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Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow
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We present an experimental study of the transition to turbulence in a plane Poiseuille flow. Using a well-
controlled perturbation, we analyze the flow by using extensive particle image velocimetry and flow visualization
(using laser-induced fluorescence) measurements, and use the deformation of the mean velocity profile as a
criterion to characterize the state of the flow. From a large parametric study, four different states are defined,
depending on the values of the Reynolds number and the amplitude of the perturbation. We discuss the role
of coherent structures, such as hairpin vortices, in the transition. We find that the minimal amplitude of the
perturbation triggering transition scales asymptotically as Re−1.
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For more than a century [1] the transition to turbulence in
shear flows has been a prolific domain of study. Despite many
theoretical investigations, it has not been possible to predict
correctly this transitional process even for flows in simple
geometries such as circular or plane Poiseuille flow (PPF) or
plane Couette flow. Nowadays, the transition process in pipe
and channel flows remains one of the most fundamental and
practical problems still unsolved in fluid dynamics [2–4].

Linear stability theory has been applied to PPF, linearizing
the Navier-Stokes equation near the stable parabolic profile.
The smallest unstable or critical Reynolds number obtained
was Rec = 5772 (Re = uclh/ν with ucl the laminar center
line velocity, h the half channel height, and ν the kinematic
viscosity of the fluid) [5,6]. Carlson et al. [7] found 1000 <

Rec < 2000, highlighting the inadequacy of the linear stability
theory to fully explain the transition to turbulence in PPF as in
other shear flows.

Other approaches, related to the non-normal character of the
Navier-Stokes operator linearized around the stable laminar
flow solution, can support the important transient growth
of finite amplitude disturbances, related to streamwise and
quasistreamwise alignment [8,9].

Recently, the role of fully three-dimensional (3D), spatially
extended, and coherent structures has been highlighted through
numerical simulations in shear flows [10–12] and experimen-
tally in pipe flows [13]. These traveling waves are mainly
dominated by pairs of streamwise vortices associated with
high and low streamwise velocity streaks.

Waleffe [14], from a 3D nonlinear modal reduction of the
Navier-Stokes equations, adopted the idea of a self-sustained
process as the origin of the transition. After destabilization of
these streaks, streamwise modes appear and regenerate the
vortices through a nonlinear interaction, as experimentally
observed by Duriez et al. [15].

The subcritical transition to turbulence of sheared flows is
characterized by an instability with respect to finite amplitude
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perturbation, where the larger is the Reynolds number, the
smaller is the necessary perturbation. This behavior is de-
scribed with a power law for the minimal amplitude of the
disturbance triggering the transition:

ε = O(Reγ ).

After the first studies of Trefethen et al. [8] on the
critical exponent γ , Chapman studied the transient growth
of the subcritical transition process in the PPF [9]. He found
γ = −3/2 for initial streamwise vortices and γ = −5/4 for
initial oblique vortices.

On the other hand, the results of the nonlinear study of
Waleffe and Wang show that γ = −1 in shear flows [16].
Numerical experiments of Kreiss et al. [17] give −21/4 �
γ � −1.

Critical exponents were measured experimentally in plane
Couette flow by Dauchot and Daviaud [18], in pipes by
Darbyshire and Mullin [19] and Hof et al. [20], and in channel
flow by Philip et al. [21]. The latter found, using a cross
jet as disturbance, that the critical jet velocity triggering the
appearance of hairpin vortices scales as Re−3/2.

The present Rapid Communication studies experimentally
the subcritical transition of a PPF perturbed by streamwise vor-
tices induced by jets in cross flow. We will study the transition
of the Poiseuille flow using the deformation of the mean veloc-
ity profile as a criterion instead of focusing on the apparition
of hairpin vortices, which is a step in the transition process.

The mean flow distortion was described in channels by
Nishioka and Asai [22] and Eliahou et al. [23]. It is indeed
now well established, that the mean flow distortion is related
to the presence of streamwise and quasistreamwise elongated
structures in the wall regions of boundary layers [24], pipes,
and channels. These structures, alternating low and high
momentum contributions to the flow, generate through a
nonlinear coupling, a global modification of the flow. Recently,
Barkley [25] gave a nearly complete model of the transition in
pipe flow, introducing the modification of the mean velocity
profile as one of the main ingredients of a system of coupled
nonlinear equations.

When comparing experimental data to models, it is difficult
to define properly the amplitude of the perturbation [26] and
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FIG. 1. (Color online) Schematic view of the dedicated water channel used at the Laboratoire de Physique et Mécanique des Milieux
Hétérogènes (PMMH). The development section is 1 m long and the test section is 1.2 m long. Its cross section is 20 × 150 mm2. The bottom
left-hand side shows a scheme of the perturbation generation by continuous injection of water through small holes in the upper plate. The
arrows represents the lift-up effect generating high- and low-speed streaks. The top right-hand side shows the scheme of the multiplane PIV
technique used to compute the average velocity profile. We used 11 planes separated by 3 mm.

also its critical value triggering the transition. Our choice of
selecting the mean flow distortion to characterize the transition
puts special emphasis on a more rigorous definition of the onset
of turbulence.

