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Instabilities and patterns in coupled reaction-diffusion layers
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We study instabilities and pattern formation in reaction-diffusion layers that are diffusively coupled. For
two-layer systems of identical two-component reactions, we analyze the stability of homogeneous steady states
by exploiting the block symmetric structure of the linear problem. There are eight possible primary bifurcation
scenarios, including a Turing-Turing bifurcation that involves two disparate length scales whose ratio may
be tuned via the interlayer coupling. For systems of n-component layers and nonidentical layers, the linear
problem’s block form allows approximate decomposition into lower-dimensional linear problems if the coupling
is sufficiently weak. As an example, we apply these results to a two-layer Brusselator system. The competing
length scales engineered within the linear problem are readily apparent in numerical simulations of the full
system. Selecting a

√
2:1 length-scale ratio produces an unusual steady square pattern.
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I. INTRODUCTION

In 1952, Alan Turing hypothesized that reaction and dif-
fusion could compete to create stationary spatial patterns [1].
This hypothetical mechanism for biological morphogenesis
has been the theoretical foundation for decades of work on
Turing patterns, which form when a rapidly diffusing activator
interacts with a slowly diffusing inhibitor. Nearly 40 years
later, experimentalists observed these patterns in a chemical
reaction-diffusion system [2]. Since then, chemical systems
have been the canonical testing ground for Turing patterns.

A variation on the classic Turing system is the multilayered
system, in which each layer is a reaction-diffusion system
that is diffusively coupled to adjacent layers. These coupled
systems are common in the biological world, seen in neural,
developmental, and ecological contexts [3]. One example from
neuroscience is a neural-glial network, consisting of a layer of
neurons connected diffusively to a layer of glial cells, where
each layer exhibits dynamics at different time scales. The
chemicals released at a tripartite synapse (one glial cell and a
pair of neurons) and their effect on those cells are known [4,5];
however, the effect of glial cells on the network level remains
a subject of ongoing study [6]. Understanding how coupled
layers influence one another contributes to our understanding
of these networks.

Though experimental studies of the biological systems are
quite difficult, investigations of the fundamental properties of
coupled reaction-diffusion systems have progressed via chemi-
cal experiments. Experimentalists employ two thin gels (which
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contain the reactants) that are put in contact with one another.
By adding or removing a permeable membrane between the
layers and by adjusting its properties, the coupling strength can
be altered. This approach with the chlorine dioxide-iodine-
malonic acid (CDIMA) reaction has produced superlattice
patterns called black-eyed and white-eyed patterns, which
involve wavelength ratios of nearly 2:1; other ratios were not
feasible for this reaction and experimental configuration [7].
Recent experiments have exploited the photosensitivity of the
CDIMA chemical reaction, using an external light source to
probe the interaction between different forced patterns [8].
For a broad overview of experimental and numerical results
for some multilayer systems, see Ref. [3].

A few theoretical studies of multilayer systems have taken
place in the setting of diffusively coupled ordinary differential
equations; this framework neglects spatial dependence within
layers (and, hence, spatiotemporal pattern formation) but is
more easily analyzed than the spatial case. Linear stability
analysis and numerical bifurcation studies reveal regimes of
in-phase and out-of-phase oscillations of coupled Brusselators
[9], as well as regimes of synchronization and chaos in coupled
Oregonators [10]. For Brusselators, regions of in-phase waves
and echo waves, whose phase differs by half the period, can
be determined analytically [11,12].

Work incorporating spatial dependence within layers has
also used linear stability and bifurcation analyses to determine
and understand possible patterns, now in the setting of
partial differential equation models of chemical reactions.
For coupled Oregonators, simulations reveal twinkling eye
patterns, Turing spots arranged in a hexagonal lattice that
oscillate 120 degrees out of phase with their nearest neighbors,
and traveling waves in Turing structures, such as pinwheels in
spots and traveling waves in labyrinths [13]. A numerically
computed dispersion relation suggests that the twinkling eye
pattern is due to an interaction of Turing and Hopf modes,
whereas the traveling wave patterns are formed via a short
wave instability [13]. Similar analyses have also elucidated the
bifurcations to time-dependent Turing states and superlattices
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in coupled Lengyel-Epstein equations as parameters vary [14],
in the presence of a delay [15], and with external forcing [16].
Simulations of coupled Brusselators demonstrate superpo-
sition patterns, twinkling eye patterns, and black-eyed and
white-eyed superlattices. They are the result of two interacting
Turing modes and occur when the ratio of the interacting
modes is close to

√
3:1, 2:1, 3:1, [17], or 4:1 [18]. The

Jacobian matrix of this system has been studied numerically
to understand these patterns [18,19]. One analytical study of
coupled Brusselators used a linear stability analysis to obtain
conditions for existence of steady states and nonconstant
solutions [20]. Extending work on coupled layers, Ref. [21]
studies networks of reaction-diffusion systems, which are
closely related to the BZ-AOT experimental system [22].

