Our HO is that the distributions do
not differ. Comparing the distribution of MRTs (respectively
distribution of FTLESs) of fractalized and intermittent SNAs
[Figs. 7(a) and 7(e); Figs. 7(b) and 7(f)], the KS test at a
10% level of significance rejects this HO with the p values
p =6.09 x 107 and p = 0.005, respectively. Comparing the
distributions of HH and intermittent SNAs [Figs. 7(c) and
7(e); Figs. 7(d) and 7(f)], the KS test rejects the HO with the
p values p = 2.68 x 107!3 and p = 0.067, respectively. The
KS tests confirm that the distributions of MRTs and FTLEs of
intermittent SNAs differ significantly from those of fractalized
and HH SNAs. The shape of the distributions can then be used
to distinguish among them.

2. Transitions to SNAs in a continuous system

We consider now a damped, two-frequency driven Duffing
oscillator represented as

X =y,
y = —hy +[1 + A(Rcos(¢) + cos(@)]x — x>, (5)
¢ =1,
=9,

where the parameters A =0.3 and Q = (\/3 + 1)/2 are
fixed, while 4 and R are varied through the transitions to
SNAs. A simple experimental realization of this system, the
magnetoelastic ribbon, has been extensively studied [30], and
itis the first system where SNAs were observed experimentally
[31]. Different transitions to SNAs have been reported in this
system for different values of & and R [28], which we have
adapted in the present work to investigate the shapes of the
distributions of MRTs through these transitions: R = 0.47 for
FT, 0.3 for HH, and 0.35 for IT; 2 = 0.0729 and 0.072 in FT,
0.184 and 0.181 in HH, and 0.190 885 64 and 0.190 833 in IT
for torus and SNA, respectively. The system is integrated using
a fourth-order Runge-Kutta algorithm with the integration
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FIG. 8. Distributions of MRTs (a), (c), (¢) and FTLEs (b), (d), (f)
through transitions to SNAs in the system Eq. (5). (a), (b) FT route;
(c), (d) HH route; (e), (f) IT route.

step H = 2m/100R2. Both coordinates x and y are used
and no embedding is performed. After neglecting sufficient
transient, the distributions of MRTs are computed using 10*
segments with N = 2000 integration steps and the threshold
8 =0.10 (o being the average of the standard deviation
of x and y coordinates, respectively). The distributions of
MRTs are shown along with those of FTLEs in Fig. 8§ for all
the three routes. The distributions are asymmetric and those
corresponding to the IT transition [Figs. 8(e) and 8(f)] exhibit
a deviation from a normal density and a pronounced tail,
similar as the ones observed in other distributions shown in
the previous subsections [Figs. 5, 6, 7(e), and 7(f)].

Using the previously stated HO, we have again performed
KS tests to compare the distibution of MRTs (respectively,
distribution of FTLEs) of fractalized and intermittent SNASs
[Figs. 8(a) and 8(e); Figs. 8(b) and 8(f)] on the one hand and
the distributions of HH and intermittent SNAs [Figs. 8(c) and
8(e); Figs. 8(d) and 8(f)] on the other hand. The KS tests at a
10% level of significance reject the HO with the p values p =
5.10 x 107! (respectively, p = 1.91 x 10~*) on the one hand
and p = 9.93 x 107!? (respectively, p = 0.013) on the other
hand. It indicates that the distributions of MRTs and FTLEs of
intermittent SNAs differ significantly from those of the other
SNAs. These distributions can hence distinguish intermittent
SNAs from fractalized and HH SNAs in a continuous system.

From the results of Figs. 7 and 8, we conclude at this point
that the distributions of MRTs can differentiate intermittent
SNAs from the other SNAs in both maps and continuous
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systems. However, we note that methods which are usually
straightforward for maps are not always appropriate for
continuous systems. For example, the discrete time sampling
for maps usually ensures enough dynamics even for short
segments of data. With continuous systems, the sampling rate
should be chosen suitably and allow us to acquire sufficiently
enough dynamics in the considered short segment of trajectory,
leading to a reliable computation of the RP. It has been
shown that even for very simple signals, such as sinusoids,
the sampling time can introduce an intrinsic phase error to
which RPs are sensitive [32].

