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Electron transfer reactions in condensed phase: Effect of reversibility
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We propose a generalized one-dimensional kinetic equation for multidimensional reversible electron transfer
(ET) reaction with a nonequilibrium situation as the initial condition. The rate constant for the forward reversible
ET reaction obtained here consists of the rate for the corresponding irreversible ET reaction, and an extra term due
to reversibility of the ET process which includes the rates of diffusion dynamics in the reactant and product wells.
In order to understand the effect of reversibility, we consider back ET reaction in a system consisting of an electron
donor-acceptor pair in a solvent modeled through low frequency solvent collective coordinates (multidimensional)
characterized by the orientational polarization and slowly relaxing one-dimensional vibrational mode. We propose
here a new generalized polarization energy functional corresponding to the extension of the continuum version
for the same, which has opened up the possibility of inclusion of molecular nature of the solvent into the solvent
reorganization energy. We then derive an exact expression for the ET rate for this model system. The numerical
results calculated by using the proposed one-dimensional approach are shown to be in good agreement with
the available experimental results. Non-Marcus free energy gap dependence of the rates observed here for the
reversible and irreversible ET reactions are very close to each other in the barrierless region, while for other
situations, the rate for the former process is found to be less than the latter. The extra term, which makes the
difference between the rate constants for irreversible and reversible ET reactions, is found to be contributed by
the diffusion dynamics from both reactant and product wells but the dominating contribution is provided mainly
by the product well.
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I. INTRODUCTION

The study of electron transfer (ET) processes in condensed
phase is ubiquitous in chemistry, physics, and biological sci-
ences. The dynamics of these processes has recently received
considerable scrutiny from the experimentalists as well as the-
oreticians [1–18]. The current phenomenal upsurge of interest
in this field owes its origin to the experimental investigations
on ET processes explored through widely available ultrafast
spectroscopic techniques for dynamical measurements and
the synthesis of tailor-made artificial electron donor-acceptor
systems. In particular, the advent of femtosecond dynamics on
the time scale of nuclear motion [19–21] has opened up new
horizons in the exploration of ultrafast ET processes. Thus,
the dynamics of ET processes in condensed phase has been a
subject of renewed interest.

ET reaction constitutes one of the most important chemical
processes in solution and it also plays a crucial role in the
energy conversion mechanism in biological systems. A large
amount of work in this field has been dedicated to the under-
standing of the diverse behavior of ET reactions exhibited by
donor-acceptor pairs in solutions and also in organized media,
much of which were attempted to be simplified within the
traditional well-known ET theory of Marcus [1]. However, the
study of solvent effects on outer sphere ET reactions has been
a subject of much discussion. The works of Zusman [2], Calef

*alokk@barc.gov.in
†skghosh@barc.gov.in

and Wolynes [3], and the unified approach of Hynes [4] have
extended Marcus theory to treat the dynamics of ET reactions
and to investigate the role of solvent dynamics in adiabatic ET.
But in all these theories the effect of nonequilibrium aspect as
well as the effect of reversibility on the rate of ET reaction has
not been taken into consideration. There are many situations,
e.g., photochemical ET reactions [22,23], where the system
is initially in a nonequilibrium configuration rather than an
equilibrium one.

Of particular interest is the possibility of reactions in the
excited state, where the ET may take place in the highly
nonequilibrium conditions. Furthermore, in principle, it is
possible to take into account the backward processes even
within the framework of such nonequilibrium situations. A
complete picture of the ET reaction between two states,
therefore, includes the effect of diffusion and reaction in both
directions starting with nonequilibrium initial configuration of
the system. If equilibrium is to prevail between the initial and
the final states, the consideration of the presence of a reverse
reaction is very much crucial and the survival probabilities
obtained by taking into account such reversible ET differ from
those for a reaction in a single direction.

The process of reversible ET with nonequilibrium initial
configuration (say with delta function distribution), can arise
from a system which is originally in the ground state and is
brought to the nonequilibrium excited state by laser excitation.
Subsequently, the system at the higher level of excitation
relaxes downward toward the potential minimum of the
excited-state surface due to relaxation of the polar solvent
until its energy coincides with that of the ground state when
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back ET reaction takes place. Thus, the ET reaction can occur
from a completely nonequilibrium condition. Depending on
the magnitude of the intrinsic ET rate constant k0, there is an
interplay between the relaxation and ET at the crossing point. If
k0 is small, the system relaxes to the potential minimum of the
excited-state surface and ET hardly occurs during relaxation
to the equilibrium state, although the system passes through
the intersection point in the course of relaxation. Only after
reaching the minimum of the excited-state surface, thermal
fluctuation of solvent molecules brings the system back to the
crossing point again and ET reaction then takes place with
intrinsic rate k0. On the other hand, when k0 is large, the back
ET reaction occurs almost exclusively at the intersection point
during its downward travel, in place of the relaxation of the
system to the minimum of the excited-state surface. In the
case of intermediate k0, however, both the above processes
start operating at the crossing point, viz. relaxation of the
system to the potential minimum of the same state surface
and back electron transfer at the crossing point. However,
once the product is formed, it then starts crossing to the
reactant surface again through the same intersection point.
This process continues until the system finally reaches a
dynamical equilibrium. At equilibrium, the ratio of the rate
constants for the forward and backward reactions is known
in terms of free energy change (�G) of the reaction. But
it is not clear whether the rate constant for the forward
direction for a reversible ET is identical with the same for
an irreversible reaction. If they are not equal, then the question
arises as to how they are related to each other. In order to
answer these queries, what is needed is a microscopic kinetic
equation for the distribution function in a relevant space for
obtaining either of the two rate constants. The microscopic
kinetic equation needed for an exact evaluation of the rate
constant in either direction (say forward rate constant), in turn,
involves diffusive motion in multidimensional potential wells.
The situation can be further complicated if both the surfaces
are multidimensional in nature and ET also takes place from
the product to the reactant surface. Such complex situations are
often encountered in various experiments. Theoretical studies
of ET reaction rates in such multidimensional potential energy
surfaces pose an interesting but formidable challenge due to
tremendous complexity of the problem, since one has to solve
a multidimensional Smoluchowski equation to understand
the effect of dynamics on the rate of ET reaction. Our objective
here is to address all those issues methodically and propose
new alternatives.