Analytical calculations for layered reaction-diffusion sys-
tems can be difficult because of dimensionality. For instance,
with m layers of n-component reaction-diffusion systems,
the linear problem is mn × mn; this suggests why even the
linear results for the papers referenced above are largely
numerical. In this paper, we show how the linear calculations
may be simplified and harnessed to engineer certain aspects
of nonlinear pattern formation. For the case of a two-layer,
two-component system, we exploit the block symmetric form
of the Jacobian to analyze the stability of homogeneous
steady states. There are eight possible primary bifurcation
scenarios, and we determine conditions under which each
occurs. One possibility is a Turing-Turing bifurcation that
involves two disparate length scales whose ratio may be
tuned via the interlayer coupling. For systems of n-component
layers and nonidentical layers, the linear problem’s block form
allows approximate decomposition into lower-dimensional
linear problems if the coupling is sufficiently weak. We apply
some results to a two-layer Brusselator system near the Turing-
Turing bifurcation. The competing length scales engineered
within the linear problem are readily apparent in numerical
simulations of the full system. Selecting a

√
2:1 ratio produces

a steady square pattern. Square superlattice Turing patterns
have been previously reported, initially in Ref. [23], under
the influence of external forcing. However, to our knowledge,
a steady pattern of simple Turing squares (moreover, one
obtained without forcing) has not been previously reported.

The rest of this paper is organized as follows. Section II
presents a linear stability analysis of coupled layers of reaction-
diffusion systems, describing in detail the primary bifurcations
for the case of two-layer, two-component systems. The linear
algebra necessary to simplify the calculations is developed in
the Appendices. Section III applies some of the results in order
to engineer nonlinear patterns containing a desired length-
scale ratio, as demonstrated in simulations. We conclude in
Sec. IV.

II. LINEAR ANALYSIS OF COUPLED
REACTION-DIFFUSION LAYERS

We now present results for the (in)stability of trivial
states of coupled reaction-diffusion layers. In Secs. II A
through II C we focus on two-layer systems of identical two-
component layers. Exploiting the block symmetric structure
of the linearized problem, we find convenient expressions for
the eigenvalues that are easily analyzed, and we enumerate

the possible primary bifurcations. In Sec. II D, we mention
a few brief results applying to systems with nonidentical
layers, more complicated coupling schemes, and systems
with more chemical components. Because we begin with
generic reaction-diffusion equations, the results are readily
applied to specific systems such as the Brusselator [24], the
Lengyel-Epstein model [25], and so forth.

A. Derivation of linearized problem

We begin with nonlinear equations describing identical two-
component reaction-diffusion layers that are coupled together:

U̇i = α(Uj − Ui) + F (Ui,Vi) + ∇2Ui, (1a)

V̇i = β(Vj − Vi) + G(Ui,Vi) + D∇2Vi. (1b)

This model describes layers that are identical in their
underlying chemical and physical properties. Throughout this
section, i,j = 1,2, i �= j indicates the layer. Ui(x,t),Vi(x,t)
are chemical concentration fields, x is the spatial coordinate,
t is time, and the over dot represents a time derivative.
The functions F and G are reaction kinetics terms whose
functional form depends on the particular chemical model
under consideration. The diffusivity of U is set to unity by
a rescaling of the spatial coordinate; the diffusivity of V

is D. Without loss of generality, assume V to be the more
rapidly diffusing species, so that D > 1. Finally, α,β � 0 are
coefficients of diffusive coupling between the systems.

We wish to study bifurcations from a spatially uniform
steady state. As pointed out in Ref. [14], different types of
uniform states may be possible. One possibility is that the con-
centrations of the two layers are identical. A second possibility
is that the two layers have distinct (uniform) concentrations
even though the underlying equations are the same. In practice,
the types of steady states that exist are determined by the
particular form of the reaction kinetics functions F,G and the
chemical parameters therein. In this section, as the simplest
case, assume that the two layers share the same uniform steady
state. We relax this assumption in Sec. II D.

Let the uniform steady state be Ui = U ∗, Vi = V ∗. Write
the chemical fields as a perturbation around the steady state,
and express the perturbation as a superposition of Fourier
modes. (

Ui

Vi

)
=

(
U ∗
V ∗

)
+

∑
q

(
ui,q
vi,q

)
eiq·x. (2)

The perturbation has wave number q = |q| and ui,q(t) and
vi,q(t) are Fourier wave amplitudes. The summation and the
admissible q must be interpreted in a manner consistent
with the boundary conditions of the governing equations; for
instance, if the equations are posed on an unbounded domain,
then the summation is actually an integral over all q (per the
Fourier transform). To assess the stability of the steady state,
study the linearized problem governing the perturbations:

u̇i = α(uj − ui) + aui + bvi − q2ui, (3a)

v̇i = β(vj − vi) + cui + dvi − Dq2vi. (3b)

For brevity, and as a convenient abuse of notation, we have
suppressed the q dependence in the subscript of the Fourier
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wave amplitudes. The coefficients a, b, c, and d are given by

a = ∂F

∂U

∣∣∣∣
(U∗,V ∗)

, b = ∂F

∂V

∣∣∣∣
(U∗,V ∗)

, (4a)

c = ∂G

∂U

∣∣∣∣
(U∗,V ∗)

, d = ∂G

∂V

∣∣∣∣
(U∗,V ∗)

. (4b)

It is convenient to write the problem in matrix form. Let
u = (u1,v1,u2,v2)T . The linearized problem is

u̇ = Lu, L =
(

P Q
Q P

)
. (5)

L is of block symmetric form, with blocks

P =
(

a − q2 − α b

c d − Dq2 − β

)
, (6a)

Q =
(

α 0
0 β

)
. (6b)

We show in Appendix A that the eigenvalues of L are the
eigenvalues of L1 = P + Q and L2 = P − Q. Hence, the linear
problem decomposes conveniently into two subproblems
described by the matrices

L1 =
(

a − q2 b

c d − Dq2

)
, (7a)

L2 =
(

a − q2 − 2α b

c d − Dq2 − 2β

)
. (7b)

The matrix L1 is simply the Jacobian corresponding to a
solitary reaction diffusion layer. The effect of the coupling
between layers is seen via L2. Though the full linear problem
is four-by-four with a quartic characteristic polynomial, the
problem decomposes into these two 2 × 2 problems, facilitat-
ing analysis.

