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Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking
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The transition from subcritical to supercritical stationary periodic patterns is described by the one-dimensional
cubic-quintic Ginzburg-Landau equation At = μA + Axx + i(a1|A|2Ax + a2A

2A∗
x) + b|A|2A − |A|4A, where

A(x,t) represents the pattern amplitude and the coefficients μ, a1, a2, and b are real. The conditions for Eckhaus
instability of periodic solutions are determined, and the resulting spatially modulated states are computed. Some
of these evolve into spatially localized structures in the vicinity of a Maxwell point, while others resemble defect
states. The results are used to shed light on the behavior of localized structures in systems exhibiting homoclinic
snaking during the transition from subcriticality to supercriticality.
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I. INTRODUCTION

Recent interest in spatially localized structures and their
organization in bifurcation diagrams exhibiting homoclinic
snaking [1,2] has motivated the study of a number of different
model systems. Such model systems have proved to be of
great value in interpreting the results obtained either by direct
numerical simulation or numerical continuation methods on
much more complex equations such as those arising in fluid
dynamics [3], nonlinear optics [4], and chemical reaction
kinetics [5]. Of these, the Swift-Hohenberg equation in its
various versions has proved to be the most useful [6]. This
equation is a fourth-order partial differential equation (PDE)
for a real order parameter u(x,t) on the real line. Spatially
localized solutions are located in the subcritical regime that
forms in the presence of competing nonlinearities and lie
on two or four solution branches that bifurcate from the
homogeneous solution u = 0 simultaneously with a (subcrit-
ical) branch of spatially periodic states [6]. In domains of
large but finite period the localized states no longer bifurcate
from u = 0 but bifurcate instead from the subcritical periodic
solutions in a secondary bifurcation [7]. In large domains
this bifurcation occurs at small but finite amplitude and is
the result of a modulational instability called the Eckhaus
instability. As one follows the resulting branches of localized
states into the pinning or snaking region, the states first become
strongly localized and thereafter grow in length by repeatedly
nucleating new cells at either end as the solution branches
begin to oscillate back and forth across the snaking region. In
a finite domain this process cannot go on forever, and when the
domain is almost full the branches exit the snaking region and
terminate either on the branch of periodic states from which
they initially bifurcated or on a different one. In each case the
branches terminate in another Eckhaus bifurcation, and theory
shows that the Eckhaus bifurcation of interest is always the one
closest to the fold (saddle node) on the periodic state [8]. The
details of this process are complex and depend on the period
� of the domain and, more specifically, on � mod λc, where
λc is the wavelength of the periodic states at onset [7].
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The above issues become simpler within the cubic-quintic
Ginzburg-Landau equation for stationary wave trains. This
equation describes the evolution of the amplitude A of a
spatially periodic state with critical wave number kc: u(x,t) =
εA(X,T ) exp ikcx + c.c. + h.o.t. Here X = ε2x and T = ε4t

are slow spatial and temporal scales, and ε � 1 measures
the distance from threshold, taken to be of order ε4. Thus,
the branch of periodic states is now identified with the
homogeneous state |A| �= 0. Within this equation nonadiabatic
effects are absent and the snaking region collapses into a point
identified in gradient systems with the Maxwell point, defined
as the point at which the free energy associated with the state
|A| �= 0 vanishes. The nonadiabatic terms describe the pinning
between the fronts bounding the structure on either side and
the pattern within and thereby generate homoclinic snaking
centered on the Maxwell point [9,10]. However, despite
their absence, the cubic-quintic Ginzburg-Landau equation
retains the essential properties of spatially localized states,
including their origin and termination. In addition, it applies
to systems that are not of gradient type. Thus, the cubic-quintic
Ginzburg-Landau equation provides much useful information
about the location of the pinning or snaking region in both
gradient and nongradient systems, and their behavior outside
of this region, as described further below.

Within the supercritical cubic Ginzburg-Landau equation,
localized structures are absent but Eckhaus instabilities remain
of fundamental importance since they define the wave-number
interval around the band center kc within which spatially
periodic solutions with wave number k are stable. On the real
line, this wave-number interval shrinks to zero the closer one
approaches the primary bifurcation [11], i.e., the threshold for
instability of the trivial state |A| = 0. The theory has been
extended to periodic domains with a finite period [12,13]. In
this case the allowed wave numbers are discrete and the wave
number closest to the band center is stable, with the wave
numbers on either side Eckhaus unstable.

In the present paper, we are interested in Eckhaus instabili-
ties in the subcritical case. In this case, one expects on physical
grounds the presence of fifth-order terms in the Ginzburg-
Landau equation. Such terms prevent possible runaway of
spatially homogeneous states and may be brought into the
theory via a systematic expansion that treats the coefficient of
the cubic term as a small quantity whose magnitude is linked
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to the modulation length scale of the pattern. A systematic
study of this problem reveals the presence, in general, of two
additional terms that come in at the same order in perturbation
theory as the quintic term [14,15]. These terms have been com-
puted explicitly from the quadratic-cubic Swift-Hohenberg
equation [6,16] but are present in related computations going
back a number of years [17–20]. These additional terms take
the form i|A|2Ax and iA2A∗

x and substantially affect the
properties of the resulting amplitude equation. In particular, the
latter term renders the dynamics nonvariational, in contrast to
the variational evolution familiar from the supercritical cubic
Ginzburg-Landau equation. Although the resulting equation
has been studied from a geometric point of view [14,18], in
the present paper we seek explicit predictions in the form of
bifurcation diagrams that can be directly applied to systems
such as magnetoconvection in which the direction of branching
changes from subcritical to supercritical as the magnetic
Prandtl number increases [21].

The paper is organized as follows. In Sec. II we introduce
the cubic-quintic Ginzburg-Landau equation for stationary
wave trains in its general form. In Sec. III we employ spatial
dynamics to show that steady solutions are completely deter-
mined by two conserved quantities. We use these quantities to
gain insight into the solution structure and to identify a large
variety of homoclinic and heteroclinic orbits described by this
equation. In Sec. IV we study the stationary solutions of this
equation that bifurcate from the primary branches of spatially
periodic states, and in Sec. V we relate these results to those
from conventional Eckhaus instability analysis and determine
the stability properties of the solutions found in Sec. III and
Sec. IV. The paper concludes with brief remarks in Sec. VI.
Certain details of the analysis are relegated to three appendices.

II. THE CUBIC-QUINTIC GINZBURG-LANDAU
EQUATION

We consider the evolution of the complex amplitude A of
a wave train with wave number kc near a steady-state pattern-
forming instability of a homogeneous state, i.e., we write a
real field variable in the form,

u(x,t) = εA(ε2x,ε4t)eikcx + c.c. + h.o.t. (1)

The scaling of the amplitude A is a consequence of choosing
the coefficient of the term |A|2A to be O(ε2), a condition that
permits us to bring fifth-order terms self-consistently into the
theory. These terms are in turn required to stabilize solutions
when the primary bifurcation is subcritical. The resulting
theory is thus a codimension-two description of the bifurcation
of steady wave trains. Multiple-scale analysis now leads to an
amplitude equation of the form [15,17]

At = μA + Axx + i(a1|A|2Ax + a2A
2A∗

x)

+ b|A|2A − |A|4A, (2)

where μ and b are real O(1) unfolding parameters, a1 and
a2 are two real O(1) coefficients that can be positive or
negative, and the variables x and t now refer to ε2x and
ε4t , respectively. The coefficients of A, Axx and of the
quintic term can always be set equal to 1 by a suitable
rescaling of t , x, and A. However, μ represents the bifurcation

parameter and hence is retained in what follows. In unscaled
variables all terms in this equation are of fifth order, with
ε4μ denoting the distance from the bifurcation point. An
equation of this type can be derived from the quadratic-cubic
Swift-Hohenberg equation near the primary pattern-forming
instability [6,16]. The derivation provides explicit expressions
for the coefficients and, moreover, shows that a term of the
form iAx may also be present on the right side of Eq. (2).
See also Ref. [19]. We mention that the envelope description
is valid, provided |A| > 0 throughout the domain. The spatial
phase of the wave train (1) becomes undefined at zeros of |A|;
thus, zeros of |A| are generally associated with the presence
of phase jumps.

Equation (2) has been studied before. For example, its
primary steady states and their properties were studied by
Doelman and Eckhaus [14] in the special case b = 0 and
by Shepeleva [22] when b �= 0. See also Refs. [18,23,24].
However, despite these papers, our understanding of secondary
solution branches and their stability properties remains incom-
plete. In particular, we focus in the following on the properties
of fully nonlinear spatially modulated states in finite domains
and on the role played by the Maxwell point in the process
of wave-number selection. Our results, including stability
properties, are presented in the form of bifurcation diagrams
describing the transitions among the different states as the
bifurcation parameter μ varies. Our results can be used to
make predictions about the fate of spatially localized structures
during the transition from subcriticality to supercriticality, i.e.,
as b passes through zero.

We begin by noting that Eq. (2) is equivariant under the
three operations:

(i) x → x, A → Aeiφ0 ,

(ii) x → x + x0, A → A,

(iii) x → x1 − x, A → A∗,

where φ0, x0, and x1 are arbitrary constants. The first two
operations are a consequence of translation invariance of
the underlying problem, while the third arises when the
underlying system is invariant under reflections. In this case
the coefficients μ, a1, a2, and b in Eq. (2) must all be real. The
symmetry (iii) renders Eq. (2) spatially reversible.

When a2 = 0, Eq. (2) has gradient structure,

At = −δF (A,A∗)

δA∗ , (3)

where

F (A,A∗) =
∫

�

{
|Ax |2 − μ|A|2 − b|A|4

2
+ |A|6

3

+ ia1

4
|A|2(AA∗

x − A∗Ax)

}
dx (4)

and � is either the whole real line or a finite closed interval.
In particular, in the latter case, all solutions approach a time-
independent state corresponding to a local minimum of the free
energy F (A,A∗) provided F is bounded from below. However,
this is not necessarily the case. In fact, the lower bound on F
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is finite only when |a1| < 4√
3
. This result follows from the

estimate

F �
∫

�

{
|Ax |2 − μ|A|2 − b|A|4

2
+ |A|6

3

− |a1|
2

|A|3|Ax |
}

dx, (5)

which in turn implies, using Young’s inequality, that

F �
∫

�

{(
1 − |a1|

4δ

)
|Ax |2 +

(
1

3
− |a1|δ

4

)
|A|6 − μ|A|2

− b|A|4
2

}
dx (6)

for all δ > 0. It follows that if the domain size is finite and
1 − |a1|

4δ
and 1

3 − |a1|δ
4 are both positive, i.e., |a1| < 4√

3
, then

F is bounded from below. However, when |a1| > 4√
3
, this

is no longer so. To see this we note that the integrand for
periodic wave trains of the form A = R0 exp ikx, where R0 is
a constant, reduces to

R2
0k

2 − μR2
0 − b

2
R4

0 + R6
0

3
+ a1kR4

0

2

≈ R2
0

(
k + a1R

2
0

4

)2

+
(

1

3
− a2

1

16

)
R6

0

for large R0. Thus, for |a1| > 4√
3

the free energy F of wave

trains with k = − 1
4a1R

2
0 diverges to negative infinity as R0 →

∞, thereby permitting the existence of runaway solutions.
The situation is yet more interesting when a2 is nonzero

since no free energy then exists and the time evolution of
the system need not be monotonic. Thus, the presence of
the terms ia1|A|2Ax and ia2A

2A∗
x in the amplitude equation

changes qualitatively the evolution of the system near the
pattern-forming bifurcation. In particular, oscillations may
now be present [22], and these may be expected near the saddle
node on the primary solution branch, where the growth rates
of the amplitude and phase modes are both small and, hence,
comparable.