We have studied the dependence of the variance of MRTs
on N and § for the SNAs investigated in the logistic map
Eq. (4) and the continuous system Eq. (5). For each value
of N and §, the variance was computed over 1000 segments
of length N. For both systems and for the three SNAs, we
note that the variance of MRTs globally decays similarly
as in Fig. 3. Another useful information is that the variance
decays as a power law as N is increased while § is kept fixed.
Finally, we note that as N is increased to large values, the tail
in the distribution of MRTs for intermittent SNAs vanishes
progressively, while the distributions of MRTs for fractalized
and HH SNAs narrow. This suggests that for very large N, the
tail could totally disappear, leading that the distribution could
tend to a Gaussian and therefore the distinction of intermittent
SNAs from other SNAs will be difficult. However, for a wide
range values of N including small ones, this distinction is
clearly possible. This is advantageous for observational data
where usually short data are available only.

IV. SCALING BEHAVIOR FROM FREQUENCY
DISTRIBUTIONS OF RECURRENCE TIMES

In this section, in analogy with the spectral distribution
function (SDF), we quantify the peaks in the frequency
distribution [p(k) in Eq. (2)] of RTs of lengths k extracted
from RPs of quasiperiodic attractors and SNAs. In particular,
we count the number of peaks in p(k) which are greater
than a predefined value. We observe that this number scales
as a logarithmic and power law behavior for two-frequency
quasiperiodic motion and SNAs, respectively. These scaling
behaviors are in agreement with those reported for the SDF
defined as the number of peaks in the Fourier spectrum greater
than a predefined value [22].

For our illustration, we use the following system [33]:

l)'c' 4+ x —cos(x) = K 4+ V[cos(wt) 4+ cos(wrt)],  (6)
p

where w; = (\/5 —1)/2,w, = 1,and p = 3. K and V are the
bifurcation parameters. We have integrated the above system
using a fourth-order Runge-Kutta method with 32 time steps
per period of cos(w,t) and recorded 10000 data points. We
have considered (i) a two-frequency quasiperiodic motion
occurring for K = 1.34 and V = 0.55 and (ii) a SNA for
parameter values K = 1.33 and V = 0.55. Their respective
RPs were computed for § = 0.10 (o being the average of the
standard deviation of x and x coordinates, respectively) and the
peaks in the distribution p(k) from these RPs were quantified.
Varying a threshold S corresponding to the height of the peaks
in p(k) from the minimum to the maximum value of p(k),
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FIG. 9. (Color online) Number of peaks N(S) in the frequency
distribution of RTs which are greater than a predefined threshold S
(circles). (a) Two-frequency quasiperiodic motion, and (b) SND. The
solid line in (a) corresponds to the scaling relation N(S) ~ In(1/S)
and in (b) to the scaling relation N(S) ~ S77, with y =0.39 £
0.0003. The plots are shown in semilog and log-log axes for (a)
and (b), respectively.

we count the number of peaks N(S) which are greater than S.
We note that N(S) differs for both the considered attractors as
shown in Fig. 9. For the quasiperiodic motion, N(S) evolves as
a logarithmic function [Fig. 9(a)], while for the SNA a power
law behavior with a scaling exponent y = 0.39 4 0.0003 is
observed [Fig. 9(b)].

We have performed the same analysis with quasiperiodic
attractors and SNAs from other dynamical systems reported in
Refs. [22,34,35] and found similar scaling behavior as those
shown in Fig. 9. We have investigated the dependence of
N(S) on the threshold § and the length L of the trajectory.
For the quasiperiodic dynamics (respectively for the SNA),
the evolution of N(S) as a logarithmic function (respectively
as a power law) persists even for a large range of § and L.
In the following, we demonstrate that the scaling relations
from the peaks in the frequency distribution of RTs and the
distribution of MRTs are capable of distinguishing dynamics
in experimental time series from an electrochemical cell.