B. Global extrema of trace and determinant

In Sec. II C we will consider different bifurcation scenarios
by analyzing the trace τ1,2(q) and determinant �1,2(q) of L1,2:

τ1(q) = a + d − (D + 1)q2, (8a)

τ2(q) = τ1 − 2(α + β), (8b)

�1(q) = Dq4 − (aD + d)q2 + ad − bc, (8c)

�2(q) = �1 + 2(αD + β)q2 + 2(−αd − βa + 2αβ). (8d)

Here, we present two helpful observations.
First, τ1,2(q) are quadratic in q, each with a negative leading

coefficient and no q1 term, and hence have global maxima at
q = 0. We have

τ1(0) = a + d, (9a)

τ2(0) = a + d − 2(α + β) � τ1(0). (9b)

Second, �1,2(q) are even-powered quartics, each with
a positive leading coefficient. Thus, these quantities have
global minima. Label them (q1,min,�1,min) and (q2,min,�2,min).
Whether the global minima occur at zero or nonzero q depends

on the sign of the quadratic coefficient. For �1(q),

If aD + d > 0:

q2
1,min = aD + d

2D
, (10a)

�1,min = − (aD − d)2 + 4Dbc

4D
, (10b)

or

If aD + d � 0:

q2
1,min = 0, (11a)

�1,min = ad − bc. (11b)

Similarly, for �2(q),

If aD + d − 2αD − 2β > 0:

q2
2,min = aD + d − 2αD − 2β

2D
, (12a)

�2,min = − (aD − d − 2αD + 2β)2 + 4Dbc

4D
, (12b)

or

If aD + d − 2αD − 2β � 0:

q2
2,min = 0, (13a)

�2,min = ad − bc − 2αd − 2aβ + 4αβ. (13b)

Finally, note that q2,min � q1,min since α,β � 0.

C. Primary bifurcations

We now consider possible primary bifurcation scenarios.
Naively, L1 and L2 may each give rise to four different primary
bifurcation scenarios: none (linear stability), Hopf bifurcation
(H), Turing bifurcation (T), and Turing-Hopf bifurcation (TH).
Since the full linear problem comprises L1,2, there would be
4 × 4 = 16 primary bifurcation scenarios.

However, due to the particular form of L1,2, any scenario
involving a primary Hopf bifurcation in L2 (that is, H or
TH) is impossible. To see this, assume a primary Hopf
bifurcation due to L2. This requires τ2(0) = 0 per Eq. (9).
However, since τ2(0) � τ1(0) (with equality achieved only in
the trivial case α = β = 0), the assumption means that a Hopf
bifurcation would already have occurred due to L1, and hence
the assumed bifurcation due to L2 would not, in fact, be the
primary one. Therefore, all bifurcation scenarios involving
primary H or TH bifurcations due to L2 are prohibited. This
eliminates eight of the 16 possible scenarios. Of course, if
the layers were not identical, this result would not hold, and
other primary bifurcations might be possible. For an example
involving different Hopf bifurcations, see the nonspatial two-
cell chemical model in [26].

The remaining eight possible primary bifurcation scenarios
are enumerated in Table I. We find the conditions for each case
by analyzing τ1,2(q) and �1,2(q) in the usual way to determine
when a single eigenvalue or pair of eigenvalues crosses
the imaginary axis, with all other eigenvalues contained in the
left half of the complex plane. In these cases we distinguish
between two different classes of bifurcations. First, there
are bifurcations due to eigenvalues in L1, which also occur
in single-layer (traditional) two-component reaction-diffusion
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TABLE I. Summary of possible primary bifurcations of the homogeneous steady state of Eq. (1). The four-dimensional linearized problem
consists of two two-dimensional subproblems per Eq. (7). We distinguish between two different classes of bifurcations. First, there are
bifurcations due to eigenvalues in L1, which also occur in single-layer (traditional) two-component reaction-diffusion systems. These
bifurcations are captured in Cases I–IV and are very well known. Second, there are bifurcations due to eigenvalues in L2, which depend
on the diffusive coupling between the two layers. These are cases V–VIII. Below, a dash indicates no bifurcation, H indicates Hopf, T indicates
Turing, and TH indicates Turing-Hopf. For each scenario, we state generic conditions on the traces and determinants τ1,2(q) and �1,2(q) in
Eq. (8). In practice, we enforce these conditions by controlling the global extrema of τ1,2(q) and �1,2(q); see Sec. II C for details. The wave
number qc refers to a critical wave number; cases VII and VIII have two critical wave numbers.