We remark that for the quadratic-cubic Swift-Hohenberg
equation (a1,a2) = ( 4

21
√

5
,0) [16]. Thus, F is bounded from

below and oscillations are absent. The latter is, of course, a
consequence of the gradient structure of the equation.

III. STATIONARY SOLUTIONS

Stationary solutions of Eq. (2) satisfy the equation

Axx + i(a1|A|2Ax + a2A
2A∗

x)

+ μA + b|A|2A − |A|4A = 0. (7)

In the following, we view this equation as a fourth-order (real)
dynamical system in space. In view of the two continuous
symmetries associated with translations and phase shifts the
equation has two conserved quantities [14]

E ≡ (μ + 2a2L)|A|2 + |Ax |2 + b

2
|A|4

−
[

1

3
+ a2(a1 + a2)

6

]
|A|6, (8)

L ≡ i

2
(AA∗

x − A∗Ax) + a1 + a2

4
|A|4. (9)

In terms of A(x) = R(x)eiφ(x), where R(x) and φ(x) are real-
valued functions, these take the form

E = (μ + 2a2L)R2 + (R2
x + R2φ2

x

)+ b

2
R4

−
[

1

3
+ a2(a1 + a2)

6

]
R6, (10)

L = R2φx + a1 + a2

4
R4. (11)

Thus,

R2
x + U = E, (12)

where

U (R; μ,L) ≡ L2

R2
+
(

μ + 3a2 − a1

2
L

)
R2 + b

2
R4 + βR6

(13)

and β ≡ (a1+a2)2

16 − a2(a1+a2)
6 − 1

3 [14]. The problem (7) has thus
been reduced to that of a particle of energy E in a potential
U . The form of the potential depends on the integral L as
well as on the bifurcation parameter μ. Thus solutions of
Eq. (12) come in two-parameter families, specified by the
values of E and L. In general, the solution of Eq. (12)
will be a periodic function of x. In view of the fact that
φx = (L/R2) − 1

4 (a1 + a2)R2, this solution corresponds to a
complex amplitude A(x) with two frequencies, one associated
with oscillations in the amplitude R(x) and the other with
oscillations in the spatial phase φ(x). In the following we refer
to such solutions as two frequency states, while noting that in
periodic domains with finite spatial period the two frequencies
must be rationally related. In the following, we write φx ≡ k

and refer to k as the wave number. Of particular interest are
equilibria of Eq. (12) with R = R0, where R0 is a constant. If
the associated φx ≡ k �= 0, such a solution corresponds to a
wave of constant amplitude R0. We call such solutions rotating
waves (RW) by analogy with the corresponding solution in the
time domain, cf. Refs. [25,26]. Likewise, periodic solutions
of Eq. (12) with k = 0 will be called standing waves (SW).
Both solution types are single-frequency states. We mention
that equilibria with k = 0 correspond in the original problem
[Eq. (1)] to periodic wave trains with wave number kc, while
equilibria with k �= 0 (i.e., RW) correspond to periodic wave
trains with wave number kc + k. In contrast, SW correspond
to spatially modulated wave trains. Finally, homoclinic and
heteroclinic orbits correspond to spatially localized states and
fronts, respectively.

The notion of stability within Eq. (7) refers to spatial
stability. In particular, the loss of stability of an equilibrium
corresponds to the appearance of new steady states with an
x-dependent amplitude R and phase φ. Such bifurcations occur
at amplitudes R0 defined by UR = 0 and satisfying URR > 0,
where

URR = 8k2 + 4[b + (a1 + a2)k]R2
0 + 2

(
a2

1 − a2
2 − 4

)
R4

0 .

(14)

026211-3



HSIEN-CHING KAO AND EDGAR KNOBLOCH PHYSICAL REVIEW E 85, 026211 (2012)

To demonstrate this result, we write A = (R0 + r) exp i(kx +
φ0 + ψ) and take |r| � 1, |ψ | � 1. The linearized system of

equations governing the evolution of the perturbations r and
ψ is then given by

d

dx

⎛
⎜⎜⎜⎝

r

s

ψ

q

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 1 0 0

− 1
2

(
URR + URL

∂L
∂R

)
0 0 −URL

2
∂L
∂k

0 0 0 1

0 − 1
R2

∂L
∂R

0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

r

s

ψ

q

⎞
⎟⎟⎟⎠ , (15)

where the coefficients are all evaluated at R = R0 and φx = k.
The associated spatial eigenvalues and eigenvectors are

λ1,2 = 0, v1,2 =

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠ ; λ3,4 = ±

√
−URR

2
,

v3,4 =

⎛
⎜⎜⎜⎝

±√−URR/2

−URR/2

− 1
R2

∂L
∂R

∓ 1
R2

∂L
∂R

√−URR/2

⎞
⎟⎟⎟⎠ .

The equilibrium is elliptic when URR > 0 and hyperbolic when
URR < 0. The degenerate solution with UR = URR = 0 is, in
general, a saddle but can be elliptic if URRR = 0, URRRR > 0.
Such an equilibrium is given by R2

0 = − b
8β

and occurs when

b = −8(L2β3)1/4 and μ + 3a2−a1
2 L = 6(L2β)1/2, where β > 0

and, hence, b < 0. When the energy E is increased above
that for a local minimum, periodic solutions bifurcate from
the elliptic equilibrium, and these correspond to quasiperiodic
wave trains whose amplitude oscillates with spatial period
close to 2π

√
2/URR .

We begin with the equilibria R = R0(k). With φx ≡ k these
satisfy the polynomial equation

μ − k2 + [b + k(a2 − a1)] R2
0 − R4

0 = 0. (16)

Thus, homogeneous states k = 0 set in first as μ increases,
followed by spatially inhomogeneous RW at μ = k2. The
amplitude R0 of these states is given by the roots R±

0 of this
equation,

(R±
0 )2 ≡ 1

2 [b′ ±
√

b′2 + 4(μ − k2)], (17)

where b′ ≡ b + k(a2 − a1). Thus, when b′ � 0 (the super-
critical case), only the R+

0 solution exists and it bifurcates
supercritically from the trivial state at μ = k2. This solution
is stable (in time) with respect to amplitude perturbations,
i.e., perturbations with the same wave number k as the
solution. When b′ > 0 (the subcritical case), a saddle-node
bifurcation occurs at μsn(k) ≡ k2 − b′2

4 , creating both R−
0

and R+
0 solutions, with R−

0 unstable and R+
0 stable. The

R−
0 branch connects to the trivial state at μ = k2 via a

subcritical bifurcation. When (a2 − a1)2 − 4 < 0, the curve
μ = μsn(k) has positive curvature, leading to a modest interval
of bistability [Fig. 1(a)], and under this condition the global
existence of solutions has been proved [27]. In contrast,
when (a2 − a1)2 − 4 > 0, the curve μ = μsn(k) has negative
curvature, leading to a subcritical region that broadens rapidly
with increasing wave number k [Fig. 1(b)]. These differences
are reflected in the bifurcation diagrams at fixed k shown
in Fig. 2 and, more dramatically, in bifurcation diagrams
constructed for fixed μ > 0 [Figs. 3(a) and 3(b)] and μ < 0
[Figs. 3(c) and 3(d)], cf. Ref. [14]. The lines |a2 − a1| = 2 in
the (a1,a2) plane are shown in Fig. 4 and are tangent to the
curve β = 0 at the points (a1,a2) = ±(

√
3,1).
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FIG. 1. The existence region in parameter space of periodic states when (a) a2 − a1 = 1, b = 1, and (b) a2 − a1 = 3, b = 1. In both cases
the state R+

0 exists for μ > k2 if b′ < 0 and for μ > k2 − b′2
4 if b′ � 0; R−

0 exists in the region between μ = k2 and μ = k2 − b′2
4 , but the curve

μ = k2 − b′2
4 in (a) and (b) has positive (negative) curvature depending on the sign of (a2 − a1)2 − 4.
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FIG. 2. Bifurcation diagrams showing R2
0 as a function of μ for [(a) and (b)] |a2 − a1| < 2, [(c) and (d)] |a2 − a1| > 2. Panels (a) and (b)

are for a2 − a1 = 1, b = 1 and show (a) k � 0 and (b) k � 0. Panels (c) and (d) are for a2 − a1 = 3, b = 1 and show (c) k � 0 and (d) k � 0.
Solid (dashed) lines indicate solutions that are stable (unstable) in time with respect to amplitude perturbations. These correspond to R+

0 and
R−

0 , respectively.

Different types of spatially modulated states can be deter-
mined by examining the shape of the potential U (R; μ,L).
Figures 5–6 classify the possibilities for L = 0 and L > 0,
respectively. The L < 0 case can be obtained from L > 0
by changing the signs of a1 and a2. These results allow
us to identify different types of homoclinic and heteroclinic
orbits that play an important role in what follows. Explicit
expressions for these orbits may be found in Appendix A.

Of these, the heteroclinic orbits play the most important
part. Due to the shape of U (R; μ,L) such orbits necessarily
involve the trivial state R = 0 and require the conditions E =
L = 0. In addition, we require that the potential U (R; μ,0) has
a pair of local maxima, one at R = 0 and one at R = RM �= 0,
both of the same height. This condition defines the equivalent
of a Maxwell point for the present system, μM = b2

16β
< 0,

and requires b > 0, β < 0. The resulting heteroclinic orbit
connects the trivial state R = 0 to a periodic wave train with
R2

M = − b
4β

and kM = (a1+a2)b
16β

and, hence, corresponds to a
front between the trivial state and a spatially periodic pattern
(see Fig. 7 and Appendix A). Note that kM �= 0 whenever a1 +
a2 �= 0. One can check that μsn(kM ) � μM < 0 with equality
when

a2(a1 + a2) = 4. (18)

It follows that if a2(a1 + a2) < 4, then the amplitude RM

belongs to the R+
0 (kM ) branch and is then referred to as

R+
M ; if a2(a1 + a2) > 4, the amplitude RM belongs to the

R−
0 (kM ) branch and is then referred to as R−

M . Since R+
0 is

amplitude-stable while R−
0 is amplitude-unstable it follows

that in the former case the front connects two stable states,
while in the latter case it connects a stable state (A = 0) to an
unstable state (A−). This distinction is of great consequence
for the stability and motion of the front. The curve (18) is also
shown in Fig. 4.

In Fig. 8, we show for comparison two different homoclinic
orbits, the first homoclinic to the trivial state (A = 0) and the
second to a nontrivial state (A �= 0).