The organization of the paper is as follows. In Sec. II, we
provide a general kinetic equation in one-dimensional reaction
coordinate space for multidimensional reversible ET reactions
starting with nonequilibrium initial conditions. This is fol-
lowed by details of the theoretical formulation for obtaining
an exact analytical expression for the average forward rate
constant for reversible charge recombination (CR) reactions
starting with initially prepared nonequilibrium configuration
for the system, in terms of a general effective potential and
reaction-coordinate-dependent diffusivity. In Sec. III, as an
illustrative example, we consider an application of the theory
to reversible ET in an ion-pair system modeled through a
generalized polarization energy functional (multidimensional)
and harmonic one-dimensional vibrational coordinate. The

objective here is to select the energy components correspond-
ing to the generalized polarization energy functional and to
provide a route to include the molecular effect through solvent
reorganization energy into the ET rate. We then derive the
expression for the effective potential in terms of the one-
dimensional reaction coordinate and define a new generalized
expression for solvent reorganization energy which has opened
up a possibility of inclusion of the discrete molecular nature
of the solvent. In Sec IV, we present details of the theoretical
formulation for exact analytical expressions for the average
forward rate constant of reversible ET reactions in terms of the
general effective potential and reaction-coordinate-dependent
diffusivity using the effective potentials derived in the pre-
vious section. In Sec. V, we provide some numerical results
calculated by using the proposed one-dimensional approach
and compare them with available experimental results. We
do discuss the role of diffusion dynamics in the reactant and
the product wells due to an extra term appearing in the rate
expression. Sec. VI concludes with a brief summary.

II. THEORETICAL FORMULATION
FOR ONE-DIMENSIONAL DESCRIPTION
OF MULTIDIMENSIONAL REVERSIBLE

ELECTRON TRANSFER REACTIONS

The phenomenological macroscopic kinetic equation for an
irreversible ET reaction is given by

dN1(t)

dt
= − k′

12N1(t) (1)

where k′
12 denotes the first order rate constant for ET reaction

and can be obtained from the following equation defined as

k′−1
12 =

∫ ∞

0
dt N1(t) = lim

S→0
Ñ1(s). (2)

Here, N1(t) represents the probability of finding the unre-
acted species in the reactant well at time t and Ñ1(s) denotes its
Laplace transform [Ñ1(s) = ∫ ∞

0 dt exp(−st)N1(t)]. In order
to evaluate the rate constant k′

12, what is needed, is a
microscopic kinetic equation for the distribution function in
phase space or reaction-coordinate space, which is to be
solved to obtain the distribution function and the latter is
to be integrated over the relevant coordinates to obtain an
expression for N1(t) and hence k′

12 using Eq. (2). In order
to construct the relevant microscopic kinetic equation, one
needs to know the mechanism of the ET reaction. Let us
consider an example of mechanism for back ET reaction from
a nonequilibrium situation, a typical ET process (see Fig. 1)
where a molecule DA is excited from the ground state with
an ultrashort laser pulse leading to the formation of the
ion pair D+A−. The system is thus initially prepared in
a constrained nonequilibrium state through photochemical
excitation and in subsequent time, the constraint is removed
as the system is no longer under laser field. The system then
starts relaxing downward along its multidimensional potential
energy surface (corresponding to the ion pair D+A−) through
relaxation of the surrounding polar solvents until it meets that
of the molecule DA at the critical geometrical configuration
[3,24–26] determined by

Hr
sol(R) − H

p

sol(R) = γ ∗ = �GCR − λ, (3)
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where back ET reaction takes place with an intrinsic rate
constant k0. The quantity Hi

sol(R)(i = r,p) represents the
Hamiltonian corresponding to the solute-solvent and solvent-
solvent interaction energy. Here R represents a set of ge-
ometrical coordinates for the relevant system. Here, �GCR

corresponds to the free energy change of CR reaction and λ

denotes the solvent reorganization energy. In the process of ET,
the electron, which is originally localized at A− corresponding
to ion pair D+A−, will be delocalized to D+ leading to the
formation of the molecule DA when the critical configuration
at the intersection point is reached as satisfied by Eq. (3).

The kinetic equation in Liouville space for the ET reaction
as described above can now be written as

∂ρ(�,t |�0,0)

∂t
= −[iL + k0δ(A(R) − γ ∗)]ρ(�,t |�0,0), (4)

where ρ(�,t |�0,0) is the probability density defined in phase
space � at time t when initially it is �0 at t = 0. Here, L

represents the Liouville operator in phase space and � denotes
the corresponding phase space coordinates.

Now, N1(t) can be obtained by integrating the phase
space distribution function ρ(�,t |�0,0) over the phase space
coordinate, as given by

N1(t) =
∫

d� ρ(�,t |�0,0). (5)

However, it is extremely difficult to solve Eq. (4) and
obtain an expression for N1(t) through Eq. (5) due to the
multidimensional nature of the problem. Another difficulty is
that the configuration in phase space for the system prepared
in a constrained nonequilibrium state under photochemical
excitation is also unknown. Since A(R)[=Hr

sol(R) − H
p

sol(R)]
is a scalar quantity and constraint is imposed on A(R) at the
initial time, it is, therefore, convenient to construct a distri-
bution function, say, g1(γ,t |γ0,0) in the reaction coordinate
space A(R)defined as

g1(γ,t |γ0,0) =
∫

d� ρ(�,t |�0,0)δ[A(R) − γ ]. (6)

Here, the initial constraint is imposed on A(R) as A(R0) =
γ0 and g1(γ,t |γ0,0) represents the probability distribution of
the reaction coordinate A(R) to have the value γ at time t

with its initial value γ0 at t = 0. In our earlier work [27], we
have rigorously shown, using projection operator technique,
how ET reaction dynamics defined in Liouville space �

[Eq. (4)] can be mapped into the microscopic reaction-
coordinate space A(R). The one-dimensional kinetic equation
for the distribution function g1(γ,t |γ0,0) in reaction coordinate
space A(R) can be written [28] as

∂g1(γ,t |γ0,0)

∂t

= Z(γ,t)g1(γ,t |γ0,0)−k0δ(γ−γ ∗)g1(γ,t |γ0,0), (7)

where Z(γ,t) is defined as

Z(γ,t)f (γ,t) =
∫

dc[i	(γ,c)]f (c,t)

−
∫

dc

∫ t

0
ds K(γ,c,s)f (c,t − s) (8)

and the frequency 	(γ,c) and the memory kernel K(γ,c,t) are
defined, respectively, as

i	(γ,c) = 〈iLδ[A(R) − γ ],δ[A(R) − c]〉
〈δ[A(R) − c]〉 , (9a)

K(γ,c,t) = 〈F (c,t),F (γ,0)〉
〈δ[A(R) − c]〉 . (9b)