Bifurcation due to

Case L1 L2 τ1(q) τ2(q) �1(q) �2(q)

I – – τ1(q) < 0 τ2(q) < 0 �1(q) > 0 �2(q) > 0

II H – τ1(0) = 0 τ2(q) < 0 �1(q) > 0 �2(q) > 0
τ1(q �= 0) < 0

III T – τ1(q) < 0 τ2(q) < 0 �1(qc) = 0 �2(q) > 0
�1(q �= qc) > 0

IV TH – τ1(0) = 0 τ2(q) < 0 �1(qc) = 0 �2(q) > 0
τ1(q �= 0) < 0 �1(q �= qc) > 0

V – T τ1(q) < 0 τ2(q) < 0 �1(q) > 0 �2(qc) = 0
�2(q �= qc) > 0

VI H T τ1(0) = 0 τ2(q) < 0 �1(q) > 0 �2(qc) = 0
τ1(q �= 0) < 0 �2(q �= qc) > 0

VII T T τ1(0) < 0 τ2(q) < 0 �1(q1,c) = 0 �2(q2,c) = 0
�2(q �= q1,c) > 0 �2(q �= q2,c) > 0

VIII TH T τ1(0) = 0 τ2(q) < 0 �1(q1,c) = 0 �2(q2,c) = 0
τ1(q �= 0) < 0 �2(q �= q1,c) > 0 �2(q �= q2,c) > 0

systems. These bifurcations are captured in Cases I–IV and
are very well known. Second, there are bifurcations due to
eigenvalues in L2, and thus which depend on the diffusive
coupling between the two layers. These are Cases V–VIII.
They correspond to Cases I–IV but with an additional Turing
bifurcation due to L2.

We apply the generic conditions in Table I to our specific
linear problem Eq. (5) by enforcing conditions on the global
extrema of τ1,2(q), �1,2(q). First, focus on the trace (the
fourth and fifth columns of Table I). An examination of
Eqs. (8) and (9) shows that if τ1(0) < 0, then τ1(q �= 0) < 0,
and similarly for τ2(q). Recall also, as noted in Eq. (9),
that τ2(0) � τ1(0). Thus, for our model, the condition that
τ2(q) < 0, required for all of the bifurcations in Table I, is
subsumed in the condition on τ1(0) and τ1(q �= 0) in that table.

Now focus on conditions for the determinants (the sixth
and seventh columns of Table I). These are easily enforced
by controlling �1,min and �2,min as given by Eqs. (10)–(13).
In cases of Turing bifurcations, the critical wave numbers
q1,c and/or q2,c are identified with the locations of the global
minima, namely q1,min and/or q2,min.

There is still the matter of which expressions out of
Eqs. (10)–(13) apply for each case. For Cases I and II, either
Eq. (12) or (13) will apply for (q2,min,�2,min), depending
on chemical kinetics and parameters. If Eq. (12) applies,
then Eq. (10) must apply for (q1,min,�1,min) since q2,min �
q1,min. If Eq. (13) applies, then one of Eq. (10) or (11) will
apply for (q1,min,�1,min), depending on chemical kinetics and
parameters. Since a Turing bifurcation occurs at a nonzero

wave number, Eq. (10) applies for �1,min in Cases III and
IV. In these cases, either Eq. (12) or (13) might apply
for �2,min, depending on chemical kinetics and parameters.
Similarly, in Cases V–VIII, Eq. (12) applies for �2,min. Since
q2,min � q1,min, Eq. (10) applies for �1,min.

D. Extensions to other layered reaction-diffusion systems

Suppose each layer comprises a reaction-diffusion system
with n chemical components. Then, generalizing Eq. (1), the
governing equations are

U̇i = Q(Uj − Ui) + F(Ui) + D∇2Ui . (14)

As before, i,j = 1,2. i �= j indicates the layer. Ui(x,t) ∈ Rn

is a vector containing concentrations of the n chemical
components in layer i. The vector function F ∈ Rn describes
reaction kinetics. The n × n diagonal matrix Q contains
coupling coefficients,

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
α1 0. . .

αk

. . .0
αn

⎞⎟⎟⎟⎟⎟⎟⎠, (15)
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and the n × n diagonal matrix D contains diffusion coeffi-
cients,

D =

⎛⎜⎜⎜⎜⎜⎜⎝
D1 0. . .

Dk

. . .0
Dn,

⎞⎟⎟⎟⎟⎟⎟⎠, (16)

and ∇2 is understood to operate on each element of Ui .
Assume identical uniform steady states in each layer, Ui =

U∗. Then the linearized problem has the block structure of
Eq. (5), as in Sec. II A, only now

P = dF|U∗ − q2D − Q, (17)

and dF is the Jacobian of F. Of course, now P and Q are
n × n matrices. Nonetheless, many features are preserved from
the 2 × 2 case. The eigenvalues of the two-layer system still
decompose into the eigenvalues of

L1 = P + Q = dF|U∗ − q2D, (18)

L2 = P − Q = dF|U∗ − q2D − 2Q, (19)

where L1 is simply the linear operator corresponding to a
single (uncoupled) layer, and L2 incorporates the effect of the
coupling.

Now, as in Ref. [14], allow the uniform steady state to
comprise different concentrations in each layer (even though
the chemical parameters for each layer are identical) so that

U1 = U∗
1, U2 = U∗

2. (20)

Then the linearized problem is

u̇ = Lu, L =
(

P Q
Q S

)
, (21)

where

P = dF|U∗
1
− q2D − Q, (22a)

S = dF|U∗
2
− q2D − Q. (22b)

In this case, no simple formula exists for the eigenvalues of
L in term of P, Q, and S. However, if we assume that coupling
is weak, that is Q → εQ, where ε � 1, then the eigenvalues
of L are approximately equal to the eigenvalues of P and the
eigenvalues of S. We show this in Appendix B.