IV. STEADY-STATE BIFURCATIONS FROM PRIMARY
BRANCHES

From the discussion in Sec. III, we know that quasiperiodic
solutions can bifurcate from the primary branch with fixed
wave number k when the equilibrium point corresponding to
the amplitude R0(k) is elliptic. The period of the associated
amplitude modulation is approximately equal to 2π

√
2/URR

near the original periodic state. If the domain size is finite,
boundary conditions select a discrete set of branches from
the continuous family of such solutions parametrized by the
constants of integration E and L. Since solutions satisfying
Neumann boundary conditions (NBC) on a domain of length
� satisfy periodic boundary conditions (PBC) on a periodic
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FIG. 3. Bifurcation diagrams showing R2
0 as a function of k when (a) μ = 1, a2 − a1 = 1, (b) μ = 1, a2 − a1 = 3, (c) μ = −1, a2 − a1 = 1,

and (d) μ = −1, a2 − a1 = 3. Solid (dashed) lines indicate solutions that are stable (unstable) in time with respect to amplitude perturbations.

domain of period 2�, we focus in the following on stationary
solutions satisfying NBC at x = 0,�:

Rx = 0, sin φ = 0. (19)

We mention that more generally periodic boundary conditions
on u(x), i.e., u(x + 2�) = u(x) for all x, imply the boundary
condition

A[ε2(x + 2�)] exp 2ikc� = A(ε2x), (20)

for all x on the amplitude A.

In the following we plot bifurcation diagrams showing
the solution amplitude measured by the quantity ‖ · ‖H1 as
a function of the parameter μ, where

‖A‖H1 ≡
(

1

�

∫ �

0
|Ax |2 + |A|2dx

)1/2

. (21)

A. Bifurcations from the k = 0 primary branch

Since the k = 0 branch is the first of the (subcritical)
primary branches to set in for b > 0 as μ increases, we present
in Figs. 9–15 the k = 0 branch together with a number of
secondary branches, computed using the continuation software
AUTO [28]. These consist of states with spatially varying
amplitude R(x) and phase φ(x) and bifurcate from the k = 0
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FIG. 4. (Color online) The (a1,a2) plane
splits into a number of regions with different
behavior (see text). Black dots indicate the
parameter values used in subsequent figures,
with the numbers indicating the corresponding
figure. The region β ≡ (a1+a2)2

16 − a2(a1+a2)
6 −

1
3 < 0 (between solid black lines) contains
heteroclinic solutions between the origin and
either R+

0 [if a2(a1 + a2) < 4] or R−
0 [if a2(a1 +

a2) > 4]. The line α ≡ a2
2 − a2

1 = 0 plays a
role in determining the sequence of secondary
bifurcations (Sec. IV) while the sign of α + 4
plays an important role in the temporal analysis
(Sec. V).
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FIG. 5. The potential U (R; μ,L) when L = 0, drawn reflected in R = 0. (a) μ = −1, b = 1, β = 0.9 (μ < 0, β > 0). (b) μ = 1, b = −1,
β = −0.9 (μ > 0, β < 0). (c) μ = −1, b = 5, β = −1 (μ,β < 0 and b > 4

√
μβ). (d) μ = 1, b = −5, β = 1 (μ,β > 0 and b < −4

√
μβ).

(e) μ = −1, b = 3.7, β = −1 (μ,β < 0 and 2
√

3μβ < b < 4
√

μβ). (f) μ = 1, b = −3.7, β = 1 (μ,β > 0 and −4
√

μβ < b < −2
√

3μβ).
(g) μ = −1, b = 3.3, β = −1 (μ,β < 0 and b < 2

√
3μβ). (h) μ = 1, b = −3.3, β = 1 (μ,β > 0 and b > −2

√
3μβ).

branch in secondary bifurcations we refer to as Eckhaus
bifurcations (see Sec. V). These secondary branches either
terminate on the same k = 0 branch or do so on a different
primary branch (k �= 0) or not at all. Figure 9 reveals that
when a1 = a2 = 0 [29,30] the secondary branches originate
and terminate on the same k = 0 primary branch. Each branch
can be labeled by a pair of integers (n,m) specifying the
number of half wavelengths of R(x) and φ(x) within the
domain �. Solutions with n = 1 (the first secondary branch)
bifurcate nearest to the primary bifurcation at μ = 0 and
terminate nearest to the saddle node. Figure 10(a) shows
typical results when a1a2 �= 0. In this case, unless b is too
small [Fig. 10(b)], the n = 1 branch no longer terminates
on the k = 0 primary branch but terminates instead on the
primary branch with k = π/�. However, since an n = 1
Eckhaus instability near the k = 0 saddle node remains, a
new n = 1 branch bifurcates from the k = 0 branch near the
saddle-node bifurcation and this time extends monotonically
to larger amplitudes. States of this type represent a defect in the
original wave train with wave number kc that may be located
either in the center of the domain or at its boundary, e.g.,
Fig. 12(b), and we refer to them as defect states [7]. These states

resemble those familiar from studies of the Eckhaus instability
for supercritical Ginzburg-Landau equation [12,13] but are
present here even for k = 0. The figures show that the defect
states bifurcate from the k = 0 branch either below or above
the saddle node, depending on parameters; for increasingly
negative b the bifurcation point moves to larger and larger
amplitude, leaving behind stable supercritical periodic states.
The termination points of the smaller amplitude secondary
branches may likewise lie below or above the saddle node.
Figures 11–13 show that these basic effects of the presence
of the coefficients a1, a2 persist to other values provided
a2

1 − a2
2 − 4 < 0 [see Eq. (14) with k = 0]. In contrast, when

a2
1 − a2

2 − 4 > 0 (Figs. 14 and 15) the secondary branches
are all strongly subcritical and all terminate on branches with
k �= 0. The curves a2

1 − a2
2 − 4 = 0 are also shown in Fig. 4.

It will have been noticed that all secondary branches
bifurcating from R−

0 , except those bifurcating close to the
saddle node, develop a protosnaking region with a sud-
den increase of H1 norm located near the Maxwell point
μM = b2

16β
< 0. This point plays a fundamental role in un-

derstanding the behavior shown in Figs. 9–15. We have
seen that at μ = μM , a heteroclinic connection between
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2
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FIG. 6. The potential U (R; μ,L) when L = 1. (a) μ = 1, b = 4, a1 = 1, a2 = 1 [β < 0, R2
0,− > 0, R4

0,−(μ′ + bR2
0,−/2) > 2L2].

(b) μ = 1, b = −1, a1 = 1, a2 = 1, [β < 0 and at least one of the other conditions in (a) is violated]. (c) μ = 40, b = −20, a1 = 4,
a2 = 0.5 [β > 0,b < 0,0 < 32βμ′ < 3b2,R4

0,+(μ′ + b′R2
0,+/2) < 2L2]. (d) μ = 40, b = 5, a1 = 4, a2 = 0.5 [β > 0 and at least one of the

other conditions in (c) is violated]. Here μ′ ≡ μ + 3a2−a1
2 L and R2

0,± ≡ −b±
√

b2−32βμ′/3
8β

.
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FIG. 7. The profile ReA(x) from Appendix A, Eq. (A1), of the
heteroclinic solution at μ = μM ≈ −0.0146 when b = 1, a1 = 1, and
a2 = 6.

A = 0 and A = RM exp ikMx is present (Fig. 7). Although one
might expect the presence of homoclinic snaking extending
over a finite interval whenever kM �= 0, this is not the case
here due to the absence of a coupling between the front and
the spatial oscillations with wave number kM . As a result the
snaking region collapses to a single point μ = μM . Despite
this, the presence of this point determines the branch on which
the secondary branches involved terminate. This is because the
presence of the heteroclinic orbit at μ = μM determines the
wave number kM , and this wave number in turn determines
the primary branch on which the branches terminate. For
example, in Fig. 9, the selected wave number kM = 0 and
all secondary branches terminate on the k = 0 branch from
which they first bifurcated. In Fig. 10, the wave number
kM ≈ −0.0696 and indeed the n = 1 branch no longer
terminates on a k = 0 branch and instead terminates on a
primary branch with wave number closest to kM that is
compatible with the imposed NBC and domain length �,
viz. |k| = π/� = 0.0625 (m = 1). The secondary branches
with n � 2 do not come sufficiently close to forming the
heteroclinic orbit and so continue to terminate on the k = 0
branch. In Figs. 11 and 12 the corresponding wave numbers
are kM = −0.1424 (m = 2) and kM = −0.2174 (m = 3) and
these wave numbers determine the type of change that must
take place before the different secondary solutions can

approach the heteroclinic connection. These changes are
illustrated clearly in the lower panels in Fig. 11 which show that
the branches bifurcating at points 1 (n = 1) and 2 (n = 2) both
become m = 2 states despite bifurcating at different locations
from the k = 0 branch. Since phase has to be added along
these secondary branches for these changes to take place it
follows that the quantity L in the potential U (R; μ,L) must
either pass through zero in order that the phase may jump by π

or remain identically zero so multiple phase changes can take
place.

In Figs. 9–12 the heteroclinic orbit that forms at μM

connects the states R = 0 and R+
M . In Fig. 13 it connects

instead the states R = 0 and R−
M , i.e., a stable state R =

0 to an amplitude-unstable state R−
M . In such a situation

the associated front will move, allowing the stable state
to invade the unstable state. For the cases a2

1 − a2
2 − 4 > 0

with (a1 − a2)2 − 4 < 0 (Fig. 14) and a2
1 − a2

2 − 4 < 0 with
(a1 − a2)2 − 4 > 0 (Fig. 15), the predictions μM ≈ −0.197,
R+

M ≈ 1.255, kM ≈ −0.906 (Fig. 14) and μM ≈ −0.0941,
R+

M ≈ 0.8677, kM ≈ −0.207 (Fig. 15) continue to agree well
with the numerical computations shown in the figures. Thus,
the wave-number selection process via the formation of a
heteroclinic connection continues to determine the termination
points of the secondary branches even when the k �= 0 primary
branches are highly subcritical.

The above bifurcation diagrams have all been obtained
for a domain of one given length, � = 16π . When � is
increased, the termination points of the secondary branches
must switch to branches containing extra wavelengths of the
Maxwell wavelength λM = 2π/kM . The mechanism whereby
this occurs has been studied in detail in gradient systems, such
as the 2–3 and 3–5 Swift-Hohenberg equations [7,30], and
is relatively well understood. Similar behavior has also been
found in nongradient systems such as the partial differential
equations describing natural doubly diffusive convection [7].
For these reasons we do not study the details of these transitions
in this paper.

B. Bifurcations from the k = 1 primary branch

In Figs. 16 and 17 we show the corresponding results for
the primary k = 1 bifurcation. As shown in Appendix B, when
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FIG. 8. (a) Homoclinic solution to A = 0 at μ = 0 when b = −2, β = 1, and a1 + a2 = 64 [Appendix A, Eq. (A5)]. (b) Homoclinic
solution to a nonzero equilibrium corresponding to a rotating wave at μ = −1 with R0 ≈ 1.1791 and k = −1.3903 when b = 3.5, a1 = a2 = 2
[Appendix A, Eq. (A6)].
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FIG. 9. (Color online) Bifurcation diagrams for subcritical stationary solutions with k = 0 with several secondary branches of nonuniform
states satisfying NBC. Parameters: a1 = 0, a2 = 0, � = 16π . (a) b = 0.5. (b) b = 0.2. (c) Sample profiles R(x) along the branch bifurcating
from point 1 in (a).

a1 = a2 = 0 two steady-state branches bifurcate together from
μ = 1. The prediction follows from a careful analysis of the
symmetry of the problem when periodic boundary conditions
are imposed and is confirmed in Fig. 16. The larger amplitude
branch consists of RW states of the form A = R0 exp i(x +
φ0), where R0 is a constant, while the smaller amplitude branch
consists of SW states of the form A = R(x) exp iφ0, where
R(x) is x dependent and near μ = 1 resembles cos x. Here φ0

is an arbitrary phase. Both states, of course, satisfy periodic
boundary conditions in space and can be translated in x to
satisfy the imposed NBC. Figure 16(a) also shows that the RW
and SW branches may be connected by a secondary branch of
time-independent states, of the form A = R(x) exp i(φ(x) +
φ0), while other secondary branches bifurcating from the RW
branch develop into defect states and extend monotonically to
large amplitude [Fig. 16(d)]. Figure 16 shows that the former
are periodic since both R(x) and φ(x) oscillate with same
frequency, while along the latter R(x) and φ(x) oscillate with
different frequencies and the solutions appear quasiperiodic.

