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We investigate the transition from unidirectional to delayed bidirectional coupling of semiconductor lasers.
By tuning the coupling strength in one direction we show how the locking region evolves as a function of the
detuning and coupling strength. We consider two representative values of the relaxation oscillation damping: one
where the relaxation oscillations are very underdamped and one where they are very overdamped. Qualitatively
different dynamical scenarios are shown to emerge for each case. Several features of the delayed bidirectional
system can be seen as remaining from the unidirectional system while others clearly arise due to the delayed
coupling and are similar to effects seen in delayed feedback configurations.
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I. INTRODUCTION

The dynamics of interacting oscillators is a subject of
considerable interest in many areas of science within physics,
chemistry, and biology [1]. Many natural and engineered
systems can be described by a number of individual oscilla-
tors interacting according to some topology of connections.
Examples include arrays of lasers [2], Josephson-junction
arrays [3], neural networks [4], and chemical reactions [5].
The particular case of the dynamics of two coupled nonlinear
oscillators is of interest since many fundamental dynamical
scenarios can be investigated in considerable detail and can
help guide and inform studies of more complex systems.
In the case of weakly coupled oscillators, the phase is
typically the most relevant variable to describe the dynam-
ical response of the system since the amplitudes remain
almost unchanged due to the weak interaction. However,
for moderate to large coupling strengths, resonances and
nonlinearities due to extra degrees of freedom assume an
important role. In such situations the phase description is no
longer sufficient and an investigation of the evolution must
take amplitude effects into account. Even in the case of a single
forced nonlinear oscillator many instabilities, homoclinic and
heteroclinic phenomena, and complex dynamical behaviors
arise.

Coupled semiconductor lasers are a good example of
interacting nonlinear oscillators and are relevant for a number
of applications. They can be used to provide either enhanced
stability or highly irregular operation depending on the
application. For example, they can be used for ultrashort
pulse generation [6] where a very stable operation is highly
desired to maximize the quality and repetition rate of the
pulses generated. Conversely, they can be used in chaotic
communication [7] where an irregular behavior is highly
desired. With regard to coupled nonlinear oscillators as
well as the potential for applications, understanding the
nonlinear dynamics of coupled semiconductors lasers has been
a topic of intense research. With the development of novel
types of semiconductor devices, constant miniaturization,
and promises of all optical integrated devices for large-scale
photonic applications, the topic remains a very active area
[8–12].

In this paper we examine theoretically the transition from
master-slave to delayed mutual coupling for two single-mode
semiconductor lasers coupled via their optical fields. Using a
master-slave configuration as the starting point, we analyze
how the coupled system changes when we allow part of
the output of the slave laser to be injected into the master
laser. We mostly consider a small physical separation between
the lasers (the short delay regime) to make the analysis
simpler but still sufficiently complicated to discuss some
phenomena associated with the influence of the delay and
the asymmetric mutual coupling in the system. In real-world
applications a perfect symmetric coupling is rarely achieved
and understanding the effect of this asymmetry is of practical
interest. Also the coupling could be intentionally tuned to
the asymmetric case depending on the application, once the
effects are known. We describe the transition for both highly
damped and weakly damped Class-B lasers [13]. Conventional
quantum-well-based semiconductor lasers are well described
by the usual Class-B equations, while in Ref. [14] it was shown
that the steady-state behavior arising from saddle-node and
Hopf bifurcations of optically injected quantum-dot lasers is
qualitatively similar to that of optically injected Class-A lasers,
providing further practical motivation for studying the strongly
damped system. In addition, we briefly discuss the influence
of the linewidth enhancement factor in the locking structure.
The continuation packages AUTO [15] and DDEBIFTOOL [16]
were used throughout the work.

II. PHASE-COUPLED OSCILLATORS

Although a very simple description, a phase model provides
useful theoretical insights about the locking structure of a
system, which could be applicable in some specific and
practical situations such as for weakly coupled lasers with high
relaxation oscillation damping. Weakly coupled quantum-dot
lasers are excellent candidates for such a model [8,17] due
to their strong relaxation oscillation damping characteristics.
Further, phase models are of interest to researchers in diverse
fields studying systems of coupled oscillators in a more general
context [1,18,19]. In order to reveal some of the fundamentals
of the phase-locking structure that are not influenced by
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FIG. 1. (Color online) (a) Schematic of the two coupled oscilla-
tors with frequencies �1 and �2 and coupling strengths κ1 and κ2.
(b) Phase-locked states for three representative situations: unidi-
rectional coupling (black line following �1), bidirectional with
symmetric coupling (blue horizontal line), and bidirectional with
asymmetric coupling (red line). Solid and dashed lines denote stable
and unstable solutions, respectively. The frequency of the solutions
is denoted by ωs . Free-running frequencies �1 and �2 are illustrated
by dotted lines.