We may also suppose that the two layers have distinct
chemical kinetics. For instance, the system might be composed
of two coupled Brusselators, but with a different set of
chemical control parameters selected for each layer. The
governing equations for this case are

U̇1 = Q(U2 − U1) + F1(U1) + D1∇2U1, (23a)

U̇2 = Q(U1 − U2) + F2(U2) + D2∇2U2. (23b)

The two distinct chemical kinetics functions F1,2 and the
two distinct matrices of diffusion coefficients D1,2 reflect the
different chemical parameters in each layer. The linearized

problem has the same form as Eq. (21), only now

P = dF1|U∗
1
− q2D1 − Q, (24a)

S = dF2|U∗
2
− q2D2 − Q. (24b)

The results of the previous paragraph still hold. For weak
coupling, the eigenvalues are approximately those of P and S.

III. MULTIPLE LENGTH-SCALE SELECTION

Section II showed that the uniform steady state of two
identical, coupled reaction-diffusion layers may lose stability
via a codimension-two Turing-Turing bifurcation that involves
two disparate wave numbers. We now examine this bifurcation
in more depth and explore how the strength of coupling
between the layers may be used to tune pattern selection
and encourage the formation of spatial patterns with a desired
length-scale ratio. We apply results to the Brusselator in order
to compute length-scale ratios as a function of interlayer
coupling strength. Finally, we show via numerical simulation
that we are able to engineer nonlinear patterns with preselected
length-scale ratios; this includes a steady square pattern.

A. Length-scale ratios

We now focus on Case VII in Table I, which describes
the codimension-two Turing-Turing bifurcation. Our goal is
to derive conditions for the Turing-Turing bifurcation in terms
of the parameters a,b,c,d,D,α, and β, and to calculate the
length-scale ratio in terms of these parameters. Recall that
the critical wave numbers for a Turing-Turing bifurcation are
q1,c = q1,min and q2,c = q2,min as given by Eqs. (10) and (12).

The condition �1,min = 0 enforces a relationship between
a, b, c, d, and D, independent of the coupling parameters α and
β. The condition τ1(0) < 0 means that a + d < 0. Therefore,
a and d are oppositely signed. Recalling that Eq. (10) applies
for Case VII, we know that aD + d > 0. In order for q2

1,c to
be positive, a must be positive since D > 1. Hence, d < 0.
For the remainder of this section, we assume that parameters
satisfy these inequalities:

a > 0, d < 0, aD + d > 0. (25)

The next condition in Case VII is �2,min = 0. Using
Eq. (10b) and substituting Eq. (12b) yields

(aD − d)2 = (aD − d − 2αD + 2β)2, (26)

from which two possibilities follow. Either

β = αD − aD + d. (27)

or

β = αD. (28)

The first possibility, Eq. (27), describes a line in α-β space,
but the β-intercept −aD + d is negative. Since α,β > 0, the
condition is realizable only for

α >
aD − d

D
. (29)

Substituting Eq. (27), the wave number q2,c from Eq. (12) is

q2,c =
√

3aD − d − 4αD

2D
. (30)
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For a Turing bifurcation, q2,c must be positive. Solving
q2,c > 0 and Eq. (29) simultaneously leads to the inequality
a < 5d/D, which cannot be satisfied because of Eq. (25).
Hence, no Turing-Turing bifurcation is possible for Eq. (27).

The second case, Eq. (28), also describes a line in α-β
space, but it emanates from the origin. Along this line, the
wave number q2,c is

q2,c =
√

aD + d − 4αD

2D
, (31)

which is positive so long as

α <
aD + d

4D
. (32)

Thus, for 0 < α < (aD + d)/4D and β = αD, codimension-
two Turing-Turing bifurcations occur. The wave-number ratio
rq along this bifurcation curve is

rq ≡ q1,c

q2,c

=
√

aD + d

aD + d − 4αD
. (33)

We will later use this result to choose chemical parameters
giving rise to patterns dominated by a desired wave-number (or
alternatively, length-scale) ratio. In an experiment, changing
the coupling for two chemical species independently is gen-
erally not possible, and hence novel experimental approaches
would be needed to fulfill condition Eq. (28).

The issue of wave-number ratios connects to resonant
triad interactions, which are important to the study of some
pattern selection problems. Our discussion here echoes in
some respects the discussions of Refs. [27–30], which study
resonant triads in Faraday waves. Recent work connecting the
understanding of resonant triads to complex nonlinear patterns
and to spatiotemporal chaos appears in [31]. Resonant triad
interactions, the lowest order nonlinear interactions, involve
three modes with wave vectors Q1, Q2, and Q3 satisfying the
condition

Q1 + Q2 = Q3. (34)

For the resonant triads that interest us, Q1,2 lie on a single
critical circle in Fourier space, and Q3 is a weakly damped
mode lying on a different, (nearly) critical circle. Eq. (34)
determines an angle of resonance θres ∈ [0,π ) between the
two critical wave vectors via the trigonometric relationship

cos

(
θres

2

)
= Q3

2Q1
, (35)

where |Q1| = |Q2| = Q1 and |Q3| = Q3. If Q1 < Q3 then
θres ∈ [0,2π/3). If Q1 > Q3 then θres ∈ (2π/3,π ). These two
cases are pictured in Fig. 1.

Resonant triad interactions may impact pattern selection.
Heuristically, the interaction allows energy exchange between
the critical and damped modes. If the damped mode is a sink,
drawing energy from the excited modes, the interaction is an
antiselection mechanism that suppresses patterns involving the
resonant angle. Alternatively, if the damped mode is a source,
feeding energy to the excited modes, patterns involving the
resonant angle—or equivalently, the associated length-scale
ratio—may be enhanced.