Once either a1 or a2 is nonzero, a similar analysis shows
that the RW branch splits into two distinct rotating waves
RW±, both of which continue to bifurcate simultaneously from
μ = 1. In addition, when 0 < |k(a1 + a2)| < |b| the SW state
turns into a mixed mode (MW) state that bifurcates from the
A = 0 state simultaneously with the RW±. The MW are no
longer present as a primary branch once |k(a1 + a2)| > |b| (see
Appendix B). Figure 17(a) shows the RW± in the subcritical
case when a1 = 0.6, a2 = 0.8, b = 0.5. Thus, in this case
no MW are present as a primary branch although the figure

reveals the presence of two types of finite-amplitude secondary
branches resembling states of this type. The first type bifurcates
from the k = 1 RW+ branch below the saddle node and
terminates on a primary branch with k �= 0,1. The second type
represents defect states that extend to large amplitudes without
termination. These secondary branches are outside of the range
of validity of the weakly nonlinear theory in Appendix B but
are found in a higher codimension analysis of the a1 = a2 = 0
degeneracy [31]. Only the defect states are present in the
supercritical case [Fig. 17(b), a1 = 1.4, a2 = 1.2, b = −0.5].

In the special case a1 + a2 = 0 the MW states degenerate
into SW and bifurcate from μ = 1 together with the RW±.
Figure 18 shows an example of the resulting bifurcation
diagram. Finally, Fig. 19 shows an example with 0 < |k(a1 +
a2)| < |b| in which the MW are present and bifurcate together
with the RW±. However, at larger amplitudes the two sets of
branches differ substantially in their behavior, with the MW
terminating on RW−.

C. Infinite domains and quasiperiodic wave trains

We have seen that when k = 1 either one or two branches
of periodic states bifurcate from μ = 1 depending on the
coefficients a1 and a2. In contrast, when k = 0 there is only
one branch of equilibria, and it bifurcates at μ = 0. On an
infinite domain we may look for solutions with a small but
nonzero wave number. When a1 or a2 is nonzero, we expect a
bifurcation to periodic RW, much as in the preceding section.
However, the SW become quasiperiodic states as we now
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FIG. 10. (Color online) Bifurcation diagrams for subcritical stationary solutions with k = 0 with several secondary branches of nonuniform
states satisfying NBC. Parameters: a1 = 0.6, a2 = 0.1, � = 16π . (a) b = 0.5. (b) b = 0.25. (c) Sample profiles of ReA(x) (solid line) and
ImA(x) (dashed line) along the branch bifurcating from point 1 in (a). This branch terminates on a primary branch with k = −π/� ≈ kM .

demonstrate using formal perturbation theory. We suppose that
μ = O(ε2), where ε � 1. The RW take the form

A = εR0 exp ikx + O(ε2), (22)

where k = O(ε), while the quasiperiodic states take the
different form

A = εR(X,ε) exp iεφ(X,ε) + O(ε2), (23)

where X ≡ εx is a slow spatial scale. Substituting this ansatz
into Eq. (7) with R(X,ε) = R0(X) + εR1(X) + . . ., φ(X,ε) =
φ0(X) + εφ1(X) + . . ., μ = ε2μ2, we obtain at O(ε3)

R0XX + μ2R0 + bR3
0 = 0 (24)

and at O(ε4)

φ0X = − 1
4 (a1 + a2)R2

0 �= 0. (25)

Thus, rotating waves and quasiperiodic states bifurcate si-
multaneously from A = 0 at μ = 0, much as in the Swift-
Hohenberg equation [6]. However, due to the absence of
pinning, there is a one-parameter family of quasiperiodic so-
lutions, parametrized by an arbitrary phase. In finite domains,
however large, the quasiperiodic solutions are expected to
bifurcate from the RW at small but finite amplitude.

D. Theoretical interpretation

It is possible to develop, to a certain extent, a theoretical
understanding of the above results. The understanding is
based on the presence of the conserved quantities E and L

and the shape of the potential U (R; μ,L) [Eqs. (10)–(13)].
With NBC, i.e., Rx = 0 at x = 0,�, secondary bifurcations to
two-frequency states can only occur on a primary branch at
locations where

URR = 2π2n2

�2
, n ∈ N. (26)

Explicit expression for URR can be found in Eq. (14). Since
stationary solutions are determined up to translation in x and
phase rotation by the integrals E and L, the behavior of
a branch of two-frequency states is determined by a set of
implicit functions containing E and L with μ as a bifurcation
parameter. These relations capture the requirement that an
integer number of half-wavelengths of both R(x) and φ(x) fit
in the domain � and take the form

�

n
=
∫ Rmax

Rmin

dR

Rx

=
∫ Rmax

Rmin

dR√
E − U (R; μ,L)

, n ∈ N, (27)

mπ

n
=
∫ Rmax

Rmin

φxdR

Rx

=
∫ Rmax

Rmin

L/R2 − a1+a2
4 R2

√
E − U (R; μ,L)

dR, m ∈ Z.

(28)

Here Rmin and Rmax are the roots of E = U (R; μ,L) corre-
sponding to the turning points of the trajectory in the potential.
Thus each branch of two-frequency states is determined by a
pair of integers n and m. In particular, on the primary k = 0
branch, the secondary bifurcation points satisfy, cf., Eq. (14)

URR = 4bR2
0 + 2

(
a2

1 − a2
2 − 4

)
R4

0 = 2π2n2/�2, (29)
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FIG. 11. (Color online) (a) Bifurcation diagram for subcritical stationary solutions with k = 0 with several secondary branches of
nonuniform states satisfying NBC. The first three secondary branches terminate on a primary branch with k �= 0. [(b) and (c)] Sample
profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the branch bifurcating from points 1 and 2, respectively, showing that both
branches terminate on a primary branch with wave number k = −2π/� ≈ kM . Parameters: b = 0.5, a1 = 1.1, a2 = 0.1, � = 16π .

cf. Eq. (14). Thus, in the supercritical case (b < 0),
URR < 0 when a2

1 − a2
2 − 4 � 0 and no secondary

bifurcations are present. However, if a2
1 − a2

2 − 4 > 0
the quantity URR becomes positive at sufficiently large
R, triggering secondary bifurcations. In contrast, in the
subcritical case (b > 0) URR increases monotonically
with R0 provided a2

1 − a2
2 − 4 � 0, and, consequently,

secondary bifurcations for each n appear exactly once

along the branch. However, when a2
1 − a2

2 − 4 < 0
URR first increases with R0 but then decreases. When
a2

2 − a2
1 = 0, URR � 0 along the whole R−

0 branch; if
−4 < a2

2 − a2
1 < 0 the region where URR � 0 extends above

the saddle node, but it shrinks below the saddle node if
a2

2 − a2
1 > 0. If a2

2 − a2
1 is so large that the maximum of URR

falls below π2/�2, no bifurcation point is present. These
results are reflected in the properties of Figs. 9–15. In the case
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FIG. 12. (Color online) (a) Bifurcation diagram for subcritical stationary solutions with k = 0 with several secondary branches of
nonuniform states satisfying NBC. Parameters: b = 0.5, a1 = 1.5, a2 = 1.0, � = 16π . Branches bifurcating at points 1 and 2 in (a) terminate
at the same wave number, k = −3/16. (b) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the defect branch bifurcating
at point 3 in (a).
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FIG. 13. (Color online) Bifurcation diagrams for subcritical stationary solutions with k = 0 with several secondary branches of nonuniform
states satisfying NBC showing the reconnection process that takes place with decreasing b. Branches bifurcating at points 1 and 2 in (a)
terminate at the same wave number, k = −1/8. Parameters: a1 = 1.5, a2 = 1.6, � = 16π . (a) b = 0.5. (b) b = 0.4. (c) b = 0.395.

a2
1 − a2

2 < 4, if we increase the domain size �, the number
of bifurcation points scales as �. The bifurcation points
accumulate near URR = 0, i.e., at R2

0 = 0 and R2
0 = 2b

4+a2
2−a2

1
.

If we let μn be the nth bifurcation point in the sequence that
accumulates at R0 = 0 when � is large (i.e., at μ = 0), then
the μn scale as n2/�2 and a similar scaling holds at the other
accumulation point unless this point coincides with the saddle
node. In the latter case a2

1 = a2
2 and the distance δμn from

the saddle node scales as n4/�4. Note that since the integer n

represents the mode number, the accumulation point is reached
in the limit n → 1, with n/�, n = 1, representing the smallest
wave number allowed by the boundary conditions. Such
scaling laws are also found in the Swift-Hohenberg equation
and arise in studies of natural doubly diffusive convection as
well [7]. As shown in Appendix C, the direction of branching
of the resulting quasiperiodic states is readily computable
and the predictions therein agree well with our numerical
computations.

When k �= 0 the conditions (28) provide implicit relations
that determine the locations of bifurcation points. The integrals
can be evaluated in terms of Jacobi elliptic functions, and the
results determine the variation of E and L with the parameter
μ along the secondary branch. Each branch is characterized
by the integer n, which is constant along the branch. This is
not true for the integer m, however, which is, in general, only
piecewise constant along the branch. This is a consequence
of phase jumps that may take along place along the branch.
These occur when R passes through zero at some x ∈ (0,�)

and require that simultaneously L = 0. The phase jump is
determined by writing∫ Rmax

Rmin

LdR

R2
√

E − U
=
∫ R∗

Rmin

LdR

R2
√

E − U

+
∫ Rmax

R∗

LdR

R2
√

E − U
(30)

and taking R∗ = O(|L|p), 1/2 < p < 1. The integral from
R∗ to Rmax [=O(1)] is O(|L|/R∗) and so vanishes in the
limit L → 0. The first integral dominates because Rmin =
|L|/√E + o(|L|) as L → 0, E = O(1), and U − L2/R2 =
O(R2) = o(L2/R2) in Rmin < R < R∗. Thus

lim
L→0

∫ R∗

Rmin

LdR

R2
√

E − U
= sgn(L)

∫ ∞

1

dr

r2
√

1 − 1/r2

= sgn(L)
π

2
, (31)

where sgn(L) denotes the sign of L along the branch before it
reaches 0. Thus, the total change of phase over the domain �

as L crosses zero is −sgn(L)nπ . The phase remains constant
unless another phase jump takes place. It follows from Eq.
(28b) that∫ Rmax

0

(a1 + a2)R2

4
√

E − U
dR = π

[
sgn(L)

2
− m

n

]
. (32)

This relation constrains greatly the phase jumps that may occur
along the secondary branches and, in particular, the allowed
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FIG. 14. (Color online) Bifurcation diagrams for (a) subcritical and (b) supercritical stationary solutions with k = 0 with several
secondary branches of nonuniform states satisfying NBC. All secondary branches terminate at nonzero wave number. Parameters:
a1 = 2.1, a2 = 0.2, � = 16π . (a) b = 0.5. (b) b = −0.01. (c) Sample profiles of ReA(x) along the branch bifurcating from point 1
in (a).

interconnections among the primary branches. In particular,
in the special case a1 = −a2, the necessary condition for a
phase jump to take place is 2m = sgn(L)n. Thus, if the primary
branch has nonzero wave number k = mπ

�
the condition URR =

2π2n2

�2 for a secondary bifurcation collapses to bR2
0 − 2R4

0 = 0,
implying that the only secondary branch that can undergo
a phase jump is the branch bifurcating at R2

0 = b/2. We
emphasize that these phase jumps correspond to phase jumps
that occur over large scales in the original problem; strictly, we
cannot take the limit L → 0 without encountering higher-order
terms omitted from the Ginzburg-Landau description (2).