amplitude variations or carrier effects, we perform an analysis
of the delay-coupled phase model here. We are particularly
concerned with phase-locked solutions. These are solutions
where both oscillators have the same constant frequency and
a fixed relative phase. In particular, we show that the phase
model predicts a very regular structure for the phase-locked
states in the mutually coupled configuration. The equations are

φ̇1 = �

2
− κ2 sin[φ1(t) − φ2(t − τ )],

(1)
φ̇2 = −�

2
− κ1 sin[φ2(t) − φ1(t − τ )].

Here φi is the phase of oscillator i, � = �1 − �2 is the
frequency detuning, where �i is the free-running frequency
of oscillator i, κi describes the coupling strengths, and τ is the
delay time between the oscillators. The equations are written
in a reference frame centered on the average solitary frequency
of the oscillators.

A schematic of the coupling configuration of the oscillators
is shown in Fig. 1(a). When κ2 = 0, the coupling is unidi-
rectional and Eqs. (1) are reduced to Adler’s equation [20].
In this case the delay time between the oscillators does not
influence the long-term behavior and it is well known that
the system can display only two types of long-term behavior:
either a phase-locked state or an unlocked state where both
oscillators oscillate with different frequencies. When κ2 �= 0,
the oscillators are mutually coupled and each influences the
dynamics of the other. Schuster and Wagner [21] investigated
the behavior of Eqs. (1) for the case of symmetric coupling,
where they found that multiple locked solutions appear when
varying the coupling strength and/or the delay time. Figure 1(b)
illustrates the locking range and the effect of changing the
coupling from unidirectional to bidirectional. For the delay
and coupling levels used in Fig. 1(b), only one stable locked
solution and one unstable locked solution coexist, created by a
saddle-node bifurcation. In the unidirectional limit, the stable
and unstable frequencies are equal and both match the master
frequency. The asymmetric coupling breaks this symmetry and
the stable and unstable frequencies differ, as shown in Fig. 1(b).
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FIG. 2. Phase-locked states for the two mutually coupled oscil-
lators. The frequency of the solutions is denoted by ωs . Thick lines
denote stable locking and thin lines denote unstable locking. The
coupling strength κ1 = 0.03 is fixed and the ratio of couplings κ2/κ1

is varied. Top: κ2/κ1 = 0.1 (a), 0.5 (b), and 1 (c) for τ = 100. Bottom:
κ2/κ1 = 0.1 (d), 0.5 (e), and 1 (f) for τ = 1000.

Increasing the coupling ratio, the locking frequency moves
toward the center between the two free-running frequencies.
In the symmetric bidirectional coupling limit, the stable and
unstable frequencies are degenerate again and the locking
frequency is centered between the free-running frequencies
of the two oscillators.

Multiple solutions appear when the coupling strength κ2

and the delay are increased. Figure 2 shows the locking
frequency of the phase-locked solutions as a function of
the detuning, computed for τ = 100 and 1000 and for three
different coupling ratios, where κ1 = 0.03 is fixed. Figure 2(a)
illustrates the situation where one coupling strength is very
weak in comparison to the other and the system closely
resembles the master-slave case with only one stable locked
solution and one unstable locked solution. However, the branch
of stable locked solutions is not a straight line anymore: Rather
it is curved. For a certain level of the coupling strength κ2,
the branch of stable phase-locked solutions breaks, giving
rise to multistable behavior. This phenomenon leads to the
discretization of frequencies typically observed in delay-
coupled systems [22,23]. The new coexisting phase-locked
solutions appear through saddle-node bifurcations. The exact
point where a single phase-locked solution bifurcates into
two different phase-locked solutions is a cusp bifurcation,
a codimension-2 point where two saddle-node curves meet.
Figure 2(b) illustrates the case for a coupling ratio κ2/κ1 = 0.5
with three stable phase-locked solutions. (We will often refer
to these phase-locked solutions simply as modes in this work.)
Figure 2(c) shows the symmetric coupling case. The stable
solutions are connected by unstable solutions. For larger delays
the scenario described above is repeated and many coexisting
modes can arise and multistable behavior appears for lower
coupling ratios as the delay is increased. Figures 2(d)–2(f)
show the case for τ = 1000, illustrating the evolution of a
very regular mode structure when the coupling strength κ2 is
increased up to the symmetric coupling case. For long delay
times, the frequency difference between successive stable
modes is approximately π/τ . Figure 3 shows magnifications
of the mode structure and denotes typical solutions according
to the phase difference ψ = φ1 − φ2 of the locked states.