For our reaction-diffusion system near the Turing-Turing
bifurcation point, define λ1 as the eigenvalue associated with

θres

Q1

Q2

Q3
θres

Q1

Q2

Q3

(a) (b)

FIG. 1. Diagram of resonant triads in Fourier space. The Fourier
modes satisfy Eq. (34). Solid circles and vectors indicate neutral
stability and dotted ones indicate weak damping. In (a), |Q1,2| < |Q3|
and the resonant angle satisfies 0 � θres < 2π/3. In (b), |Q1,2| > |Q3|
and 2π/3 < θres < π .

q1,c having the largest real part; similarly for λ2 and q2,c. Now,
detune slightly in parameter space from the Turing-Turing bi-
furcation, so that λ1,2 are small and oppositely signed. Consider
the two different possibilities for resonant triads pictured in
Fig. 1. First, assume that the critical modes have a smaller wave
number than the weakly damped one, so that Fig. 1(a) applies.
Recalling that q2,c < q1,c for the Turing-Turing bifurcation
(we exclude the degenerate case of equality), this means that
Q1 = q2,c and Q3 = q1,c. Combining Eqs. (33) and (35) gives
the resonance angle at the Turing-Turing point:

cos

(
θres

2

)
= 1

2

√
aD + d

aD + d − 4αD
. (36)

The right-hand side must be real and must not exceed unit
magnitude. These requirements yield an admissible range of
α in which our resonant triads exist,

0 < α <
3

16

aD + d

D
, (37)

which is a subset of the range in Eq. (32).
For the alternate case, in which the critical modes have a

larger wave number than the weakly damped one, Fig. 1(b)
applies. Then Q1 = q1,c and Q3 = q2,c, and the resonance
angle is

cos

(
θres

2

)
= 1

2

√
aD + d − 4αD

aD + d
. (38)

For this case, the entire range of Eq. (32) is admissible.

B. Multiple length scales in coupled Brusselator layers

As an example, we apply our results to the Brusselator [24].
For this chemical reaction,

F (U,V ) = A − (B + 1)U + U 2V, (39a)

G(U,V ) = BU − U 2V, (39b)

in Eq. (1). A,B are chemical parameters. The steady state
is (U ∗,V ∗) = (A,B/A), and the coefficients a,b,c,d in Eq. (7)
are

a = B − 1, b = A2, c = −B, d = −A2. (40)
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For concreteness, take A = 3, B = 9, as do many of the
examples in Ref. [17]. Then,

a = 8, b = 9, c = −9, d = −9. (41)

To have �1,min = 0 in Eq. (10), the diffusion coefficient must
be D = 2.25. Then,

q1,c ≈ 1.414. (42)

To have a codimension two bifurcation that admits resonant
triads, Eq. (28) must hold. Then,

q2,c = √
2 − 2α. (43)

For these chemical parameters, Fig. 2(a) shows the wave
number ratio rq in Eq. (33) as a function of α at the Turing-
Turing point. Figure 2(b) shows the resonant triad angle θres in
Eqs. (36) and (38), also as a function of α. For the lower (solid)
branch, the resonant triad corresponds to Fig. 1(a), in which the
damped mode has larger wave number than the critical ones.
For the upper (dashed) branch, the resonant triad corresponds
to Fig. 1(b), in which the damped mode has smaller wave
number. For a range of α, either branch is accessible,
depending on how one detunes from the codimension-two
point, i.e., which circle in Fourier space is damped.

C. Numerical simulation

Using the linear stability results and the understanding
of multiple critical length scales near the Turing-Turing
bifurcation, we attempt to engineer patterns with desired ratios
near the Turing-Turing point. As in Sec. III B, we adopt the
Brusselator as our model and choose A = 3, B = 9 in Eq. (39).
We preselect a desired wavelength ratio and set parameters
to be very near the Turing-Turing bifurcation, but such that
one of the (nearly) critical modes has maximum eigenvalue
of 0.01 (and hence can grow) and the other (nearly) critical
mode has maximum eigenvalue −0.01 (and hence is weakly
damped). These conditions determine values of D, α, and β.
The computational domain is periodic and square, with the
length of each side eight times the wavelength of the weakly
growing mode. Starting from a random initial condition, we
integrate the system in spectral space with 64 modes along
each axis using the EXPINT exponential integrator package
for MATLAB [32] with a time step of h = 0.4 and Krogstad
time-stepping. We run simulations to t = 4000, which for our
parameter choices is long enough for the solution to approach
an attractor.

In our first example, we select the wave number ratio
0.5 sec (π/12), corresponding to a resonant angle of 30◦.
These conditions determine D = 2.244, α = 0.723, and β =
1.633 (to three decimal places). Thus, the damped mode has
wave number q = 1.414, and the dominant mode has wave
number q = 0.732. Figure 3(a) visualizes this, showing the
(analytically calculated) eigenvalue with largest real part as
a function of q. Figure 3(b) shows the result of the full
numerical simulation, namely a stripe-dominated pattern that
is sometimes referred to as labyrinthine. The Fourier spectrum
of this pattern in Fig. 3(d) shows active modes lying on two
circles in Fourier space (though it is clearly not dominated by
resonant triad interactions). From the radial power spectrum
of the pattern in Fig. 3(c) (with units chosen so that the

FIG. 2. (a) Ratio rq in Eq. (33) of two (nearly) critical wave
numbers near a Turing-Turing bifurcation in the Brusselator. The
governing equations are Eqs. (1) and (39) with A = 3, B = 9, D =
2.25. The coupling parameter α is a free parameter and β = αD.
(b) Angle of triad resonance corresponding to (a). For the lower
(dashed) branch, the resonant triad corresponds to Fig. 1(a), in which
the damped mode has larger wave number than the critical ones. For
the upper (dashed) branch, the resonant triad corresponds to Fig. 1(b),
in which the damped mode has smaller wave number. See Sec. III B
for details.

dominant peak is normalized to unity), we see that those circles
correspond to the selected wave numbers.