E. Transition from subcritical to supercritical behavior

The results presented above enable us to understand the
sequence of transitions that must take place as b decreases
through b = 0 and the k = 0 primary branch goes from being
subcritical to being supercritical. There are two fundamentally
distinct scenarios, distinguished by the sign of the quantity
a2

1 − a2
2 − 4. When a2

1 − a2
2 − 4 < 0 Fig. 9 shows that as

b decreases the secondary bifurcation points on the k = 0
branch move to a higher amplitude while the termination
points move toward a lower amplitude. In addition, since kM

is proportional to b, its magnitude decreases, thereby making
it more and more likely that the secondary branch originates
and terminates on the same branch. The mechanism whereby
the termination point switches from a primary branch with
k ≈ kM to the k = 0 branch relies on reconnection between the

protosnaking branch and a defect branch originating from the
k = 0 branch (not shown), as discussed elsewhere [7]. Similar
reconnections eliminate the secondary branches one by one
until none remain. Figure 13 shows an example of this process:
as b decreases an n = 3 mixed mode branch approaches
and reconnects with a defect branch, leaving behind a short
segment connecting the subcritical k = 0 branch to itself
together with a larger amplitude, completely disconnected
branch of defectlike states. With further decrease of b the
end points of the short segment come together, eliminating
the segment, while the disconnected branch moves farther
away. In this particular example the protosnaking branches
turn toward larger μ and undergo a twist before terminating
on a periodic state but this does not occur in other cases we have
examined. Thus, when a2

1 − a2
2 − 4 < 0 secondary bifurcation

points annihilate pairwise and there is a minimum value of b,
bmin ≡ (π/�)

√
4 + a2

2 − a2
1 , such for 0 < b < bmin no secondary

bifurcations take place on the subcritical branch, i.e., localized
states are absent.

Figure 15 shows that similar reconnections are responsible
for successive elimination of the secondary branches in the
case a2

1 − a2
2 − 4 > 0 as well. In this case, the secondary

branches bifurcate strongly subcritically and the Maxwell
point μM typically falls outside the coexistence range between
A = 0 and the k = 0 branch [Fig. 14(a)]. As b decreases both
μM and μsn(0) decrease as b2, implying that in large domains
secondary branches continue to bifurcate subcritically. More-
over, when b decreases the secondary bifurcation points move
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FIG. 15. (Color online) Bifurcation diagrams for subcritical stationary solutions with k = 0 with several secondary branches of nonuniform
states satisfying NBC. Some secondary branches terminate on the k = 0 primary branch. Parameters: a1 = 1.6, a2 = −0.5, � = 16π . (a)
b = 0.5. (b) b = 0.42. (c) b = 0.41. (d) b = 0.2.

up in amplitude and so move through the saddle node to the
upper k = 0 branch as the saddle node moves downward. Of
course, the protosnaking behavior disappears as the system
becomes supercritical but the subcritical secondary branches
remain [Fig. 14(b)]. These terminate on periodic states that
bifurcate subcritically from A = 0 at μ > 0, cf. Fig. 2(c).

Figure 16(b) shows a typical result in the supercritical case
b = −0.5 with k = 1 and a1 = a2 = 0. The two branches that
bifurcate from A = 0 at μ = 1 are both supercritical and only
secondary branches of defect type are present, much as in the
standard Eckhaus problem [13]. In contrast, once a1a2 �= 0
[Fig. 17(b)] the SW branch is absent and additional Eckhaus
bifurcations occur on the RW branch at small amplitude with
connections to primary branches with k �= 0,1, while defect
states continue to bifurcate at larger amplitudes. Observe that
no protosnaking develops on any of the secondary branches
bifurcating from the k = 1 branches, implying the absence of
heteroclinic connections between A = 0 and A = R0 exp ix.
This is a consequence of the centrifugal barrier (L �= 0)
in the potential U (R; μ,L) for this state and is, in turn, a
consequence of the fact that here k = 1 is selected by the
boundary conditions and not by the condition for a heteroclinic
connection.

V. TEMPORAL STABILITY ANALYSIS

In this section we examine the stability properties of
primary branches with both k = 0 and k �= 0 with respect to
long-wave perturbations with wave number |q| � |k|. The

analysis performed is analogous to the classical Eckhaus
analysis [11] but the results, presented in the form of stability
regions in the (k,μ) plane, substantially differ due to the
subcriticality of the basic wave train and the presence of the
coefficients a1, a2, assumed to be nonzero. The problem is
formally posed on the real line and no boundary conditions
are imposed on the perturbations.

A. Stability of primary branches

Nontrivial constant-amplitude steady solutions A =
R0 exp i(kx + φ0) of Eq. (2) fall into three classes:

(1) Supercritical case: b′ � 0, R+
0 exists in the region μ >

k2.
(2) Subcritical case: b′ > 0, R+

0 solution exists in the region
μ � k2 − b′2

4 .
(3) Subcritical case: b′ > 0, R−

0 solution exists in the region
k2 − b′2

4 < μ < k2.
To study the stability, we calculate the spectrum of periodic

solutions by writing

A = R0e
i(kx+φ0)(1 + a). (33)

The perturbation a ≡ a(x,t) evolves according to

at = −(2μ − 2k2 + b′R2
0

)
(a + a∗) + 2ikax + axx

+ iR2
0(a1ax + a2a

∗
x ) + O(|a|2). (34)
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FIG. 16. (Color online) Bifurcation diagrams for (a) subcritical and (b) supercritical stationary solutions with k = 1 with several secondary
branches of nonuniform states satisfying NBC. (c) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the branch extending
between points 1 and 10 in panel (a). (d) Sample profiles of ReA(x) along the secondary branch bifurcating from the RW branch at point 3
in panel (a). The behavior along the branches bifurcating from points 2 and 4–7 is qualitatively similar to (d). Parameters: a1 = 0, a2 = 0,
� = 16π . (a) b = 0.5. (b) b = −0.5.

The stability of the periodic solutions is determined by the
eigenvalues of the linearized problem. Writing

a(x,t) = β1(t)eiqx + β∗
2 (t)e−iqx, (35)

where q > 0 is a real wave number, we find that β1 and β2 are
complex-valued functions of time satisfying

d

dt

(
β1

β2

)
=
(

C+
1 C+

2

C−
2 C−

1

)(
β1

β2

)
, (36)

where

C±
1 ≡ −2μ + 3k2 − (b′ ± a1q)R2

0 − (k ± q)2,

C±
2 ≡ −2μ + 2k2 − (b′ ± a2q)R2

0 .

Thus, the eigenvalues of the stability matrix are

σ± = −g − q2 ±
√

(g + q2)2 − q2(f + q2), (37)

where

f (μ,k) ≡ (
2 + a2

2 − a2
1

) {
μ − k2 + b′R2

0

}
+ 2μ − 6k2 − 4ka1R

2
0,

g(μ,k) ≡ 2(μ − k2) + b′R2
0 .

The location of the eigenvalues for different f and g is
shown in Fig. 20. It follows that the periodic solution A =
R0 exp i(kx + φ0) is unstable with respect to perturbations
with wave number q, provided

(i) q2(f + q2) < 0: Both eigenvalues are real and there is
only one unstable eigenvalue σ+ > 0, yielding the unstable
solution

ãq(x,t) = eσ+t [C+
2 βeiqx + (σ+ − C+

1 )β∗e−iqx],

where β is a complex constant.
(ii) g + q2 < 0 and q2(f + q2) > 0: The eigenvalues can

be either real or complex, but both are unstable. The former
case applies when g2 > q2(f − 2g), leading to unstable
solutions of the form

ãq(x,t) = eσ±t [C+
2 βeiqx + (σ± − C+

1 )β∗e−iqx],

where β is again a complex constant. In contrast, when g2 <

q2(f − 2g) the eigenvalues are complex, and the unstable
solutions take the form

ãq(x,t) = eσr t {C+
2 β1(t)eiqx

+ [(σr − C+
1 )β∗

1 (t) + σiβ
∗
2 (t)]e−iqx},

where

β1(t) = β cos(σit) + γ sin(σit),

β2(t) = −β sin(σit) + γ cos(σit),

with β and γ are complex constants. Here σr = −g − q2,
σi =

√
(g + q2)2 − q2(f + q2).

In the following we refer to the instability triggered by real
eigenvalues as the Eckhaus instability, since it is associated
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HSIEN-CHING KAO AND EDGAR KNOBLOCH PHYSICAL REVIEW E 85, 026211 (2012)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

μ

||A
|| H

1

(a)

k=1 k=−1

1

2

3
4 75 6

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.5

1

1.5

μ

||A
|| H

1

(b)

k=1
k=−1

1

2
3

4

5

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

4

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

5

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

6

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

7

(c)

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

2

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

3

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

4

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

A
(x

)

5

(d)

FIG. 17. (Color online) Bifurcation diagrams for (a) subcritical and (b) supercritical stationary solutions with k = 1 (RW+) and k = −1
(RW−) together with several secondary branches of nonuniform states satisfying NBC on a domain of length � = 16π . Parameters: (a) b = 0.5,
a1 = 0.6, and a2 = 0.8. (b) b = −0.5, a1 = 1.4, and a2 = 1.2. (c) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the
branch in (a) bifurcating at point 3 showing a gradual change of wave number between points 3 and 7. ImA(x) oscillates π

2 out of phase with
ReA(x). Similar wave-number changes occur along the branches in (a) bifurcating at points 1 and 2. (d) Sample profiles of ReA(x) (solid line)
and ImA(x) (dashed line) along the branch bifurcating at point 1 in (b) showing a gradual change of wave number between points 1 and 5.

with the appearance of stationary but spatially modulated
solutions (cf. Sec. IV). Instability of type (ii) with complex
eigenvalues will be called oscillatory modulational instability.
To determine the regions in the (k,μ) plane corresponding to
stable and unstable solutions on the real line, we determine the
conditions under which at least some unstable wave numbers q

are present. In this case the conditions (i) and (ii) for instability

can be rewritten as

(i) f < 0, (ii) g < min {0,f } . (38)

The inequality g < 0 can only be satisfied along the R−
0

branch, i.e., (unstable) complex eigenvalues are present only
on the R−

0 branch. In contrast, the R+
0 branch can have only

−0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ

||A
|| H

1

(a)

k=−0.125

1

2

3

4

5
k=0.125

SW

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

R
(x

)

2

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

R
(x

)

3

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

R
(x

)

4

0 0.5 1
−1

−0.5

0

0.5

1

x/Γ

R
(x

)

5

(b)

FIG. 18. (Color online) (a) Bifurcation diagram showing the simultaneous bifurcation at μ = 1
64 of an SW branch and a pair of RW branches

with k = ±0.125. A secondary branch of spatially modulated states connects the SW and RW− branches between points 1 and 3. (b) Sample
profiles of R(x) along the SW branch. Parameters: b = 0.5, a1 = −0.2, a2 = 0.2, � = 16π .
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FIG. 19. (Color online) (a) Bifurcation diagram showing the simultaneous bifurcation at μ = 1
256 of a branch of two-frequency states [MW:

red (gray) curve] undergoing protosnaking and a pair of branches of periodic states RW± with k = ± 1
16 . The two-frequency states terminate

on RW−. (b) Sample profiles of ReA(x) (solid line) and ImA(x) (dashed line) along the MW branch in (a). Parameters: b = 0.5, a1 = 0.3,
a2 = 0.2, � = 16π .

one unstable eigenvalue. We refer to this eigenvalue as the
phase eigenvalue.