026205-2



TRANSITION FROM UNIDIRECTIONAL TO DELAYED . . . PHYSICAL REVIEW E 85, 026205 (2012)

−0.01 0 0.01 0.02 0.03
0

0.01
(a)

Δ

ω
s

−0.08 −0.04 0 0.04 0.08
0

0.01
(b)

Δ

ω
s

FIG. 3. (Color online) Magnification of Figs. 2(d) and 2(f)
showing details of the branches of phase-locked solutions for
(a) asymmetric coupling and (b) symmetric coupling. The frequency
of the solutions is denoted by ωs . Black lines denote stable solutions
and gray lines denote unstable solutions. Asterisks ( ) indicate in-
phase solutions, circles ( ) indicate antiphase solutions, and squares
( ) indicate where both coexist. Diamonds ( ) indicate out-of-phase
solutions that exist for zero detuning in the symmetric coupling
configuration.

The stable branches alternate between in-phase (ψ = 0) and
antiphase (ψ = π ) solutions. For the symmetric coupling case,
out-of-phase solutions (solutions where ψ �= 0, π ) for zero
detuning are also shown.

A useful diagram when investigating dynamics of coupled
oscillators is the mapping of the synchronization region as
a function of the detuning and coupling strength. For unidi-
rectional coupling, the system is governed by Adler’s equation
and the locking region is the simplest possible, bounded by two
straight lines formed by saddle-node bifurcations [Fig. 4(a)].
For bidirectional coupling, the two-parameter bifurcation
structure of Eqs. (1), in the detuning-coupling space, is shown
in Figs. 4(b)–4(d). Each diagram was computed for a fixed ratio
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FIG. 4. Locking regions in the coupling-detuning space for
Eqs. (1). Different gray tones denote different stable phase-locked
solutions. Thick lines denote saddle-node bifurcations for stable
solutions. Dotted and dashed lines denote pitchfork and saddle-node
bifurcations, respectively, for unstable solutions. (a) Unidirectional
coupling (the Adler case), (b) and (c) asymmetric bidirectional
coupling, and (d) symmetric bidirectional coupling.

between the coupling strengths. When varying the coupling
strength κ1 in the horizontal axis, κ2 is varied in such way that
the ratio κ2/κ1 is constant. In this way it is possible to observe
the effect of the asymmetric coupling for several levels of
coupling strength as a function of the detuning between the
two oscillators. Figure 4(b) shows the locking region for an
asymmetric bidirectional coupling, where κ2/κ1 = 0.1. For
low values of κ1 only one stable mode exists. For higher κ1

new modes are created through cusp bifurcations, leading to
multiple coexisting phase-locked solutions for higher levels of
coupling. Figure 4(c) shows the locking region for κ2/κ1 =
0.5. Here multistability appears for lower values of κ1 since
the coupling ratio is larger. Figure 4(d) shows symmetric
bidirectional coupling. For small κ1 just one mode exists.
On increasing κ1 a pitchfork bifurcation occurs and a pair of
unstable modes is born. For higher levels of coupling and/or
delay, additional modes are created in a structure of nested
saddle-node V shapes.

III. DELAY-COUPLED SINGLE-MODE LASERS

A realistic description of a laser system has to take
phase and amplitude into account. Amplitude effects become
particularly important in the coupled laser system when the
coupling is strong. The coupling strength at which instabilities
first arise depends on many factors, in particular the relaxation
oscillation damping, as we will discuss below. Here we con-
sider two coupled single-mode semiconductor lasers modeled
by standard rate equations for the electric fields and carrier
densities. The model [24] is given by

Ė1 = (1 + iα)N1E1 + κ2e
−i�0τE2(t − τ ) + 1

2 i�E1,

Ė2 = (1 + iα)N2E2 + κ1e
−i�0τE1(t − τ ) − 1

2 i�E2,
(2)

Ṅ1 = γ [P − N1 − (1 + 2N1)|E1|2],

Ṅ2 = γ [P − N2 − (1 + 2N2)|E2|2].