The random force F (c,t) is defined as

F (c,t) = exp[(1 − PG)iLt](1 − PG)iLδ[A(R) − c], (10)

with the projection operator PG given by

PG =
∫

db
(· · · ,δ[A(R) − b])

〈δ[A(R) − b]〉 δ[A(R) − b]. (11)

Although the presence of the projection operator (PG)
makes it difficult to evaluate the memory kernel K(γ,c,t) in
general, for the situation of the reaction coordinate A(R) vary-
ing slowly, Eq. (7) can be simplified in the Markovian limit as

∂g1(γ,t |γ0,0)

∂t
= ∂

∂γ

{
D1(γ )

[
∂g1(γ,t |γ0,0)

∂γ

+ g1(γ,t |γ0,0)
∂

∂γ

{
βV eff

1 (γ )
}]}

− k0δ(γ − γ ∗)g1(γ,t |γ0,0). (12)

Here, the γ -dependent diffusivity D1(γ ) is defined as

D1(γ )

=
∫ ∞

0
dt

∫
dR

•
A (R,t)

•
A(R)δ[A(R)−γ ] exp

[−βHr
sol(R)

]
∫

dR δ[A(R)−γ ] exp
[−βHr

sol(R)
] ,

(13)

where the dot corresponds to time derivative and β (=1/kBT )
denotes the inverse temperature. The effective potential
V eff

1 (γ ) is a function of γ , and is given by

exp
[−βV eff

1 (γ )
] = β−1〈δ[A(R) − γ ]〉r

= β−1
∫

dR δ[A(R) − γ ] exp
[−βHr

sol(R)
]
.

(14)

It is now clear from Eqs. (5) and (6) that N1(t) can also be
obtained by integrating g1(γ,t |γ0,0) over γ , viz.

N1(t) =
∫ +∞

−∞
dγ g1(γ,t |γ0,0), (15)

and hence the rate constant k′
12 through Eq. (2). Using the

Green’s function technique, one can easily solve Eq. (12) to
obtain a formal expression for k′

12 given by

k′−1
12 = [

kTST
1 (γ ∗)

]−1 + [
kd

1 (γ ∗,γ0)
]−1

, (16)

where the intrinsic transition rate kTST
1 (γ ∗) and nonequilibrium

relaxation dynamics rate kd
1 (γ ∗,γ0) are defined, respectively,

as [
kTST

1 (γ ∗)
]−1 = 1

k0g
eq
1 (γ ∗)

, (17)

[
kd

1 (γ ∗,γ0)
]−1 =

∫ ∞
0 dt

[
g0

1(γ ∗,t |γ ∗,0) − g0
1(γ ∗,t |γ0,0)

]
g

eq
1 (γ ∗)

,

(18)
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with g
eq
1 (γ ∗)[=g0

1(γ ∗,∞|γ ∗,0)] representing the stationary
distribution given by

g
eq
1 (γ ∗) = exp

[−βV eff
1 (γ ∗)

]
∫ +∞
−∞ dγ exp

[−βV eff
1 (γ )

] . (19)

The macroscopic kinetic equation, defined in Eq. (1), is
valid as long as the barrier height for the reverse reaction is very
large. However, the effect of reversibility on N1(t) becomes
significant when the barrier heights for both the processes are
comparable. In these cases, the modified macroscopic kinetic
equations are given by

dN1(t)

dt
= −k12N1(t) + k21N2(t), (20a)

dN2(t)

dt
= −k21N2(t) + k12N1(t), (20b)

where k12 and k21 denote, respectively, the rate con-
stants for forward and backward reactions and N1(t) =∫ ∞
−∞ dγ g1(γ,t |γ0,0) and N2(t) = ∫ ∞

−∞ dγ g2(γ,t |γ0,0). Here,
g2(γ,t |γ0,0) is the probability distribution of the reaction
coordinate A(R) to have the value γ at time t with its initial
value γ0 at t = 0 at the product surface. Now, taking the
Laplace transform of both Eqs. (20a) and (20b), one can easily
obtain an expression for N1(t) in the Laplace plane as

Ñ1(s) = s + k21

s2 + s (k12 + k21)
, (21)

which on inverse Laplace transformation, leads to the expres-
sion

[N1(t) − (1 − α)]

α
= exp [− (k12 + k21) t] , (22)

where the parameter α can be expressed in terms of the forward
and backward rate constants k12 and k21 as

α = k12

(k12 + k21)
. (23)

Now, using the relation k12/k21 = exp [−β�GCR] ,

Eqs. (22) and (23), after some algebra, leads to the expression
for the rate constant k12 [30] given by

k−1
12 = lim

s→0

(1 + exp [β�GCR])

α

[
Ñ1(s) − (1 − α)

s

]
, (24)

where �GCR represents the free energy of ET reaction. It
is apparent from Eqs. (2) and (24) that the rate constant k′

12
defined in Eq. (2) for an irreversible reaction is different from
the same k12 defined in Eq. (24) for a reversible reaction.
But, it is not clear whether the rate constant k12 is greater or
smaller than k′

12. In this connection, another important question
that arises is whether k12 really consists of two parts—one
from irreversible rate k′

12 and another from the collection
of dynamical quantities, i.e., rates of diffusion dynamics in
reactant as well as product potential surfaces. In order to
answer all these queries, first we need a microscopic kinetic
equation in reaction coordinate space (γ ) for the reversible
ET reaction. In the case of reversible ET reaction, the kinetic
equation for the probability distribution gi(γ,t |γ0,0) given by
Eq. (12) should be modified by considering a delta sink of
strength k0 both for the forward as well as the backward

processes. The modified kinetic equations for reversible ET
reactions thus become

∂g1(γ,t |γ0,0)

∂t
= ∂

∂γ

{
D1(γ )

[
∂g1(γ,t |γ0,0)

∂γ

+ g1(γ,t |γ0,0)
∂

∂γ

{
βV eff

1 (γ )
}]}

− k0δ(γ−γ ∗)[g1(γ,t |γ0,0)−g2(γ,t |γ0,0)],

(25)
∂g2(γ,t |γ0,0)

∂t
= ∂

∂γ

{
D2(γ )

[
∂g2(γ,t |γ0,0)

∂γ

+ g2(γ,t |γ0,0)
∂

∂γ

{
βV eff

2 (γ )
}]}

− k0δ(γ−γ ∗)[g2(γ,t |γ0,0)−g1(γ,t |γ0,0)],

(26)

where g1(γ,t |γ0,0) and g2(γ,t |γ0,0) are the probability distri-
butions corresponding to the diffusive motion along the one-
dimensional reaction coordinate γ in the respective potential
wells of the reactant and product state in the presence of a
delta sink of strength k0 located at the transition point γ ∗.
Here, D1(γ ) and D2(γ ) denote, respectively, the reaction-
coordinate (γ )-dependent diffusivities in the reactant and
product states, and V eff