A more ambitious goal is to go beyond selecting a ratio
of length scales and to actually select a particular pattern.
In general, this requires nonlinear analysis. However, we can
show one example where harnessing the linear stability results
does lead to successful pattern selection. For this case, we set
the wave number ratio

√
2:1, so that the resonant angle is 90◦.

Optimistically, one might expect a square pattern, which is
what we obtain in Fig. 4(b). Figure 4(d) shows that the angles
between each dominant Fourier mode are 90

◦
. The chemical

parameters in this case are the same as the previous example,
except that we have changed the coupling parameters to
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FIG. 3. Numerical simulation of coupled Brusselators given by Eq. (1) with Eq. (39). Parameter values are A = 3, B = 9, D = 2.244,
α = 0.723, and β = 1.633 (to three decimal places). (a) The eigenvalue with maximum real part is plotted as a function of wave number.
(b) Striped pattern resulting from this choice of parameters. Dark and light regions indicated variations in concentration of chemical u in the
top layer. The bottom layer looks the same but with light and dark regions reversed. (c) The radial power spectrum of the striped pattern with
units chosen so that the dominant peak is normalized to unity. (d) The Fourier spectrum of the striped pattern.

FIG. 4. Parameter values are A = 3, B = 9, D = 2.244, α = 0.490, and β = 1.113 (to three decimal places). (a) The eigenvalue with
maximum real part is plotted as a function of wave number. (b) Square pattern resulting from this choice of parameters. Dark and light
regions indicated variations in concentration of chemical u in the top layer. The bottom layer looks the same but with light and dark regions
reversed. (c) The radial power spectrum of the square pattern with units chosen so that the dominant peak is normalized to unity. (d) The
Fourier spectrum of the square pattern.
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FIG. 5. Results analogous to, and with the same parameters as, those described in the legend of Fig 4. However, whereas the square
computational domain in Fig. 4 had each side of length eight times the length of the weakly growing mode as determined from linear stability
analysis, here we choose 5

√
3 ≈ 8.7 wavelengths per side in order to verify that the box size was not responsible for stabilizing the square

pattern. Indeed, here we still obtain a square pattern, albeit one with a different orientation. (a) The eigenvalue with maximum real part is
plotted as a function of wave number (identical to Fig. 4(a), reproduced here for convenience). (b) Square pattern. Dark and light regions
indicated variations in concentration of chemical u in the top layer. (c) The radial power spectrum of the square pattern with units chosen so
that the dominant peak is normalized to unity. (d) The Fourier spectrum of the square pattern.

α = 0.490 and β = 1.113 in order to shift the (nearly) critical
peak to the required value of q1,c ≈ 1, shown in Figs. 4(a)
and 4(c). Steady square patterns have been reported in
photosensitive reaction diffusion systems forced with a square
mask [33], and oscillatory square patterns have been observed
in autonomous reaction-diffusion systems with interacting
Turing and Hopf modes [34]. We have not previously seen
an unforced, steady square pattern reported in the chemical
Turing pattern literature and believe that our computational
result in Fig. 4 represents the first such example.

To verify that the square pattern is robust to changes in
domain size—and not dependent on having a computational
domain whose side fits an integral number of wavelengths of
the weakly growing mode—we repeat the calculation of Fig. 4
but use a box size of 5

√
3 ≈ 8.7 wavelengths per side rather

than eight, as before. This computation indeed still produces a
square pattern, as shown in Fig. 5, albeit one with a different
spatial orientation.

IV. CONCLUSION

Layered, spatially extended reaction-diffusion systems are
analytically taxing due to their (potentially high) dimension-
ality. The intriguing laboratory experiments and numerical
simulations of the past decade have been supported by com-
paratively few theoretical works. In this paper, we have sought
to develop some basic theory for simple layered scenarios and
to connect linear results to nonlinear pattern formation.

First, we presented a linear stability analysis for certain
layered reaction-diffusion systems. For two-layer systems of
identical two-component layers, we analyzed the stability of
homogeneous steady states by exploiting the block symmetric
structure of the linear problem. This analysis revealed eight
possible primary bifurcation scenarios, including a Turing-
Turing bifurcation involving two length scales whose ratio
may be tuned via the interlayer coupling. For systems
of n-component layers and nonidentical layers, the linear
problem’s block form allowed approximate decomposition
into lower-dimensional linear problems for sufficiently weak
coupling.