The equations are written in the reference frame of the average
frequency of the free-running lasers. Here Ei and Ni are
the complex electric field and the carrier density for laser
i, respectively. The two lasers are identical except for their
frequencies. The term α is the linewidth enhancement factor,
P is the pump current above threshold, γ is the ratio of the
photon lifetime and the carrier lifetime, τ is the coupling delay
due to the finite-time propagation of the light, κi describes
the coupling strengths, �0 = �1+�2

2 is the average optical
frequency where �i is the free-running angular frequency
of laser i, and � = �1 − �2 is the frequency detuning.
We assume that �0τ = 0 mod(2π ), meaning that the spatial
separation between the lasers is an integer number of the
average optical wavelength. For studies of the effect of varying
this parameter see Refs. [25,26], for example. The relaxation
oscillations of the free-running lasers are characterized by
γ and P . For P fixed, γ is proportional to the damping of
the relaxation oscillations and we will refer to this important
parameter somewhat loosely as the damping for the rest of
this work. In this model, we define a phase-locked solution to
be one where the two lasers oscillate at the same constant
frequency with a fixed relative phase and with constant
intensities and carrier densities, although the intensity and
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FIG. 5. (Color online) Frequency-locked states for different
values of κ2/κ1 in the rate equation model [Eqs. (2)], from the
unidirectional limit to the symmetric bidirectional limit. Black lines
denote stable locking and gray lines denote unstable locking. Hopf
bifurcations are denoted by asterisks (∗). The parameters α = 1.5,
τ = 10, κ1 = 0.1, γ = 1, and P = 0.1 throughout. The coupling
ratio κ2/κ1 = 0 (master-slave) (a), 0.1 (b), 0.3 (c), 0.5 (d), 0.7 (e),
and 1 (f).

carrier density of each device may be different from those of
the other.

The master-slave system is described by Eqs. (2) with
κ2 = 0. In this case, laser 1 is referred to as the master
and laser 2 as the slave. This system has been extensively
studied and vast literature exists. See Ref. [27] for a review
of the subject focusing on Class-B semiconductor lasers,
Ref. [28] for Class-A lasers, and Ref. [14] for recent results
on highly damped quantum-dot lasers. The effect of changing
from unidirectional to symmetric bidirectional coupling for
two representative values of γ is illustrated in Figs. 5 and
6, where the frequencies of the phase-locked solutions are
plotted versus the detuning for different values of the coupling
ratio κ2/κ1. The resulting frequencies are the same regardless
of the value of γ . What is affected is the stability of these
solutions as shown by comparing the corresponding figures:
Certain ranges that are stable in Fig. 5 are unstable in Fig. 6.
This is a typical effect of stronger damping, which enhances
the stability properties of the system. Figures 5(a) and 6(a)
show the master-slave unidirectional coupling states where the
frequency of the slave laser just follows the frequency of the
master. The transition to the stable locked regime is through

−0.2

−0.1

0

0.1

0.2

ω
s

(a) (b) (c)

−0.2−0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

(d)

Δ

ω
s

−0.2−0.1 0 0.1 0.2

(e)

Δ
−0.2−0.1 0 0.1 0.2

(f)

Δ

FIG. 6. (Color online) Same as Fig. 5, but for γ = 0.005.

a Hopf bifurcation for positive detuning and through a saddle
node for negative detuning. When bidirectional coupling is
introduced, many features shown in Sec. II for the phase model
are seen again here, albeit with some extra complications
such as the asymmetry introduced by the nonzero α factor.
Figure 5(b) shows the case for a small coupling ratio and
the branch of stable locked solutions has become curved.
The frequencies of the stable and unstable solutions are no
longer the same. For κ2 above a certain level multistability
arises for some range of the detuning, as shown in Fig. 5(c).
Increasing the coupling κ2 still further, a branch switching
occurs [Figs. 5(d)–5(f)]. Such branch switchings are very
common as the coupling strengths are increased individually or
in tandem. One of the stable branches loses stability and only
a single stable solution exists for this parameter configuration.

A better understanding of the scenarios discussed in the
preceding paragraph is obtained by investigating the two-
parameter evolution of the locking region as a function
of the coupling ratio. Figure 7 shows numerically com-
puted bifurcation diagrams for a short delay time τ = 10.
Figures 7(a)–7(f) represent the evolution from the unidirec-
tional to the symmetric bidirectional coupling for a high
damping and Figs. 7(g)–7(l) represent the evolution for weak
damping. Let us consider the high damping case first.