1 (γ ) and V eff
2 (γ ) are the corresponding

effective potentials. The initial condition, which we have
considered here, is the nonequilibrium configuration, i.e.,
g1(γ,t = 0|γ0,0) = δ(γ − γ0) as the initial condition for the
reactant and g2(γ,t = 0|γ0,0) = 0 for the product. The rate
constant k12 can now be obtained using Eqs. (15) and (24),
along with Green’s function [29] technique and the procedure
discussed in [30]. The final expression for k12 obtained in terms
of the nonequilibrium relaxation dynamics rate kd

1 (γ ∗,γ0) in
the reactant well, well dynamics rate kd

i (γ ∗), and intrinsic
transition state rate kTST

i (γ ∗), is given by

k−1
12 = k′−1

12 +exp (β�GCR)

kd
1 (γ ∗,γ0)

{
1+kd

1 (γ ∗,γ0)

kd
2 (γ ∗)

− kd
1 (γ ∗,γ0)

kd
1 (γ ∗)

}
,

(27)

where the well dynamics rate kd
i (γ ∗) is defined as

[
kd
i (γ ∗)

]−1 =
∫ ∞

0 dt
[
P 0

i (γ ∗,t |γ ∗,0) − P
eq
i (γ ∗)

]
P

eq
i (γ ∗)

. (28)

The explicit form of kd
1 (γ ∗,γ0) is given as

[
kd

1 (γ ∗,γ0)
]−1 =

∫ γ0

γ ∗
dγ

exp
[
βV eff

1 (γ )
]

D1(γ )

×
{
C1 −

∫ γ

dγ ′ exp
[−βV eff

1 (γ ′)
]}

,

(29)

where the expressions for C1are given by

C1 = 1

2

∫ ∞

−∞
dγ exp

[−βV eff
1 (γ )

]
for γ0 > γ ∗ (30)
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and

C1 = −1

2

∫ ∞

−∞
dγ exp

[−βV eff
1 (γ )

]
for γ0 < γ ∗. (31)

Another quantity of interest in this context is the well dynamics rate kd
i (γ ∗) and its explicit form is given as

[
kd
i (γ ∗)

]−1 = 1

2Ai

[
gi(−∞)

∫ −∞

γ ∗
dγ

exp
[
βV eff

1 (γ )
]

Di(γ )
Fi(γ ) + gi(∞)

∫ ∞

γ ∗
dγ

exp
[
βV eff

i (γ )
]

Di(γ )
Gi(γ )

+
∫ γ ∗

−∞
dγ gi(γ )

exp
[
βV eff

i (γ )
]

Di(γ )
Fi(γ ) −

∫ ∞

γ ∗
dγ gi(γ )

exp
[
βV eff

i (γ )
]

Di(γ )
Gi(γ )

]
, (32)

where Ai , gi(γ ), Fi(γ ), and Gi(γ ) are, respectively, given by

Ai = [gi(∞) − gi(−∞)] , (33)

gi(γ ) =
∫ γ

dγ ′ exp
[−βV eff

i (γ ′)
]
, (34)

Fi(γ ) = Ai + 2gi(γ ), (35)

Gi(γ ) = Ai − 2gi(γ ). (36)

It is important to note here that Eq. (24) does not reveal
whether the rate constant for reversible reaction can be sepa-
rated into two parts contributed, respectively, by irreversibility
and reversibility of the ET reaction. However, the rate constant
given by Eq. (27) based on microscopic kinetic equations
results in two terms consisting of contribution (first term)
solely due to irreversible ET reactions and an extra term
(second term) due to the effect of reversibility. It is also clear
from Eqs. (27), (29), and (32) that an explicit expression
for V eff

i (γ ) is needed in order to account for the effect
of reversibility, and details of derivation of the expressions
for the required quantities are discussed in the following
section.

III. EVALUATION OF EFFECTIVE POTENTIAL
V eff

i (γ ) IN REACTION COORDINATE SPACE

Before deriving the explicit expression for V eff
i (γ )

(i = 1,2 for r,p), we now consider the typical ET process as
already described in Sec. II. In the initial (before ET) state
of the ion pair (D+A−), D and A have a positive charge e

and a negative charge −e, respectively. Thus, the energy of
the initial state is the interaction energy between the dipoles
of the solvent molecules plus the interaction energy between
the ion pair (D+A−) and the surrounding solvent. On the
other hand, in the final (after ET) state, both D and A are
neutral, and hence the interaction energy between the neutral
solute (DA) and the solvent may be neglected. Therefore,
the energy of the final state is only due to the interac-
tion energy between the permanent dipoles of the solvent
molecules. We propose here expressions corresponding to the
continuum version of the interaction energies Hr

P [P(r)] and
H

p

P [P(r)] of the donor-acceptor pair (D+A− / DA) with the
surrounding solvent before and after ET, respectively, which
are given here in terms of orientation polarization function

P(r) as

Hr
P [P(r)] =

∫
f (r)P(r) · P(r)dr

+
∫

|r−rD|>a
|r−rA|>b

P(r) ·
[
e(r − rD)

|r − rD|3 − e(r − rA)

|r − rA|3
]

dr

=
∫

f (r)P(r) · P(r)dr +
∫

P(r) · E(r)dr, (37)

H
p

P [P(r)] =
∫

f (r)P(r) · P(r)dr. (38)

Here, rD and rA stand for the positions of the donor
and acceptor, of radii a and b, respectively, and the second
term on the right-hand side of Eq. (37) stands for the
interaction energy between the charges and the polarization
field, while the function f (r) appearing in the Eqs. (37)
and (38) takes into account the effect of finite size of the
solvent molecules. To include the effect of size, one may
consider the equilibrium situation, for which the minimization
of Hr

P [P(r)] establishes the relation between P(r) and E(r),
i.e., P(r) = E(r)/f (r). This provides a scheme to obtain f (r),
through the knowledge of P(r) obtainable from molecular
theory, based on, for example, density functional theory
where the effect of molecular nature has been included,
or simulation results. The advantage of using the above
mentioned Hamiltonian over the density functional theory is
that here one can obtain an analytical expression for V eff

i (γ ),
which contains f (r). As the ET reaction is assumed to proceed
on a multidimensional surface, the theoretical description that
we propose here for the ET system of interest consists of a
multidimensional space spanned by the low frequency solvent
collective coordinates (multidimensional) characterized by the
orientational polarization function P(r). In addition to it,
we also consider here a low frequency harmonic molecular
vibrational mode which we describe by the coordinate Q.
Thus, the Hamiltonians Hr

sol and H
p

sol for the ion pair (D+A−)
and neutral solute (DA), respectively, are given as

Hr
sol = Hr

P [P(r)] + Hr
V (Q) =

∫
f (r)P(r) · P(r)dr

+
∫

P(r) · E(r)dr + 1

2
(Q + Q0)2, (39)