1. The case a1 = a2 = 0

In the following we use the notation (1)(i) to refer to case (1)
as defined in Sec. V A and condition (i) as defined in Eq. (38),
and so on.

We begin with the case a1 = a2 = 0. In this case, the range
of μ within which the periodic wave train is unstable is

(1) (i) and (2) (i):

μ < 2k2 − b2

8
− b

8

√
b2 + 16k2. (39)

Moreover, in order that R+
0 be present, we also need the

conditions μ > k2 (supercritical case) and μ � k2 − b2/4
(subcritical case). The resulting instability regions are shown
in Figs. 21(a) and 21(c).

(3) (i):

k2 − b2

4
< μ < k2. (40)

Condition (i) thus holds for all μ along the R−
0 branch

[Fig. 21(b)], i.e., R−
0 is unstable.

−1 0 1
−1

0

1

q  (f+q  )2          2

-g
-q

2

FIG. 20. The position of the eigenvalues σ± in the parameter
plane. A Hopf bifurcation takes place along the positive x axis and a
saddle-node bifurcation takes place along the y axis.

The resulting bifurcation diagrams resemble those familiar
from the supercritical case [13], with amplitude-stable solu-
tions unstable with respect to the Eckhaus instability at small
amplitude and stable at large amplitude.

2. The general case

In the general case with at least one of a1 and a2 nonzero, we
let α ≡ a2

2 − a2
1 and s ≡

√
b′2 + 4(μ − k2). To find the range

of μ for instability of type (i), we rewrite the condition f < 0
as a condition on s. When α + 4 �= 0,

(1) (i) and (2) (i):

(4 + α)

{[
s + (2 + α)b′ − 4ka1

4 + α

]2

− 4(b′ + 2a1k)2 + 16(4 + α)k2

(4 + α)2

}
< 0. (41)

(3) (i):

(4 + α)

{[
s − (2 + α)b′ − 4ka1

4 + α

]2

− 4(b′ + 2a1k)2 + 16(4 + α)k2

(4 + α)2

}
< 0. (42)

When 4 + α = 0, these relations become
(1) (i) and (2) (i):

(b′ + 2a1k)(b′ + s) + 4k2 > 0. (43)

(3) (i):

(b′ + 2a1k)(b′ − s) + 4k2 > 0. (44)

We summarize these results in two different types of plots.
In the first, we superpose the curves f = 0 and g = f on
the bifurcation diagram in Fig. 3 showing the amplitude R0

of a periodic wave train as a function of the wave number
k for different values of b and μ = 1 (Fig. 22) and μ = −1
(Fig. 23). Plots of this type determine the range of stable
periodic states. We show the same information in the (k,μ)
plane in Fig. 24 for b > 0 (the subcritical case) and Fig. 25
for b < 0 (the supercritical case), in both cases focusing on
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FIG. 21. The (k,μ) plane when a1 = a2 = 0 and (a) b = 1, R+
0 , (b) b = 1, R−

0 , (c) b = −1, R+
0 . When b � 0 both curves lie in μ � 0;

when b > 0 the curves extend below μ = 0.

the stability properties of the R+
0 state. In both cases a2 has

been taken to be positive. In each plot we indicate the regions
in which a wave train with wave number k is stable with
respect to the Eckhaus instability and where it is unstable.
These regions are delimited by the union of two curves, the
curve μ = μsn(k) for |k| small (near band center) and the
curve μ = k2 for those wave numbers for which the primary
bifurcation is supercritical (larger |k|) and by the curve f = 0
corresponding to the Eckhaus instability. The resulting plots
should be compared with Fig. 21 computed for a1 = a2 = 0.
We see that when a1 �= 0, a2 �= 0 the stability region becomes
asymmetrical with respect to k → −k and may either grow
or shrink. Indeed, for some coefficient values the region of
stability is suppressed altogether.

The instability regions for the R−
0 branch are more complex

since in addition to instability (i), we may also have instability
(ii), with either two real positive eigenvalues or a pair of
unstable complex eigenvalues. The condition for instability
(ii) is (

1 + α

2

)
s2 − [(1 + α)b′ − 4a1k]s

+ αb′2 − 8a1kb′ − 16k2

2
> 0, (45)

subject to the requirement s < b′ that defines the existence
range for R−

0 . We show the location of complex eigenvalues on
the subcritical branch R−

0 for b > 0 in Fig. 26 and for b < 0 in
Fig. 27. Note that complex eigenvalues are only present close
to the saddle node where the time scales for the growth of am-
plitude and phase perturbations become comparable. We also

mention that the quantity f − 2g = a2
2R

4
0 − (a1R

2
0 + 2k)2 is

negative whenever a2 = 0. In this case, the condition for the
presence of complex eigenvalues, g2 < q2(f − 2g), cannot be
satisfied. This is as expected since Eq. (2) is then of gradient
type. We leave to future work the possibility that the unstable
oscillations present when a2 �= 0 acquire stability at finite am-
plitude and the role played by the complex eigenvalues in the
stability properties of the various secondary states identified in
Sec. IV.

Additional light can be shed on the plots in Figs. 24–27
by examining the special (and simpler) case k = 0 (the band
center), starting with instability (i). In the supercritical regime
the R+

0 branch is unstable only when 4 + α < 0, within the

range μ > − 2(2+α)b2

(4+α)2 . In the subcritical regime the R+
0 branch

is unstable for all μ when 4 + α � 0. When −4 < α < 0 there
is a range of instability, − b2

4 < μ < − 2(2+α)b2

(4+α)2 which shrinks
as α increases toward α = 0 and vanishes when α reaches zero.
The subcritical R−

0 branch is always unstable. The instability
(ii) only appears on the R−

0 branch, and then only when α >

0 with − b2

4 < μ < − (1+α)b2

(2+α)2 . These results are reflected in
Figs. 24–27.

3. Finite-size effects

In the presence of restrictions on q, e.g., due to a finite
domain size, the allowed wave number q limits the range of
unstable μ. For example, for periodic boundary conditions
with period 2�, the wave numbers k + kc and q must be
integer multiples of π

�
. With kc = π

�
(N + l), where N is a
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FIG. 22. (Color online) Bifurcation diagrams R2
0(k) when μ = b = 1 showing the onset of type (i) (f = 0, black dashed line) and type

(ii) (g = f , black line) instabilities. Thick blue (gray) line indicates stable solutions while the thick dashed blue (gray) line indicates the R−
0

solutions unstable with respect to instability (i) only. (a) a1 = 3, a2 = 4. (b) a1 = −3, a2 = −2. (c) a1 = 3, a2 = 6. (d) a1 = −3, a2 = 0.

non-negative integer and 0 � l < 1, the possible values of
k and q are kn = π

�
(n − l) and qm = πm

�
with n ∈ Z and

m ∈ N, respectively. The smallest unstable wave number qm is,
therefore, finite, cf. Refs. [12,13], resulting in a slight decrease
in the range of instability.

B. Stability of secondary branches

We have also examined the stability of the secondary
branches by computing numerically the temporal spectrum σ

and examining the behavior of the leading eigenvalues along
the various branches, focusing primarily on the secondary
branches bifurcating from the k = 0 branch. Figures 9–15
show that the bifurcation to the first of these is always
supercritical when b > 0, implying that the first secondary
branch has initially a single unstable eigenvalue. When
the branch enters the protosnaking region, this eigenvalue
becomes very small. If the branch remains monotonic this
eigenvalue remains positive but, if the branch undergoes folds,
it can become negative, thereby stabilizing the branch. This
is so in Figs. 10(b), 12(a), and 14(a). In Fig. 12(a) there are,
in fact, four folds on the first secondary branch, the first three
of which are not visible on the scale of the figure. In other
cases, however, the portion of the branch with positive slope
remains unstable. This is the case, for example, in Figs. 13(b)
and 13(c).

VI. CONCLUSIONS

In this paper, we have explored in detail the properties
of steady solutions of the cubic-quintic Ginzburg-Landau
equation [Eq. (2)]. This equation arises in studies of the
transition from subcritical to supercritical spatially periodic
patterns and is parametrized by the coefficients a1, a2 of
cubic derivative terms, in addition to the coefficient b of the
cubic term and the wave number of the state or equivalently
the domain length �. Altogether, we identified four critical
codimension-one curves in the (a1,a2) plane, corresponding
to β = 0 [Eq. (13)], a2

1 − a2
2 = 4 [Eq. (14)], (a2 − a1)2 =

4 [Eq. (17)], and a2(a1 + a2) = 4 [Eq. (18)]. Additional
codimension-one curves, such as a1 + a2 = 0 and a2 = 0,
can also be significant. Thus, when a2 = 0, the cubic-quintic
Ginzburg-Landau equation has gradient structure and, hence,
temporal behavior resembling that from the much simpler
cubic Ginzburg-Landau equation. This is no longer the case
when a2 �= 0. As a result, temporal oscillations become
possible, and nonmonotonic temporal evolution can take place.

We have computed a variety of both primary solution
branches corresponding to periodic patterns with either the
critical wave number (k = 0, band center) or with a shifted
wave number (k �= 0, off-center) and determined their stability
properties with respect to wavelength changing perturbations
of Eckhaus type. We have also computed the different types of
secondary branches that result. These correspond, in general,
to quasiperiodic states, although on a finite domain both
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FIG. 23. (Color online) Bifurcation diagrams R2
0(k) when μ = −1, b = 3 showing the onset of type (i) (f = 0, black dashed line) and type

(ii) (g = f , black line) instabilities. Thick blue (gray) line indicates stable solutions while the thick dashed blue (gray) line indicates the R−
0

solutions unstable with respect to instability (i) only. (a) a1 = 3, a2 = 4. (b) a1 = −3, a2 = −2. (c) a1 = 3, a2 = 6. (d) a1 = −3, a2 = 0.

the solution amplitude and phase must, of course, satisfy
the boundary conditions. The branches that bifurcate from
the primary k = 0 branch exhibit protosnaking near a point
μ = μM . At this parameter value, one finds a heteroclinic
connection between the trivial solution A = 0 and a periodic
solution A = RM exp ikMx with a well-defined wave number
kM . The presence of these heteroclinic connections, and the
associated wave-number selection process, are of particular
interest since they play a large role in the interconnections
between the k = 0 and k �= 0 branches. We have seen,
in addition, that the resulting heteroclinic connection may
involve either the R+

M exp ikMx state or the R−
M exp ikMx

state, depending on parameters. Since the latter is necessarily
amplitude-unstable the resulting front is expected to move to
allow the stable state A = 0 to invade the domain.