Figure 7(a) shows the unidirectional master-slave stability
diagram. Only the principal saddle-node and Hopf bifurcations
are shown. (There are many other bifurcations even in the
unidirectional system not considered in this work and many
of these are explored in Ref. [27].) The shaded areas are
those where there are stable phase-locked solutions. The
diagram is asymmetric because of the nonzero α factor.
Moving to Fig. 7(b), κ2 is now nonzero but still small and
the diagram is unchanged qualitatively. Thus, even with the
introduction of the mutual coupling, the stability diagram can
remain qualitatively similar to the unidirectional system. In
Fig. 7(c) a second stable phase-locked solution has emerged
coexisting with the first and so giving rise to multistability.
This solution has arisen via a new saddle-node bifurcation
induced by the delay in the system. As κ2 is further increased
the diagram becomes more and more symmetric while various
new bifurcations appear. Finally, in Fig. 7(f) the coupling
is symmetric and so the diagram also becomes symmetric.
A third stable phase-locked solution has also appeared. The
similarity to the phase model at low levels of κ1 is clear. The
nested-V structure is evident and if one increased the delay this
would be even more evident as the high delay would result
in many more stable phase-locked solutions. This similarity
to the phase model is expected. The higher the damping,
the less important carrier effects become and so for high
damping the system depends predominantly on the electric
field while in the class-A limit γ � 1 the carrier effects can
be adiabatically eliminated. For low coupling strengths the
electric-field amplitude is less important and so one would
expect good agreement with the phase model [17].

Figures 7(g)–7(l) show the corresponding stability dia-
grams for weakly damped devices. Figure 7(g) shows the
unidirectional diagram. As κ2 is increased various new bifur-
cations arise. Of particular interest are the white regions within
the principal saddle-node V shape evident in Figs. 7(j)–7(l).
In these regions there are no stable phase-locked solutions.
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FIG. 7. (Color online) Evolution of the locking region when increasing the coupling ratio κ2/κ1 from unidirectional to the symmetric
bidirectional case, for a short delay time between the lasers (τ = 10). The upper row shows the case for strong damping (γ = 1) and the
bottom row shows that for weak damping (γ = 0.005). Black (red) lines denote saddle-node (Hopf) bifurcations and solid (dashed) lines refer
to stable (unstable) locked states. Only stable Hopf bifurcations are shown. The parameters P = 0.1 and α = 1.5 throughout. Different gray
tones denote different stable phase-locked solutions.

A second stable phase-locked solution has appeared in Fig.
7(l), again induced by the delay in the system. It is instructive
to compare and contrast the two rows. The main differences
are the enhanced stability and the extra solutions both found
for high γ . The locking region is larger and there are more
phase-locked solutions in general for the highly damped
system. We see that there is at least one stable phase-locked
solution at every coupling strength for the highly damped lasers
in contrast to the weakly damped lasers. In fact, with weak
damping there are coupling strengths at which stable phase
locking is not even possible at zero detuning. This instability
is a result of both a nonzero α and the low damping and occurs
through a Hopf bifurcation. One would expect the resulting
limit cycle to combine both relaxation oscillation and coupling
characteristics. An analytic investigation of the frequency of
this cycle would be interesting. Similar absences of stable
phase locking have also been reported in Refs. [11,12] where
in both cases weakly damped lasers were investigated. Highly
damped quantum dot lasers, in contrast, have demonstrated
stable phase-locking properties when mutually coupled at all
tested coupling strengths and even for long delay times [8,17].

Clearly the diagrams display a combination of unidirec-
tional coupling effects and feedbacklike-delay-induced effects.
As κ2 is increased the master-slave locking boundaries are
deformed continuously and even in the fully symmetric
bidirectional coupling limit the external saddle-node boundary
is a remnant of the original master-slave line. The emer-
gence of new saddle-node bifurcations is preserved from the
phase model and is a delay-induced feature also found in
systems with delayed feedback. The emergence of the Hopf
bifurcations through amplitude effects provides the principal
difference with the phase model.