H
p

sol = H
p

P [P(r)] + H
p

V (Q) =
∫

f (r)P(r) · P(r)dr + 1

2
Q2.

(40)
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The microscopic reaction coordinate A[P(r),Q] defined for
the ET reaction is given by

A[P(r),Q] = (
Hr

sol − H
p

sol

) = AP [P(r)] + AV (Q), (41)

where

AP [P(r)] =
∫

P(r) · E(r)dr, (42)

AV (Q) = QQ0 + 1
2Q2

0. (43)

The probability of the reaction coordinate A[P(r),Q] to
have the value γ , when the system is in the reactant-product
state, is given by

exp
[−βV eff

i (γ )
] = β−1 〈δ (A[P(r),Q] − γ )〉i , (44)

where 〈δ(A[P(r),Q] − γ )〉i represents the ensemble aver-
age with respect to the reactant-product well. Now, us-
ing Eq. (42), one can decouple the ensemble average
〈δ(A[P(r),Q] − γ )〉i into a product of two terms, one cor-
responding to averaging over the multidimensional polar-
ization mode and the other representing averaging over
the vibrational mode leading to the final expression, given

by

exp
[−βV eff

i (γ )
] = β−1

∫ ∞

−∞
dγ1

∫ ∞

−∞
dγ2 δ(γ1 + γ2 − γ )

×〈δ(AP [P(r)] − γ1)〉i〈δ[AV (Q) − γ2]〉i .
(45)

Here 〈δ(AP [P(r)] − γ1)〉i and 〈δ[AV (Q) − γ2]〉i repre-
sent, respectively, the ensemble averages over polarization
and vibrational modes. In order to evaluate the effective
potential βV eff

i (γ ) (i = 1,2 for r,p), the ensemble averages
〈δ(AP [P(r)] − γ1)〉i and 〈δ[AV (Q) − γ2]〉i are to be calcu-
lated individually with respect to the ith potential energy
surface, since ET is considered to occur from the ith sur-
face to thej th surface for a single direction. The quantity
〈δ(AP [P(r)] − γ1)〉r contains the term AP [P(r)], a functional
of orientational polarization P(r), which has a distribution of
Boltzmann type, viz., exp{−βHr

P [P(r)]} due to thermal fluctu-
ation of the solvent molecules. Therefore, AP [P(r)] will have a
distribution that can be calculated by discretizing the integrals
involved in the ensemble average 〈δ(AP [P(r)] − γ1)〉r , i.e.,
writing the ensemble average in the following form:

〈δ (AP [P(r)] − γ1)〉r =
[∫

dP (ri) exp
[−β

∑∞
i=1 dri {f (ri) P (ri) · P (ri) + P (ri) · E (ri)}

] [
δ
(∑∞

i=1 driP (ri) · E (ri) − γ1
)]]

∫
dP (ri) exp

[−β
∑∞

i=1 dri {f (ri) P (ri) · P (ri) + P (ri) · E (ri)}
] ,

(46)

and expressing the delta function in Fourier space, viz.,

δ

( ∞∑
i=1

driP (ri) · E (ri) − γ1

)
= 1

2π

∫ +∞

−∞
dk exp

(
ik

[ ∞∑
i=1

driP (ri) · E (ri) − γ1

])
. (47)

After some algebra, this leads to the expression

〈δ (AP [P(r)] − γ1)〉r =
(

β

4πλS

)1/2

exp

[
− β

4λS

(γ1 + 2λS)2

]
, (48)

where the generalized solvent reorganization energy λS is defined as

λS = 1

4

∫
dr

E(r) · E(r)

f (r)
. (49)

Equation (49) reveals that the effect due to molecular nature is incorporated into the solvent reorganization energy through
f (r). The evaluation of the ensemble average 〈δ[AV (Q) − γ2]〉r over the vibrational coordinate can be obtained as

〈δ [AV (Q) − γ2]〉r =
∫

dQ δ
[(

QQ0 + 1
2Q2

0

) − γ2
]

exp
[− β

2 (Q + Q0)2
]

∫
dQ exp

[− β

2 (Q + Q0)2
] =

(
β

4πλV

)1/2

exp

[
− β

4λV

(γ2 + λV )2

]
, (50)

where λV (= 1
2Q2

0) is the vibrational reorganization energy. Now, combining Eqs. (45), (48), and (50), one can have a probability
distribution for the reaction coordinate A[P(r),Q] to have the value γ in the reactant surface defined as

β−1 〈δ (A[P(r),Q] − γ )〉r = exp
[−βV eff

1 (γ )
] = (4πβλT )−1/2 exp

[
− β

4λT

(γ + 2λS + λV )2

]
. (51)

Here, the total reorganization energy λT (=λS + λV ) is contributed by the low frequency solvent and vibrational reorganization
energies λS and λV , respectively.
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The ensemble average 〈δ(AP [P(r)] − γ1)〉p over the polarization mode in the product surface (DA plus solvent environment)
can be obtained similarly by writing the ensemble average in discretized form as

〈δ (AP [P(r)] − γ1)〉p =
[ ∫

dP (ri) exp
[−β

∑∞
i=1 dri {f (ri) P (ri) · P (ri)}

] [
δ
(∑∞

i=1 driP (ri) · E (ri) − γ1
)] ]

∫
dP (ri) exp

[−β
∑∞

i=1 dri {f (ri) P (ri) · P (ri)}
] , (52)

which on further simplification leads to the result

〈δ (AP [P(r)] − γ1)〉p =
(

β

4πλS

)1/2

exp

[
− (γ1)2

4kBT λS

]
. (53)

The evaluation of the quantity 〈δ[AV (Q) − γ2]〉p over the vibrational mode in the product surface leads to the result

〈δ [AV (Q) − γ2]〉p =
∫

dQ δ
[(

QQ0 + 1
2Q2

0

) − γ2
]

exp
[− β

2 Q2
]

∫
dQ exp

[− β

2 Q2
] =

(
β

4πλV

)1/2

exp

[
− β

4λV

(γ2 − λV )2

]
. (54)

With the combination of Eqs. (45), (53), and (54), one can
obtain a probability distribution for the reaction coordinate
A[P(r),Q] to have the value γ in the product surface defined
as

exp
[−βV eff

2 (γ )
] = (4πβλT )−1/2 exp

[
− β

4λT

(γ − λV )2

]
.