The coefficients a1, a2 that enter the problem near a
subcritical bifurcation have a dramatic effect on the shape
of the region in the (k,μ) plane containing Eckhaus-stable
periodic states. This region, called the Busse balloon in the
context of convection, is of great importance in the theory of
pattern formation, largely because its existence demonstrates
the absence of sharp wave-number selection via any type of
instability. In three dimensions, additional instabilities, such as
the zigzag, skewed varicose, and oscillatory instabilities, enter
the theory and limit the range of stable wave numbers [32], but
none leads to sharp wave-number selection in the absence of
boundaries, parameter ramps, or fronts. Similar results exist
for other spatially periodic patterns, such as hexagons; see,

e.g., Ref. [33]. We have seen that in the present problem
the coefficients a1, a2 may render the Eckhaus-stable region
highly asymmetrical with respect to k → −k and may reduce
dramatically its extent, perhaps eliminating it altogether (see,
e.g., Fig. 24). This observation is of considerable interest
since it describes a mechanism for destabilizing supercritical
periodic wave trains at the band center that differs from
destabilization caused by coupling to a large-scale mode [34].
We leave to future work the study of this interesting parameter
regime.
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APPENDIX A: HETEROCLINIC AND HOMOCLINIC
SOLUTIONS

When E = L = 0 and μ = μM , with b > 0, β < 0, the
heteroclinic solution connecting the states A = 0 and A =
RM exp ikMx can be found explicitly:

R2 = − b

4β

1

exp
(∓ bx

2
√−β

)+ 1
,

(A1)

φ = ∓a1 + a2

8
√−β

log

[1 + exp
(± bx

2
√−β

)
2

]
.
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FIG. 24. The parameter range (kb ≡ k/|b|,μb ≡ μ/b2) for instability (i) of R+
0 when b > 0 and a2 > 0. Dashed curve: Saddle node.

Solid curve: μ = k2. Dash-dotted curve: Eckhaus boundary. (a) a1 = 1, a2 = 2 (α > 0). (b) a1 = −1, a2 = 2 (α > 0). (c) a1 = 1.3, a2 = 1
(−4 < α < 0). (d) a1 = −0.6, a2 = 0.5 (−4 < α < 0). (e) a1 = 2.8, a2 = 1 (α < −4). (f) a1 = −2.1, a2 = 0.5 (α < −4). (g) a1 = 3, a2 = 1
(α < −4). (h) a1 = −2.3, a2 = 0.5 (α < −4).

Here and hereafter we have omitted arbitrary constants
x0 and φ0 determining the location of the front and its
phase at this location. The resulting solution is shown
in Fig. 7. This solution remains valid when μsn = μM ,
i.e., when the condition (18) holds and the heteroclinic
orbit connects the origin to a nonhyperbolic equilibrium
(in time).

When L = 0 the amplitude R can take on both positive
and negative values since the phase φ jumps by π each
time the amplitude R passes through zero. Thus, homoclinic
orbits are present in Figs. 5(a)–5(f), provided the energy E is
selected to coincide with the local maximum of the potential
U (R; μ,L). There are three type of homoclinic orbits when
L = 0:

(1) Homoclinic orbit to the origin: This type of solution
occurs when E = 0 and μ < 0 and has the form

R2 = ξ1ξ2

ξ1 + (ξ2 − ξ1) cosh2(
√−μx)

, (A2)

where ξ1 = −b+
√

b2−16μβ

4β
and ξ2 = −b−

√
b2−16μβ

4β
. When β <

0, the coefficient b must satisfy b > 4
√

μβ. The phase varies
according to

φ = −a1 + a2

4
√

β
tan−1

(√
ξ1

−ξ2
tanh

√−μx

)
, if β > 0, (A3)

φ = −a1 + a2

4
√−β

tanh−1

(√
ξ1

ξ2
tanh

√−μx

)
, if β < 0. (A4)
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FIG. 25. The parameter range (kb ≡ k/|b|,μb ≡ μ/b2) for instability (i) of R+
0 when b < 0 and a2 > 0. Dashed curve: Saddle node. Solid

curve: μ = k2. Dash-dotted curve: Eckhaus boundary. (a) a1 = 0.7, a2 = 1 (α > 0). (b) a1 = −0.7, a2 = 1.5 (α > 0). (c) a1 = 1.8, a2 = 1
(−4 < α < 0). (d) a1 = −2.1, a2 = 0.5 (α < −4). (e) a1 = 2.3, a2 = 0.5 (α < −4). (f) a1 = −2.23, a2 = 0.5 (α < −4). (g) a1 = 2.65, a2 =
0.5 (α < −4). (h) a1 = −2.65, a2 = 0.5 (α < −4).
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FIG. 26. (Color online) The parameter range (kb ≡ k/|b|,μb ≡ μ/b2) for instability (i) and (ii) of R−
0 when b > 0 and a2 > 0. Black

dashed curve: Saddle node. Black solid curve: μ = k2. Red (gray) solid curve: boundary of instability (i). Red (gray) dashed curve: boundary
of instability (ii). (a) a1 = 1, a2 = 1.4 (α > 0). (b) a1 = −1, a2 = 1.42 (α > 0). (c) a1 = 3.46, a2 = 3 (−4 < α < 0). (d) a1 = −3.46, a2 = 3
(−4 < α < 0). (e) a1 = 2.45, a2 = 1 (α < −4). (f) a1 = −3, a2 = 1.5 (α < −4).

The potential U (R; μ,0) for β > 0 is shown in Fig. 5(a) while
that for β < 0 is shown in Fig. 5(c). In the degenerate case
μ = 0, there is a homoclinic orbit that decays algebraically to
the origin. This occurs when E = 0, b < 0, and β > 0:

R2 = − b

2β

(
1 + b2x2

4β

)−1

, φ = a1 + a2

4
√

β
tan−1

(
bx

2
√

β

)
.

(A5)

A typical solution of this form is shown in Fig. 8.

(2) Homoclinic orbit to a nonzero equilibrium crossing
R = 0:

R2 =
ξ1ξ2sinh2

(√
μ + bξ1

2 x
)

ξ2cosh2
(√

μ + bξ1

2 x
)− ξ1

. (A6)

Here ξ1 = −b−
√

b2−12μβ

6β
, ξ2 = −b+2

√
b2−12μβ

6β
, and E =

U (
√

ξ1) corresponding to the local maximum of U . When
β > 0, μ must be positive with b < −2

√
3μβ. When β < 0,
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FIG. 27. (Color online) The parameter range (kb ≡ k/|b|,μb ≡ μ/b2) for instability (i) and (ii) of R−
0 when b < 0 and a2 > 0. Black

dashed curve: Saddle node. Black solid curve: μ = k2. Red (gray) solid curve: boundary of instability (i). Red (gray) dashed curve: boundary
of instability (ii). (a) a1 = 0.45, a2 = 2 (α > 0). (b) a1 = −1, a2 = 2 (α > 0). (c) a1 = 2.2, a2 = 1.4 (−4 < α < 0). (d) a1 = −2.8, a2 = 2.2
(−4 < α < 0). (e) a1 = 3.2, a2 = 2.2 (α < −4). (f) a1 = −3, a2 = 1.73 (α < −4).
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μ can be either positive or negative. But if μ is negative, b must satisfy b > 4
√

μβ. The phase varies according to

φ = − (a1 + a2)

4

{
ξ1x − 1√

β
tan−1

[
tanh

√
μ + (bξ1)/2x√

(ξ2/ξ1) − 1

]}
, if β > 0, (A7)

φ = − (a1 + a2)

4

{
ξ1x − 1√−β

tanh−1

[
tanh

√
μ + (bξ1)/2x√

1 − (ξ2/ξ1)

]}
, if β < 0. (A8)

The relevant potential U (R; μ,0) for β > 0 is shown in Figs. 5(d) and 5(f) and for β < 0 in Figs. 5(b) and 5(c).
(3) Homoclinic orbit to a nonzero equilibrium which does not cross R = 0:

R2 =
ξ1ξ2cosh2

(√
μ + bξ1

2 x
)

ξ1 + ξ2sinh2
(√

μ + bξ1

2 x
) . (A9)

Here ξ1 and ξ2 are as in Eq. (A2) above, and E = U (
√

ξ1) again corresponds to the local maximum of U . When β > 0, μ must
be positive with b < −2

√
3μβ. When β < 0, μ must be negative with 2

√
3μβ < b < 4

√
μβ. The phase varies according to

φ = − (a1 + a2)

4

[
ξ1x + 1√

β
tan−1

(√
ξ2

ξ1
− 1tanh

√
μ + bξ1

2
x

)]
, if β > 0, (A10)

φ = − (a1 + a2)

4

[
ξ1x − 1√−β

tanh−1

(√
1 − ξ2

ξ1
tanh

√
μ + bξ1

2
x

)]
, if β < 0. (A11)

The relevant potential U (R; μ,0) for β > 0 is shown in Figs. 5(d) and 5(f) and for β < 0 in Fig. 5(e).
When L �= 0, only homoclinic orbits are present [Figs. 6(a) and 6(c)]. For such an orbit the energy E again coincides with

the local maximum of the potential U (R; μ,L), assumed to be located at R1 = √
ξ1. With ξ2 and ξ3 as the other two roots of

the polynomial ξ [E − U (
√

ξ )], assumed distinct and different from ξ1, a homoclinic orbit with a turning point at
√

ξ2 has the
form:

R2 = ξ1 + (ξ2 − ξ1)(ξ3 − ξ1)

ξ2 − ξ1 + (ξ3 − ξ2)cosh2[
√

β(ξ3 − ξ1)(ξ1 − ξ2)x]
(A12)

with the phase

φ = − (a1 + a2)

4

{
ξ1x − 1√

β
tan−1

[(
ξ1 − ξ2

ξ3 − ξ1

)1/2

tanh
√

β(ξ3 − ξ1)(ξ1 − ξ2)x

]}
(A13)

+
(

k∞ + a1 + a2

4
ξ1

)⎧⎨
⎩x +

tan−1
[√

ξ3(ξ1−ξ2)
ξ2(ξ3−ξ1) tanh

√
β(ξ3 − ξ1)(ξ1 − ξ2)x

]
√

βξ2ξ3

⎫⎬
⎭ , if β > 0,

φ = − (a1 + a2)

4

{
ξ1x − 1√−β

tanh−1

[(
ξ1 − ξ2

ξ1 − ξ3

)1/2

tanh
√

β(ξ3 − ξ1)(ξ1 − ξ2)x

]}

+
(

k∞ + a1 + a2

4
ξ1

){
x +

tan−1
[√

ξ3(ξ1−ξ2)
ξ2(ξ3−ξ1) tanh

√
β(ξ3 − ξ1)(ξ1 − ξ2)x

]
√

βξ2ξ3

}
, if β < 0. (A14)

Here k∞ is the wave number at the equilibrium. The relevant
potential U (R; μ,L) for β > 0 is shown in Fig. 6(c) and for
β < 0 in Fig. 6(a).

APPENDIX B: BIFURCATION ANALYSIS NEAR μ = 1

As already noted, the first primary bifurcation occurs at
μ = 0 and generates steady spatially homogeneous states
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characterized by wave number k = 0. Here we study the
second primary instability, characterized by states with wave
number k = ±1.