We applied some results to a two-layer Brusselator system
near the Turing-Turing bifurcation. We calculated the ratio
of critical wave numbers as a function of the coupling
parameter and harnessed the analytical results to preselected
chemical and coupling parameters that should give rise
to a particular ratio in a fully (weakly) nonlinear system.
Numerical simulations indeed revealed patterns dominated
by the chosen ratio. In one example, by preselecting a

√
2:1

ratio, we obtained (without external forcing of the system)
a simple, steady square-lattice-based pattern. Our numerical
simulations demonstrate potential applications of our results
as a means of understanding and engineering the instabilities
in layered reaction-diffusion systems. However, to develop a
more complete picture of pattern formation in these systems,
nonlinear analysis is required. We expect future work could
address these detailed questions of pattern selection.
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Finally, we hope that our results might be of use to ex-
perimentalists. For instance, the Lengyel-Epstein model of the
two-layer CDIMA reaction [14] can be written with F (U,V ) =
A − U − 4UV/(1 + U 2), G(U,V ) = BU − BUV/(1 + U 2)
in Eq. (1). The coefficients a,b,c,d in Eq. (7) are a = (3A2 −
125)/γ , b = −20A/γ , c = 2A2B/γ , and d = −5AB/γ ,
where for convenience we define γ = A2 + 25. Assuming that
the Turing-Turing bifurcation conditions of Sec. III A are met,
the wave number ratio rq in Eq. (33) is

√
2:1 when

α = 3A2D − 5AB − 125D

8D(A2 + 25)
. (44)

Experiments performed in this parameter regime might shed
light on whether steady square-lattice-based patterns can
indeed arise.
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APPENDIX A: EIGENVALUES OF BLOCK MATRICES

Here we show a useful identity for the eigenvalues of a
block matrix with the symmetric form relevant to the stability
calculation in Secs. II A–II C.

First we perform a side calculation. Consider a block matrix
of the form

L =
(

P Q
R S

)
. (A1)

Assume S is invertible and factor this as

L =
(

I Q

0 S

)(
P − QS−1R 0

S−1R I

)
, (A2)

where I is the (appropriately sized) identity matrix. Now apply
results from Ref. [35] for determinants of block matrices. For
the factors in Eq. (A2), we have

det

(
I Q

0 S

)
= det(I) det(S) = det(S), (A3)

and

det

(
P − QS−1R 0

S−1R I

)
(A4a)

= det(P − QS−1R) det(I) (A4b)

= det(P − QS−1R). (A4c)

Combine Eqs. (A2)–(A4) to obtain

det(L) = det(S) det(P − QS−1R). (A5)

We now turn to our main calculation of this appendix.
Consider the stability analysis in Secs. II A–II C, in which

case R = Q, S = P in Eq. (A1), and P and Q are identically
sized square matrices. That is,

L =
(

P Q

Q P

)
. (A6)

Seek the eigenvalues by finding the roots of the characteristic
polynomial CL(λ) = det(L − λI) or, more explicitly,

CL(λ) = det

(
P − λI Q

Q P − λI

)
. (A7)

Then, CL(λ) takes the form

CL(λ) = det[P − λI] det[P − λI − Q(P − λI)−1Q], (A8a)

= det[P − λI]2 det[I − (P − λI)−1Q(P − λI)−1Q],

(A8b)

= det[P − λI]2 det[I − {(P − λI)−1Q}2], (A8c)

= det[P − λI]2 det[I − (P − λI)−1Q]

× det[I + (P − λI)−1Q], (A8d)

= det[P − λI − Q] det[P − λI + Q], (A8e)

= det[(P − Q) − λI] det[(P + Q) − λI], (A8f)

= CP−Q(λ)CP+Q(λ). (A8g)

The first line follows from direct application of Eq. (A5).
The second follows from pulling a factor of P − λI out
of the second determinant and combining it with the first.
The third line follows from noting the squared quantity. The
fourth line follows from factoring a difference of squares.
The fifth line follows from redistributing one factor of P − λI
into each of the two other terms. The sixth line follows
simply from commutativity of matrix addition/subtraction, and
the last line follows from the definition of a characteristic
polynomial.

Thus, the characteristic polynomial for Eq. (A6) factors into
that of P − Q and P + Q, and, therefore, the eigenvalues of L
in Eq. (A6) are the eigenvalues of P − Q and the eigenvalues
of P + Q.

APPENDIX B: EIGENVALUES OF BLOCK MATRICES
WITH BLOCKS THAT ARE SMALL IN MAGNITUDE

We now show an approximation for the eigenvalues for a
block matrix of a particular form, where certain blocks are
scaled by a small parameter. Begin with the matrix

L =
(

P Q
Q S

)
, (B1)

which arises as the linearization of a problem considered in
Sec. II D. In fact, P and S include additive factors of Q, so for
convenience, we let P = P̃ − Q and S = S̃ − Q. For the case
of weak chemical coupling, the entries in Q are small, so we
let Q → εQ, where ε � 1 is a small bookkeeping parameter.
Our matrix now has the form

L =
(

P̃ − εQ εQ

εQ S̃ − εQ

)
. (B2)
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The characteristic polynomial is

CL(λ) = det[̃S − εQ − λI] det[̃P − εQ − λI

− ε2Q(̃S − εQ − λI)−1Q] (B3)

= det[̃S − εQ − λI]{det[̃P − εQ − λI] +O(ε2)}, (B4)

≈ det[̃S − εQ − λI] det[̃P − εQ − λI], (B5)

= CS(λ)CP(λ). (B6)

The first line follows from direct application of Eq. (A5).
The second line follows from Jacobi’s formula for the differen-
tial of a determinant. The third line follows from neglecting the
O(ε2) correction, and the final line follows from the definitions
of S and P and from the definition of a characteristic polyno-
mial. Thus, the eigenvalues of Eq. (B1) are approximately
those of P and those of S so long as Q is scaled by a small
parameter.
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