Instead of focusing on the critical value of the Re above
which an initial temporally localized perturbation will develop
itself spatially [27], we investigate how strong a given
perturbation should be in order to sustain turbulence.

The experimental system is composed of a 3-m-long
plexiglass channel (Fig. 1). The test section’s half height
is h = 10 mm, its length is 220h, and its width is 15h.
The perturbation is generated 100h downstream from the
inlet to ensure a fully developed Poiseuille flow for all
Re. The Reynolds number is estimated from volume flow
measurements. The x, y, and z axes are, respectively, the
streamwise, normal to the walls, and spanwise coordinates,
with y = 0 in the middle of the channel and x = 0 where
perturbations are injected. The design of the inlet section,
together with the smooth connections between all parts of
the channel, minimize the upstream perturbations, leading to a
laminar base flow until Re = 5500, which is the maximum Re
we can reach in our setup. It has been checked that there
are no sidewall effects in the central part of the channel
(−6h < z < 6h).

The flow is perturbed by continuous injection of water
through four circular holes, normal to the flow, drilled into the
the upper wall with a diameter d = 0.2h and spacing λ = 3h.
The choice of a continuous perturbation, as used previously
by Nishioka and Asai [22], allows us to give a description
of the statistical behavior of the flow, taking into account
the spatiotemporal intermittency through time averaging. The
structure of the flow induced by the jets may be complex and
depends strongly on the amplitude of the perturbation [28,29]
defined as the velocity ratio A = ujet/ucl, where ujet is the
mean jet velocity and ucl the unperturbed centerline velocity.
In relation to the mass flow in the channel, our injection
rate is 0.006A. In our experiment, the injection rate varies
between 0.06% and 1%. For 0 < A < 2, one can consider that
each jet creates a pair of counter-rotating streamwise vortices

(Fig. 1), similar to those created by solid vortex generators in
a flat-plate boundary layer [15] or in PPF [22]. Those vortices
generate through a lift-up mechanism some low- and high-
speed streaks elongated in the streamwise direction, similar
to those naturally present in coherent structures observed in
transitional flow. It has been shown that the destabilization of
those streaks is a key step in a self-sustaining process between
streaks and streamwise vortices in Poiseuille flow as well as
in a flat-plate boundary layer [15,30]. It is also a key step in
the transition scenario proposed by Chapman [9].

In Fig. 2 we show an example of visualization, obtained
by laser-induced fluorescence (LIF), of the transition induced
by the jets relatively far downstream from the injection. For
x < 60h, one can see that the streamwise vortices induced by
the four jets are already unstable, with clear streamwise modu-
lation characteristic of hairpin vortices. This corresponds to the
mixed behavior observed by Tasaka et al. [31]. The transition
to turbulence occurs further downstream (x > 60h) over the
entire channel width. In the following, all measurements will
be carried on in the region 75h < x < 80h illustrated in Fig. 1.

The velocity field is studied by using particle image
velocimetry (PIV) measurements (Figs. 1 and 3). The fluid
is seeded with neutrally buoyant particles (dp ≈ 5 μm). To
take into account the spanwise modulation of the flow, we
measure velocity fields in a volume (�x = 3h, �z = λ =
3h, �y = 2h), centered around x = 78h. The measurement
volume is divided in 11 x-z planes between z = ±λ/2 around
a jet. For each plane, 30 instantaneous snapshots are taken
at 4 Hz, giving 11 time-averaged velocity fields [Fig. 3(a)].

z

x

10h 30h 50h 70h

FIG. 2. LIF visualization of the transition in the y = 0 plane. The
flow goes from the left to the right.
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FIG. 3. (Color online) From left to right, decomposition of the steps to compute the mean velocity profile. First we measure the time-averaged
(30 snapshots at 4 Hz) velocity field in 11 x-y planes (only six re apresented here), then we average in the x direction, and finally we average
in the z direction.

Then the PIV fields are space averaged over the streamwise
direction [Fig. 3(b)]. Finally, the 11 profiles are averaged along
the spanwise direction, giving the final mean velocity profile
[Fig. 3(c)]. Each mean profile presented in the following is
the result of an average over 26 000 profiles. The total time to
measure one mean profile is 3 min, thus averaging intermittent
effects.

The transition from the laminar to the turbulent regime is
associated with a deformation of the mean velocity profile
from a parabolic to a plug profile (Fig. 4). The profile can then
be used as a quantitative criterion to define the different states
of the flow. We construct a state parameter ũ as

ũ = max(u)

ucl
,

where u is the perturbed mean velocity profile.
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FIG. 4. The first column shows an upper side view using fluo-
rescent dye at x = 20h, near the exit of the jets. The second column
represent the evolution of the mean velocity profiles, measured by
PIV at x = 80h, from which the parameter ũ is defined. The third
column shows snapshots taken using the LIF technique in the x = 80h

cross section, far from the perturbation. From top to bottom, the rows
correspond, respectively, to A = 0.276, 0.248, 0.209, and 0.167. Re
is 2830 for all rows.