(55)

It is now clear from Eqs. (51) and (55) that the effective
potentials V eff

i (γ ) in reaction coordinate space (γ ) for the
reactant and product states can be defined as

βV eff
1 (γ ) = β

4λT

(γ + 2λS + λV )2, (56)

βV eff
2 (γ ) = β

4λT

(γ − λV )2. (57)

The transition point γ ∗ in the reaction coordinate space (γ )
is defined as

γ ∗ = (�GCR − λT ). (58)

The analytical expression derived here based on a different
approach for the effective potentials V eff

i (γ ) can be used to
evaluate the rate of ET reaction in the following section.

IV. EVALUATION OF RATE OF ELECTRON
TRANSFER REACTION

Before deriving an expression for the rate of forward ET
reaction, we first introduce a new variable z1 given by

γ = z1 − 2λS − λV (59)

to evaluate the diffusion rate constant kd
1 (γ ∗,γ0) defined in

Eqs. (29)–(31). During photo excitation of the molecule
DA in a solvent environment [corresponding to the effective
potential V eff

2 (γ ) of the system] we consider the initial value
of the reaction coordinate as γ0 = λV , which is obtained by
minimizing V eff

2 (γ ) [Eq. (57)] with respect to the variation
of γ . The ion pair D+A− is now formed [corresponding to
the effective potential V eff

1 (γ )] after photoexcitation at this
initial value, i.e., γ = γ0 = λV , which can be expressed in
z1 coordinate as z0

1 = 2λT , by substituting γ = γ0 = λV and
z1 = z0

1 in Eq. (59). During relaxation of the ion-pair (D+A−)

system in the downhill potential V eff
1 (z1), the coordinate z1

which started with initial value z0
1 corresponding to the initial

nonequilibrium solvent configuration, changes in subsequent
time in the direction toward the minimum energy configuration
of the ion-pair (D+A−) system in a solvent environment.
However, during relaxation when the system reaches the
configuration corresponding to the value of the reaction
coordinate determined by the condition A[P (r),Q] = γ =
γ ∗ = (�GCR − λT ) [the same in z1 coordinate is z1 = z∗

1 =
λT + (�GCR − λV )], ET occurs at a rate proportional to
k0[=(4π2/h)J 2], where J is the electronic coupling matrix
element. Now, considering the model potential βV eff

1 (z1) =
(β/4λT )z2

1 in z1 coordinate and using Eqs. (17), (19) and (29)–
(31), we derive the intrinsic transition state theory rate kTST

1 (z∗
1)

and nonequilibrium relaxation dynamics rate kd
1 (z∗

1,z
0
1) given

by

[
kTST

1 (z∗
1)

]−1 = k−1
0 (4πλT kβT )1/2 exp

[
β

4λT

(�GCR + λS)2

]
,

(60)

[
kd

1

(
z∗

1,z
0
1

)]−1 = (πλT kBT )1/2
∫ 2λT

�G+λS

dz1

exp
(

β

4λT
z2

1

)
D1(z1)

×{1 − erf[z1/(4λT kBT )1/2]}, (61)

where erf(z1) is the error function. The rate constant k′
12

can now be expressed in terms of the above two rate
constants as

k′−1
12 = [

kTST
1 (z∗

1)
]−1 + [

kd
1

(
z∗

1,z
0
1

)]−1
. (62)

In order to obtain the effect of reversibility on the rate
constant k12, one needs to calculate the additional quantities,
viz., the well dynamics rates kd

1 (z∗
1) and kd

2 (z∗
2) for the reaction

coordinate A[P(r),Q] undergoing diffusive motion in the
respective effective potentials V eff

1 (γ ) and V eff
2 (γ ). While

evaluating kd
1 (z∗

1), we use the same coordinate transformation
as defined by Eq. (59), whereas for kd

2 (z∗
2), we introduce the

new transformation given by

z2 = γ − λV , (63)

with the transition point in z2 coordinate given by z∗
2 = −λT +

(�GCR − λV ). Now, using Eqs. (32)–(36), and after a lengthy
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algebra we obtain the well dynamics rate constants given by

[
kd
i (z∗

i )
]−1 = 1

2

(∫ ∞

z∗
i

dz0
i exp

[
− β

4λT

(
z0
i

)2
] ∫ z0

i

z∗
i

dzi

exp
(

β

4λT
z2
i

)
Di (zi)

{1 − erf[zi/(4λT kβT )1/2]}

−
∫ z∗

i

−∞
dz0

i exp

[
− β

4λT

(
z0
i

)2
] ∫ z0

i

z∗
i

dzi

exp
(

β

4λT
z2
i

)
Di (zi)

{1 + erf[zi/(4λT kβT )1/2]}
)

, (64)

which can be further simplified as

[
kd
i (z∗

i )
]−1 = 1

2

(
πλT

β

)1/2
[∫ ∞

0
dzi

exp
(

β

4λT
z2
i

)
Di (zi)

{1 − erf[zi/(4λT kβT )1/2]}2

+
∫ z∗

i

0
dzi

exp
(

β

4λT
z2
i

)
Di(zi)

{1 + erf[zi/(4λT kβT )1/2]}2 for z∗
i > 0

+
∫ ∞

z∗
i

dzi

exp
(

β

4λT
z2
i

)
Di(zi)

{1 − erf[zi/(4λT kβT )1/2]}2

]
(65)

and

[
kd
i (z∗

i )
]−1 = 1

2

(
πλT

β

)1/2
[∫ ∞

0
dzi

exp
(

β

4λT
z2
i

)
Di (zi)

{1 − erf[zi/(4λT kβT )1/2]}2

+
∫ |z∗

i |

0
dzi

exp
(

β

4λT
z2
i

)
Di (zi)

{1 + erf[zi/(4λT kβT )1/2]}2 for z∗
i < 0.