Optically injected weakly damped lasers undergo a stable
Hopf bifurcation even for very low injection levels causing
self-sustained oscillations at the relaxation oscillation fre-
quency. However, stable Hopf bifurcations do not arise for
highly damped and class-A lasers at weak injection levels.
In Fig. 7 we show only the stable Hopf bifurcations, but of

course it is also possible to find the unstable Hopf bifurcations.
Figure 8 shows the symmetric bidirectional coupling diagrams
with both stable and unstable Hopf bifurcations. The weakly
damped case is much more complicated than the strongly
damped case, as one might expect. From an experimental point
of view, these curves are not very important since they do not
give rise to stable solutions. Interestingly, the Hopf bifurcations
at very low coupling strengths in the weakly damped system
are all unstable and the saddle node provides the locking
boundary while there is a stable Hopf bifurcation in the highly
damped case conferring stability on a second phase-locked
solution, demonstrating that the Hopf bifurcations are not
always instability inducing.

Increasing the delay time greatly complicates the two-
parameter locking diagrams of Fig. 7. Instead, we plot the
frequency of the phase-locked solutions versus the detuning
in Fig. 9. In Fig. 9 we consider a delay time of τ = 100,
ten times that used for Fig. 7. This induces many extra
phase-locked solutions (both stable and unstable) and, in
particular, multistability exists for both the weakly damped
and strongly damped systems. As before, the number of stable
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FIG. 8. (Color online) Symmetric bidirectional stability dia-
grams. (a) Same as in Fig. 7(f), but with the unstable Hopf bifurcations
also shown. (b) Same as in Fig. 7(l), but with the unstable Hopf
bifurcations also shown. Different gray tones denote different stable
phase-locked solutions.
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FIG. 9. (Color online) Mode structure for symmetric coupling for
strongly damped and weakly damped systems. Here κ1 = κ2 = 0.1,
τ = 100, and P = 0.1. Top: γ = 1 and (a) α = 0 and (b) α = 1.5.
Bottom: γ = 0.005 and (c) α = 0 and (d) α = 1.5. Black (gray)
lines denote stable (unstable) solutions and asterisks (∗) denote Hopf
bifurcations.

solutions is larger for the case of strong damping. Figure 9 also
illustrates some effects of the α factor on the locking structure.
As already mentioned, the unidirectional stability diagram
is asymmetric for α �= 0 and this asymmetry is maintained
for the bidirectional coupling system except in the symmetric
bidirectional limit. However, an asymmetry due to the α factor
is still observed in the set of phase-locked solutions even for
symmetric bidirectional coupling. In this case, the asymmetry
is to be found in the frequency of the locked solutions and
so in the (vertical) ωs axis in Fig. 9. For α = 0 the frequency
solutions are centered on the average free-running frequency
and the figure is symmetric both in the detuning and in ωs .
However, for nonzero α this is no longer true and while it is
symmetric in the detuning it is asymmetric in ωs .

IV. CONCLUSION

We discussed the transition from master-slave to delayed
mutual coupling of two semiconductor lasers by tuning the
coupling strengths between the two limits. First we analyzed a

simple model described by the phase of the lasers only. This has
a broad relevance since many coupled oscillator models can
be reduced to phase models when the coupling is sufficiently
weak. In particular, we described the creation of several stable
phase-locked solutions formed in a series of codimension-2
cusp bifurcations as the coupling strength is increased. We then
considered the standard coupled rate equation model for semi-
conductor lasers for two representative values of the relaxation
oscillation damping, one strong and one weak. The locking
behavior combines effects from the unidirectional coupling
and the optical feedback configurations. We showed how the
locking region changes due to the influence of the mutual
coupling and that several features of the master-slave system
remain in the mutually coupled system. It was shown that the
stability of the phase-locked states is very different when com-
paring the situations of strong and weak damping as one would
naturally expect; the strong damping enhances the stability
properties of the system. This can be seen in terms of larger
locking ranges and more stable phase-locked states. It would
be interesting to examine the evolution of the region where no
stable phase locking can occur for any detuning with changing
delay and γ and this may form the basis of future work.

A further challenge now is to develop similar transition
scenarios for dynamics including more complex regimes
such as pulsating and chaotic solutions and noise-induced
phenomena such as excitability [27,29] that are well known to
occur in the master-slave system. As shown in Fig. 7, even with
the introduction of appreciable mutual coupling, the stability
diagram can remain qualitatively identical to the master-slave
diagram and so one should expect certain dynamical features
of the master-slave system to persist while the influence of
the delay may provide some different features. Such an effect
has been considered in the case of symmetric bidirectional
coupling and excitable pulsations in Ref. [17], where pulse
trains rather than excitable pulses were found.
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