In Fig. 5 we plot the evolution of ũ as a function of
Re (500 < Re < 5300) and A (0 < A < 2). The state plane
is sampled with 450 points. The sampling has been refined in
the transition region. Two different domains or plateaus can be
clearly identified: the laminar (red) and turbulent (blue) state,
separated by a sharp cliff, giving a description of the global
state of the flow. We now need to define a rigorous criterion to
identify the transition.

For this purpose, fluorescent dye is added to the water
tank used to feed the perturbing jets. Typical visualizations
of the perturbations at x = 20h, near the exit of the jets, are
shown in the first column of Fig. 4. In addition, we use LIF to
visualize the dispersion of the tracer by using a laser sheet in
the x = 80h plane, far from the perturbation (third column in
Fig. 2). The structure of the flow is clearly modified when
the amplitude of perturbation is increased. It is illustrated
in Fig. 4 for Re = 2830. For a small perturbation (fourth
row, A = 0.167), the flow is steady and laminar. Even if the
fluorescent patches show traces of hairpin vortices, the mean
velocity profile remains parabolic (ũ = 1). As the amplitude
of the perturbation is increased (third row, A = 0.209), the
hairpin vortices become larger but they are still smaller than
the channel’s half height and slightly unsteady. In this case the
mean velocity profile becomes asymmetric and ũ decreases
(ũ = 0.9). For A = 0.248 (second row), the hairpin vortices
become unstable, with intermittent excursions in the lower
half of the channel. The velocity profile becomes flatter,
more symmetric, and ũ still decreases (ũ = 0.82). Finally,
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ũ

A

Re
0.8

0.9

1

FIG. 5. (Color) 3D plot of the surface representing the parameter
ũ = max(u)/ucl as a function of Re and A showing well-separated
domains of each state: laminar and turbulent.
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FIG. 6. (Color) Contour plot in log-log scale of ũ(Re,A) showing
the power law for the onset of turbulence for Re > 1500. I: Laminar
state. II: Turbulent state. III: Regime dominated by hairpin vortices.
IV: Below Re = 1500 it is not possible to sustain turbulence by this
means.

for A = 0.276 (first row), the flow becomes turbulent with
large mixing over the entire cross section, leading to a typical
turbulent plug profile (ũ = 0.8).

Owing to this analysis, it is now possible to define a
quantitative criterion for the onset of turbulence. In the
following, we will consider that the flow becomes turbulent
when ũ ≈ 0.8. For 0.8 � ũ < 1, the flow is in an intermediate
state dominated by hairpin vortices.

In Fig. 6 we plot the state diagram of the flow, ũ(Re,A),
as a contour plot in a log-log representation. We define four
different regions representing different states of the flow. In
region I, ũ = 1, the flow is steady and the mean velocity
profile is parabolic. This region corresponds to the laminar
state. Region II (ũ ≈ 0.8) corresponds to the turbulent state,
with high mixing and a plug velocity profile. Region III
(0.8 � ũ < 1) corresponds to a narrow intermediate state
dominated by stable hairpin vortices, similar to those observed
in jets in cross flow in a laminar boundary layer [29]. In
region IV, perturbations induced by continuous jets do not
trigger the transition, but we observe some long-lived flows
different from the well-known parabolic profile.

For Re > 1500, we define the transition line as the sepa-
ration between regions II and III, corresponding to ũ = 0.81.
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FIG. 7. Log-log plot of the stability curve for the onset of
turbulence in PPF. The points correspond to ũ = 0.81 and the solid
line is the −1 slope. The minimal amplitude triggering the transition
scales as Re−1 for Re > 2000.

In Fig. 7 we show a log-log plot of the minimal amplitude
of the perturbation Ac = (ujet/ucl)c = f (Re) triggering the
transition, defined as ũ(Ac) = 0.81. The −1 slope proposed
by Waleffe is added on the plot, showing good agreement
for Re > 2000. For Re < 2000, the asymptotic regime is not
reached and experimental points deviate from the −1 slope.
Evaluating γ in a restricted range 1000 < Re < 2000 leads to
an underestimated value for the exponent close to γ = −3/2
as found by Philip et al. [21].

The subcritical transition of PPF has been studied quan-
titatively through extensive PIV and LIF measurements. A
well-defined state variable ũ has been introduced. Owing to
a large number of ũ measurements, we could define four
different regimes of the flow. We then focused on the minimal
amplitude of the perturbation, Ac, triggering the transition.
We found that Ac(Re) scales as Re−1, in agreement with the
asymptotic nonlinear theoretical model proposed by Waleffe
and Wang [16] for shear flows. Also, we contribute to develop
unique ways of experimental investigation to one of the most
fundamental problem in fluid dynamics.
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and Dwight Barkley and Laurette Tuckerman for helpful
discussions.
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