+
∫ ∞

|z∗
i |

dzi

exp
(

β

4λT
z2
i

)
Di (zi)

{1 − erf[zi/(4λT kβT )1/2]}2

]
(66)

The forward rate constant k12 can now be expressed in terms of the above rate constants as

k−1
12 = k′−1

12 + exp (β�GCR)

{
1

kd
1

(
z∗

1,z
0
1

) + 1

kd
2 (z∗

2)
− 1

kd
1 (z∗

1)

}
. (67)

Equation (67) provides an expression for the forward rate
constant k12 for reversible back ET reactions, when the system
is initially prepared in a nonequilibrium state and it also takes
into account the backward process described by the extra term
[second term in Eq. (67)] appearing in the equation. Hence,
this extra term arises due to reversibility of the ET process
and consists of population ratio [exp(β�GCR)] of the reactant
and product and diffusive rates in the respective potential
wells. The first term in the parentheses of the second part
of Eq. (67) represents the first passage time [31] [kd

1 (z∗
1,z

0
1)]−1,

i.e., the time taken for the reaction coordinate created at z0
1

at initial time in the reactant well to execute the diffusive
motion in a downhill potential, to finally get adsorbed at
the transition point z∗

1. The second term [kd
2 (z∗

2)]−1 and third
term [kd

1 (z∗
1)]−1 in parentheses, on the other hand, characterize

the time taken for the reaction coordinate created at initial
time at z∗

2 and z∗
1, respectively, with localized distribution,

to subsequently undergo diffusive motion to reach the broad
distribution governed by the canonical distribution. It may
also be noted here that the analytical results for the average
forward rate constant k12 cannot be obtained directly by
solving the multidimensional Liouville equation (4) and in

fact, the numerical evaluation through this equation becomes
increasingly difficult for higher dimensionality. On the con-
trary, the investigation of multidimensional reversible ET as a
one-dimensional problem, as shown here, leads to an analytical
expression for the average forward rate constant k12 and also
the same for irreversible reaction. In order to understand the
effect of reversibility, we now numerically evaluate k12 for
various physical parameters and discuss the various issues
raised in Sec. II.

V. RESULTS AND DISCUSSION

In general, the visualization of ET reaction in a multidi-
mensional space from a nonequilibrium initial situation is very
difficult. Hence, it is extremely tricky to visualize the initial
geometrical coordinates in the multidimensional space for the
nonequilibrium ion pair D+A− produced initially in solvent
after the molecule DA is excited from the ground state with an
ultrashortlaser pulse. The system then relaxes downward along
its multidimensional potential energy surface (corresponding
to D+A−) through the relaxation of the surrounding polar
solvent until it meets that of the molecule DA, where back ET
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(a) : Equilibrium State (Lowest Energy) for D+A−

(b) : Equilibrium State (Lowest Energy) for DA
(c) : Non-Equilibrium State (Higher Energy) at Transition Point for D+A−

(d) : Non-Equilibrium State (Higher Energy) at Transition Point for DA
(e) : Non-Equilibrium Initial State (Higher Energy) for D+A−
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FIG. 1. (Color online) Potential energy curves for the reactant
and product in an ET reaction. The abscissa stands for the one-
dimensional reaction coordinate γ and the ordinate stands for the
effective potential V eff

i (γ ). It represents both the processes, i.e.,
relaxation of the excited state to its potential minimum and the back
ET: (a) Equilibrium state (lowest energy) for D+A−, (b) equilibrium
state (lowest energy) for DA, (c) nonequilibrium state (higher energy)
at transition point for D+A−, (d) nonequilibrium state (higher energy)
at transition point for DA, and (e) nonequilibrium initial state (higher
energy) for D+A−.

reaction takes place with the geometrical coordinates satisfy-
ing the constraint A(R) = �GCR − λS . The visualization of
this critical point in the multidimensional space is also equally
difficult. However, the kinetic equation developed here deals
with one-dimensional reaction coordinate γ , which makes it
easy to understand ET reaction in this one-dimensional space.
In Fig. 1, we have plotted the effective potential V eff

i (γ )
against the one-dimensional reaction coordinate γ , for the
initial value taken by γ corresponding to the minimum of the
potential V eff

2 (γ ) for the system DA in solvent environment
as given by γ = γ0 = λV . This is the initial nonequilibrium
configuration for the ion pair D+A− in the reaction coordinate
space. The ion pair D+A− formed at the nonequilibrium
state undergoes barrierless diffusion along its potential surface
V eff

1 (γ ) in solvent environment until it reaches the transition
point γ = γ ∗ = (�GCR − λT ), where ET reaction takes place
with intrinsic rate constant k0.

We have calculated here the average forward ET rate
constant k12 using Eqs. (67), (60)–(62), (65), and (66) for
an ion pair (D+A−) in acetonitrile solvent as a function of
the free energy change �GCR of the reaction. We assume
the reaction coordinate A[P (r),Q] to decay exponentially
with relaxation time τ . We further assume here that Di(zi)
weakly depends on zi , i.e., Di(zi) ≈ Di and it can be shown
within this approximation that D1 = D2 = D = 2λT /βτ .
Now, we first consider the simple theoretical model for the
ET system of interest consisting of a multidimensional space
spanned only by low frequency solvent collective coordinates

0.5 1.0 1.5 2.0 2.5 3.0
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(b)
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0(
k

12
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−−−ΔΔΔG
C R
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FIG. 2. Dependence of the average forward rate constant k12 of
back ET in ion pairs on the free energy change �GCR for (a) reversible
and (b) irreversible (reaction in a single direction) reactions. The
parameters used are τ = 0.3 ps, λS = 1.4 eV, J= 0.1 eV, and T =
300 K. The experimental data (•) correspond to the ET rate constant
k12 and are taken from Ref. [22].

(multidimensional) described by the orientational polarization
function P(r). In order to understand the effect of reversibility
on k12, we have calculated both k12 and k′

12 exclusively for the
polarization mode and plotted the results in Fig. 2 along with
available experimental data [22] for the best fitted values of
the reorganization energy λS = 1.4 eV and J= 0 .1eV for this
mode. The solvent relaxation time of acetonitrile is taken [32]
as τ = 0.3 ps at temperature T = 300 K. Here, Fig. 2 reveals
a quite interesting fact that the effect of reversibility character-
ized by an extra term in Eq. (67) decreases with an increase in
exothermicity (−�GCR) of the reaction, and continues to be
minimum at the barrierless region (where the rate of forward
ET reaction is maximum) but happens to be more and more
significant on further increase of −�GCR. This reversibility
effect on the overall rate of the forward ET reaction depends
on the contributions from the population ratio [exp(β�GCR)]
of the reactant and product, and the effective diffusive
motion ([kd

1 (z∗
1,z

0
1)]−1 + [kd

2 (z∗
2)]−1 − [kd

1 (z∗
1)]−1) comprising

nonequilibrium relaxation dynamics [kd
1 (z∗

1,z
0
1)]−1, well dy-

namics [kd
1 (z∗

1)]−1 in the reactant well, and well dynamics
[kd

2 (z∗
2)]−1 in the product well. The population ratio [i.e.,

exp(β�GCR)] decreases with an increase of −�GCR, whereas
the effective diffusive motion increases resulting in a decrease
in the combined effect, which becomes minimum at the
barrierless region. However, on further increase of −�GCR,
the effective diffusive motion increases at a much faster rate as
compared to its variation before reaching the barrierless region,
although the population ratio exp(β�GCR) decreases resulting
in an increase in the combined effect, thereby showing an
opposite trend, i.e., an increase in the effect of reversibility
with an increase of −�GCR. The present numerical study for
the effect of back ET on the free energy gap (FEG) dependence
of the rate also shows that although the diffusion dynam-
ics in the reactant well, viz., [kd

1 (z∗
1,z

0
1)]−1 and [kd

1 (z∗
1)]−1
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as well as the same in the product well, viz., [kd
2 (z∗

2)]−1

contribute to the effective diffusion dynamics, the most
dominating contribution coming from the product well, i.e.,
from [kd

2 (z∗
2)]−1.