V. APPLICATION TO EXPERIMENTAL
ELECTROCHEMICAL DATA

Recently, Ruiz et al. have experimentally observed SNAs
in a driven excitable system [36]. The experimental setup is
an electrochemical cell configured to study the potentiostatic
electrodissolution of iron in a mixture of copper sulfate and
sulfuric acid. The anode was pure iron. The cathode was a
5-mm-diameter copper rod. The electrolyte solution was a

O -
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FIG. 10. (Color online) Probability density of MRTs computed
from experimental electrochemical data (black solid line): (a)
quasiperiodic motion; (b) SNA. The dashed red line is a Gaussian
fit.
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FIG. 11. (Color online) From experimental data: number of
peaks N(S) in the frequency distribution of RTs which are greater
than a predefined threshold S (circles). (a) Quasiperiodic motion;
(b) SNA. The solid line in (a) corresponds to the scaling relation
N(S) ~ In(1/S) and in (b) to the scaling relation N(S) ~ S~7, with
y = 0.69 £ 0.007. The plots are shown in semilog and log-log axes
for (a) and (b), respectively.

mixture of 1.0M sulfuric acid and 0.4M copper sulfate. A
volume of about 500 ml was maintained in the cell. The anodic
potential (V') was used as the bifurcation parameter onto which
quasiperiodic perturbations were superimposed. The system
observable is the anodic current, which is the current between
the anode and the cathode. Oscillations of this current were
recorded using a 12-bit data acquisition card at a sampling rate
of 250 Hz.

We have analyzed the data corresponding to a quasiperiodic
motion and a SNA recorded in this experiment. For both
the torus and SNA, distributions of MRTs are computed
using the threshold § = 0.20 and segments of trajectory with
N =800 and N = 500 data points, respectively, which are
shown in Fig. 10. A Gaussian (dashed red line) is fitted on
the distribution of MRTs for the torus [Fig. 10(a)], while for
the SNA, the distribution exhibits a sort of departure from
a normal density followed by a tail which are due to two
distinct time scales related to the excitable dynamics exhibited
by the electrochemical cell [Fig. 10(b)]. This distribution
is in agreement with that of SNAs created through IT and
investigated in Sec. III. The number of peaks N(S) in
the frequency distribution of RTs which are greater than a
predefined threshold S is also calculated and is shown in
Fig. 11. A logarithmic behavior is fitted on N(S) for the
quasiperiodic motion [Fig. 11(a)], whereas N(S) for the SNA
has a power law behavior with an exponent of 0.69 &£ 0.007
[Fig. 11(b)].

From the results obtained in this section, one can see that,
given an experimental set of data or data from the real world,
the shape of the distribution of MRTs and the scaling behavior
of the peaks in the frequency distribution of RT's can be used to
identify the underlying dynamics and to differentiate between
dynamics when it is needed. Further, these results confirm that
the proposed recurrence statistics can be successfully applied
on noisy and short time series.

VI. SUMMARY

We have investigated properties of the distribution of
MRTs and scaling behavior of the peaks in the frequency
distribution of RTs in different dynamical regimes such as
IT, crisis, quasiperiodic, and SND. We have compared our
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results with the distribution of FTLEs and the scaling behavior
of the spectral distribution function which have been widely
exploited in the literature in distinguishing different dynamical
behaviors. In particular, we have shown that the distribution of
MRTs shows a Gaussian for typical chaos, while for type-1 IT
and crisis-induced IT, the distribution exhibits a departure from
a normal density followed by an exponential or elongated tail
as reported for the distribution of FTLEs in the corresponding
regimes. We note that, in addition to a good agreement of
the distribution of MRTs with that of FTLEs, MRTs have the
advantage of their easy estimation also in situations where the
equations of motion of the underlying system are not readily
available.

Further, we have also investigated the distribution of MRT's
for different types of SNAs. The distribution is asymmetric
for SNAs created through FT, HH, and IT routes. However,
for the IT case a deviation from a normal density followed
by a pronounced tail can be observed and it allows one to
distinguish intermittent SNAs from the other ones. The scaling
laws extracted from the peaks in the frequency distribution of
RTs of tori and SNAs show a logarithmic and a power law

PHYSICAL REVIEW E 85, 026217 (2012)

behavior, respectively, as observed from their corresponding
spectral distribution function. Furthermore, we have also
shown that these scaling laws and the distribution of MRTs
are capable of characterizing the dynamics in experimental
data from an electrochemical cell.

The results of the proposed recurrence statistics are of
relevance in classifying different dynamics and providing
useful information on the dynamics of the system when only
one realization of the system is available and one wishes to
infer in which dynamical regime the system is. They are also
of practical use in presence of real-world data.
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