1. The case a1 = a2 = 0

When a1 = a2 = 0, Eq. (2) has the symmetry O(2) ×
O(2) with the first O(2) generated by the operations x →
x + x0,A → A and x → −x,A → A, and the second O(2)
generated by the operations x → x,A → A exp iφ0 and x →
x,A → A∗. At μ = 1 the trivial state A = 0 loses stability at a
steady-state bifurcation to modes with wave number k = ±1.
Over C the multiplicity of the zero eigenvalue is, therefore,
2 while over R its multiplicity is 4. The bifurcation is thus,
properly analyzed as a mode interaction problem and we write

A(x,t) = v(t)eix + w(t)e−ix + h.o.t. (B1)

The symmetries of the problem act on the amplitudes (v,w) as
follows:

x → x + x0 : (v,w) → (veix0 ,we−ix0 ),

x → −x : (v,w) → (w,v); (B2)

A → eiφ0A : (v,w) → (veiφ0 ,weiφ0 ),

A → A∗ : (v,w) → (w̄,v̄). (B3)

It follows, cf. Ref. [35], that the normal form near μ = 1 is

v̇ = λv + b1|v|2v + b2|w|2v + h.o.t.,
(B4)

ẇ = λv + b2|v|2w + b1|w|2w + h.o.t.,

where λ = μ − 1 and the coefficients b1 = b, b2 = 2b are
real. It follows that near μ = 1 there are two distinct nontrivial
solutions corresponding to (v,w) = (v,0) and (v,w) = (v,v).
We refer to these solutions as RW: A = v exp ix and SW:
A = 2v cos x (see Sec. IV B). The stability of these solutions
is determined by the coefficients b1, b2 [35].

2. Nonzero a1 or a2 (or both)

When a1 or a2 is nonzero, Eq. (2) has the smaller
symmetry O(2) × SO(2) generated by the operations x →
x + x0,A → A and x → x,A → A exp iφ0 and the reflection
x → −x,A → A∗. Since the linear problem is unchanged
the multiplicity of the zero eigenvalues remains four over R,
but the amplitude equations must now respect the following
symmetries:

x → x + x0 : (v,w) → (veix0 ,we−ix0 ),
(B5)

A → eiφ0A : (v,w) → (veiφ0 ,weiφ0 ),

together with

x → −x,A → A∗ : (v,w) → (v∗,w∗). (B6)

Thus,

v̇ = λv + b11|v|2v + b12|w|2v + h.o.t.,
(B7)

ẇ = λv + b21|v|2w + b22|w|2w + h.o.t.,

where λ = μ − 1 and the coefficients b11 = b − a1 + a2,
b12 = 2(b − a2), b21 = 2(b + a2), and b22 = b + a1 − a2 are

real. These equations admit a pair of distinct RW solu-
tions (v,w) = (v,0) and (v,w) = (0,w), hereafter RW+: A =
v exp ix and RW−: A = w exp −ix, both of which bifurcate
from μ = 1. The equations, in addition, admit mixed modes
of the form (v,w), vw �= 0, hereafter MW: A = v exp ix +
w exp −ix, given by

|v|2 = −λ(b − a1 − a2)/�, |w|2 = −λ(b + a1 + a2)/�.

(B8)

Here � ≡ 3b2 + (a1 − 3a2)(a1 + a2) is assumed to be
nonzero. These expressions imply that the MW only exist
for |a1 + a2| < |b|, in agreement with the calculation in
Appendix C. In particular, when |a1 + a2| = |b| the MW
degenerate into one or other RW. In contrast, when a1 = a2 =
0 the RW± branches become identical and the MW branch
becomes SW, in agreement with the preceding section. In
the special case a1 = a2 the RW± branches become identical
[cf. Eq. (17)] while in the case a1 + a2 = 0 the MW become
SW with |v| = |w|. These results explain the absence of an
MW branch in Figs. 17(a) and 17(b) and the presence of an
SW branch in Fig. 18. They also explain the presence of an
MW branch in Fig. 19, where the MW branch bifurcates
simultaneously with the RW±. The stability of the above
solutions is determined by the coefficients b11, b12, b21, b22,
although the branches are initially all unstable due to the
inherited unstable k = 0 eigenvalue.

The above results describe fully the bifurcation behavior
near the k = 1 primary bifurcation and are readily generalized
to k �= 0,1. Global results based on the particle-in-a-potential
formulation are summarized in the corresponding bifurcation
diagrams.

APPENDIX C: CALCULATION OF d E
dμ

AND d L
dμ

ON
PRIMARY BRANCHES

The direction of branching at the bifurcation point is
determined by the sign of the quantity dE

dμ
− U0,L

dL
dμ

− U0,μ.
This quantity measures the parameter dependence of the
energy difference between that of the periodic orbit and the
minimum of the potential U (R; μ,L) and must be of the same
sign as μ − μ0 for a periodic orbit to be created as μ changes.
Here μ0 is the value of μ at the bifurcation point. Hence, to
determine the direction of branching, we need to compute dE

dμ

and dL
dμ

. At the bifurcation point, the following conditions hold:

U (R0; μ0,L0) = E0, UR(R0; μ0,L0) = 0,
(C1)

URR(R0; μ0,L0) = 2π2n2

�2
.

The subscript 0 indicates that the quantity is evaluated on
the primary branch. If μ is changed by a small amount,
μ0 → μ0 + δμ, then E0 → E0 + δE, L0 → L0 + δL, and
the position of the local minimum of U will be shifted from
R0 to R0 + δR0. Since UR = 0 along the primary branch,
it follows that ∂RU (R0 + δR0; μ0 + δμ,L0 + δL) = 0 and,
hence, that

δR0

δμ
= −U−1

RR

(
URL

δL

δμ
+ URμ

)
. (C2)
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To calculate the period of amplitude modulation under
small perturbation, we need to expand the potential energy
locally up to fourth order in r ≡ R − (R0 + δR0). To sim-
plify expressions, let U0 = U (R; μ0,L0) with U representing
U (R; μ0 + δμ,L0 + δL) unless otherwise specified. The po-
tential can be expressed in the form

U (R) = U (R0 + δR0) + URR(R0 + δR0)

2!
r2

+ URRR(R0 + δR0)

3!
r3

+ URRRR(R0 + δR0)

4!
r4 + O(r5), (C3)

and this expansion employed in the computation of the
half period of amplitude modulation:

∫ Rmax

Rmin

dR√
E0+δE−U (R)

. To
calculate the integral, consider the change of variable

�s2 = U (R) − U (R0 + δR0), (C4)

where � ≡ E0 + δE − U (R0 + δR0). Then

r =
√

2�

URR

[
s − URRR�1/2

3
√

2U
3/2
RR

s2

+
(
5U 2

RRR − 3URRRRURR

)
�

36U 3
RR

s3

]
+ O(�2). (C5)

Substituting this expression into the integral yields√
URR

U0,RR

− 1 = 5U 2
RRR − 3URRRRURR

24U 3
RR

� + O(�3/2), (C6)

and, hence,

U0,RRR

δR0

δμ
+ U0,RRL

δL

δμ
+ U0,RRμ

=
(

δE

δμ
−U0,L

δL

δμ
− U0,μ

)
5U 2

0,RRR−3U0,RRRRU0,RR

12U 2
0,RR

.

(C7)

A similar calculation to match the change of phase∫ Rmax

Rmin

kdR√
E−U (R)

yields

2

(√
URR

U0,RR

k0 − k

)

=
(

5U 2
RRR − 3URRRRURR

12U 3
RR

k0 − kRURRR

U 2
RR

+ kRR

URR

)
�

+O(�3/2)

and, hence,

2

(
kR

δR0

δμ
+ 1

R2
0

δL

δμ

)

=
(

δE

δμ
− U0,L

δL

δμ
− U0,μ

)[
U0,RRR

U 2
0,RR

kR − kRR

U0,RR

]
,

(C8)

where k ≡ φx is a function of R and L. The derivatives in
these two relations are all evaluated at the bifurcation point

μ = μ0. From the three relations above, we obtain the quantity
dE
dμ

− U0,L
dL
dμ

− U0,μ and thereby determine the direction of
branching.

The direction of branching of SW can be calculated in the
same way. Since the SW are characterized by L = k = 0 and
are present only as primary bifurcations when a1 + a2 = 0
(see Sec. IV C), the direction of branching is only determined
by dE

dμ
, where

dE

dμ
= U0,μ + 12U 2

0,RR

(
U0,RRμ − U0,RRRU−1

0,RRU0,Rμ

)
5U 2

0,RRR − 3U0,RRRRU0,RR

= −4μ

3b
. (C9)

Since μ must be positive in order that the bifurcation be from
A = 0 the direction of branching is determined solely by the
sign of b (subcritical if b > 0, supercritical if b < 0).

The direction of branching of quasiperiodic states that
bifurcate from A = 0 can also be calculated. These branches
appear at μ0 > 0 when a1 + a2 �= 0. The condition μ0 > 0
implies that R = 0 is a local minimum for U when L = 0. As
L becomes nonzero, U becomes singular at R = 0. But since
μ0 > 0, a local minimum of U appears close to R = 0. With
the change of variable

ρ = R2

|L| − E

2μ′|L| , (C10)

the half period of amplitude modulation and the corresponding
phase change can be written as∫ Rmax

Rmin

dR√
E − U

= 1

2

∫ ρmax

ρmin

dρ√
μ′γ 2 − 1 − u(ρ; μ,L,γ )

,

(C11)

∫ Rmax

Rmin

kdR√
E − U

= 1

2

∫ ρmax

ρmin

sgn(L) (ρ + γ )−1 − a1+a2
4 |L| (ρ + γ )√

μ′γ 2 − 1 − u(ρ; μ,L,γ )
dρ,

(C12)

where μ′ = μ + 3a2−a1
2 L, γ = E

2μ′|L| and

u(ρ; μ,L,γ ) = μ′ρ2 + b|L|
2

(ρ + γ )3 + βL2(ρ + γ )4.

(C13)

As L tends to 0, these integrals equal to π
2
√

μ0
and π

2 ,
respectively, and are independent of γ . To compute the
asymptotic behavior of these integrals for small L, we assume
that L = εL̃, μ = μ0 + εμ̃ with μ0 = k2, and γ = γ0 + εγ̃ ,
where ε � 1. We next define ρε by the following relation:

μ′ρ2
ε = μ′ρ2+ b|L|

2
[(ρ + γ )3 − γ 3]+βL2[(ρ + γ )4 − γ 4],

with the property that limε→0 ρ(ε) = ρ. When ε is small,

ρ = ρε − εb|L̃|
4μ0

(
ρ2

ε + 3ρεγ + 3γ 2
)+ O(ε2).
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Substituting this into the integrals (C11)–(C12), we see that
the O(ε) terms give

2μ̃ + (3a2 − a1)L̃ + 3γ0b|L̃| = 0,
(C14)

sgn(L)b + μ0γ0(a1 + a2) = 0.

Since γ0 > 0, μ0 > 0 the sign of L must be the same as
−b(a1 + a2). As ε → 0, μ0γ

2
0 − 1 must be positive, implying

that |b| >
√

μ0|a1 + a2| in order that a branch of quasiperiodic
states exists. Substituting γ into the first relation in Eq. (C14),
we obtain a relation between μ and L along the branch, viz.,

L = − 2(μ − μ0)

3a2 − a1 − 3b2

μ0(a1+a2)

+ O(|μ − μ0|2).

This prediction agrees with the result shown in Fig. 19.
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