In order to understand the effect of reversibility with an in-
crease in the number of participating modes, we now consider
an ET system of interest which consists of a multidimensional
space spanned by an additional slowly relaxing molecular
vibrational (Q) mode (harmonic) along with the low frequency
solvent polarization mode (multidimensional). Here, the total
reorganization energy λT is contributed by the corresponding
reorganization energies λV (vibrational mode) and λS (solvent
polarization mode). For simplicity, we assume here an equal
contribution from each of the reorganization energies, i.e.,
λV = λS . In Fig. 3, we have compared the calculated FEG
dependence of the rate of reversible and irreversible ET
reactions for the best fitted values of λS = λV = 1.0 eV and
J= 0.05 eV, with available experimental data [22] on back
ET reaction. The values of all the other parameters used here
remain the same as in Fig. 2. Although the numerical values
of the parameters [λS = λV = 1.0 eV and J (=0.05 eV)]
used here are even lower than the values [λS = 1.4 eV and
J (=0.1 eV)] taken in explaining the ET processes described
in Fig. 2, the calculated results are in better agreement (see
Fig. 3) with the available experimental results than the same
calculated (see Fig. 2) considering only the polarization mode.
It is thus clear from Figs. 2 and 3 that the effect of reversibility
is more prominent (see Fig. 2) for the model of ET system of
interest described by polarization mode only in comparison to
that (see Fig. 3) described by both the modes, i.e., polarization
as well as vibrational modes. It is the extra vibrational mode
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FIG. 3. Dependence of the average forward rate constant k12

of back ET in ion pairs on the free energy change �GCR for (a)
reversible and (b) irreversible (single direction) reactions described
by additional vibrational modes at the values of reorganization energy
λS = λV = 1.0 eV and transfer integral J = 0.05 eV. The values of
all the other parameters used remain the same as in Fig. 2. The
experimental data (•) correspond to the ET rate constant k12 and are
taken from Ref. [22].
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FIG. 4. Dependence of the average forward rate constant k12 of
back ET in ion pairs on the free energy change �GCR for various val-
ues of the electronic coupling J : (a) 0.003 eV, (b) 0.01 eV, (c) 0.03 eV,
and (d) 0.3 eV. The parameters used are τ = 0.3 ps, λS = 1.4 eV, and
T = 300 K.

which makes the diffusion dynamics much faster than that for
the system containing only polarization mode.

Earlier studies for irreversible ET reactions have shown that
with an increase in the electronic coupling parameter J , there
is a transition of the rate from the symmetric bell shape as pre-
dicted by Marcus to an asymmetric shape. Therefore, it is in-
teresting to know whether a similar transition may be observed
or not for the reversible ET reactions. In this context, we have
calculated here the ET rates at various values of the electronic
coupling parameter J and plotted k12 in Fig. 4. The figure
shows that with an increase in J , there is a gradual change
from a symmetric behavior of the FEG dependence of the rate
to an asymmetric behavior. When the value of J is small, FEG
dependence of the rate becomes symmetric as predicted by
Marcus. However, when the value of J for ET system of inter-
est is reasonably significant, the average rate k12 is controlled
by the initial nonequilibrium configuration as well as the sol-
vent relaxation dynamics and an interplay involving kTST

1 (z∗
1),

kd
1 (z∗

1,z
0
1), and kd

i (z∗
i ) (i = 1,2 for r,p), leads to a non-Marcus

FEG dependence of the rate of the reversible ET reactions. The
interplay between kTST

1 (z∗
1) and kd

1 (z∗
1,z

0
1) solely on the reactant

surface is, however, responsible for having a non-Marcus FEG
dependence of the rate of irreversible ET reaction. Therefore,
one can observe that the presence of non-Marcus FEG
dependence of the back ET process in a reversible ET reaction
for the ion-pair system in solvent can be explained by the
present theory with a significant value of the coupling strength.

VI. CONCLUDING REMARKS

We have proposed here a generalized one-dimensional
kinetic equation for multidimensional reversible ET reaction
with a nonequilibrium situation as the initial condition.
The rate constant for the forward reversible ET reaction
obtained here consists of two distinct contributions, the first
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one being from irreversible ET and the second one from
diffusion dynamics both from reactant and product wells due
to reversibility of the processes. In order to understand the
effect of reversibility, we have considered back ET reaction in
a system of interest modeled through low frequency solvent
collective coordinates (multidimensional) characterized by
orientational polarization function and also a slowly relaxing
harmonic one-dimensional molecular vibrational mode. We
have proposed a generalized polarization energy functional
corresponding to the continuum version for the same, which
resulted in a generalized expression for solvent reorganization
energy where the molecular effect is incorporated into the
rate of ET explicitly through the function f (r). We have then
derived an exact analytical expression for the ET rate for this
model system. However, we have separately studied the rates
of reversible ET as a function of the free energy change for the
system of interest modeled through polarization mode only,
as well as for the system described by an extra vibrational
mode along with polarization function. The numerical results
calculated by using the proposed one-dimensional approach
are shown to be in good agreement with the available
experimental results. It may also be noted that the results are

found to have a fairly better concurrence with the available
experimental results for the system of interest modeled through
multidimensional polarization function and one-dimensional
molecular vibrational mode (harmonic). Non-Marcus free
energy gap dependence of the rate observed here for both
reversible and irreversible ET reactions are very close to each
other in the barrierless region, while in other regions, the
rate for the former process is found to be less than the latter.
The extra term, which makes the difference between the rate
constants for irreversible and reversible ET reactions, is found
to be contributed by the diffusion dynamics from reactant
as well as product wells, although the contribution is mainly
dominated from the product well.
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