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Hydrodynamics of fractal continuum flow

Alexander S. Balankin and Benjamin Espinoza Elizarraraz
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A model of fractal continuum flow employing local fractional differential operators is suggested. The
generalizations of the Green-Gauss divergence and Reynolds transport theorems for a fractal continuum are
suggested. The fundamental conservation laws and hydrodynamic equations for an anisotropic fractal continuum
flow are derived. Some physical implications of the long-range correlations in the fractal continuum flow are
briefly discussed. It is noteworthy to point out that the fractal (quasi)metric defined in this paper implies that
the flow of an isotropic fractal continuum obeying the Mandelbrot rule of thumb for intersection is governed by
conventional hydrodynamic equations.
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Fluid flow in porous media has tremendous importance
in fields as diverse as soil science and hydrology, petroleum
and construction industries, and drug release from porous
reservoirs in pharmaceutics, among others [1]. In addition,
hydrodynamics in porous media brings forward challenging
questions from a fundamental point of view, in particular,
related to the fractal geometry of pore space [2–6]. Accord-
ingly, there have been many attempts to account for the effects
of fractal properties of porous media on the fluid flow (see,
for example, Refs. [2–11] and references therein). The great
variety of methods and models employed in this task can be
grouped into two basic categories associated either with a flow
described by conventional hydrodynamic equations through
a fractal pore network, or with the continuum flow governed
by nonconventional (fractal) hydrodynamic equations. In this
way, one can construct a prefractal model of a porous medium
and then numerically solve the hydrodynamic equations using,
for example, the finite element method. While this approach
permits to obtain some relevant information regarding the flow
through fractal porous media (see, for example, Refs. [2]
and [7]), it cannot be used for practical purposes, e.g., in
the hydrology or petroleum industry. Consequently, there
have been many efforts to modify the classical hydrodynamic
equations in order to account for the fractal geometry of
actual flow fields (see, for example, Refs. [8–11]). These
efforts involve either the replacement of the topological
dimension in the hydrodynamic equations with the fractal
one and the use of the space-time-dependent permeability
(e.g., Ref. [8]), or the use of nonlocal fractional derivatives
with respect to the space and/or time variables (e.g., Refs. [9]
and [10]). However, the modifications of classic hydrodynamic
equations inspired by the anomalous diffusion on fractals
do not provide a consistent description of fractal flow and
often violate the fundamental conservation laws (for review
of fractional conservations laws, see Refs. [10] and [12]).
On the other hand, Tarasov [11] has suggested mapping the
flow in fractal pore space, which is essentially discontinu-
ous in the embedding Euclidean space, into a continuous
flow governed by conventional partial differential equations.
However, the model of fractal continuum introduced in
Ref. [11] leads to some contradictions (see Refs. [13] and
[14]) associated with inconsistent definitions of the material
time derivative and the Jacobian for the transformation
between the current and initial configurations in the fractal

continuum. Some other inconsistencies [15] are associated
with the obscure definition of fractional differential operators
[16].

In this Rapid Communication, we present the hydrodynam-
ics of fractal flow based on a self-consistent model of fractal
continuum employing the local fractional differential operators
allied to the Hausdorff derivative introduced in Ref. [17].

It is worth noting that a fractal with metric (mass) dimension
D < 3 cannot continuously fill the embedding Euclidean space
E3. Nonetheless, we can define the three-dimensional fractal
continuum �3

D as a region of Euclidean space E3 filled with
continuous matter (leaving no pores or empty spaces) such
that its properties, e.g., density ρ(xi) and flow velocity uj (xi),
are describable by continuous functions of the Euclidean
coordinates xi ∈ E3 (i = 1,2,3), whereas the mass of any
cubic (or spherical) region W ⊂ �3

D scales with the region
size L as

m(L) = m0(L/�0 + 1)D, (1)

where �0 is the lower cutoff of scaling behavior, m0 is a propor-
tionally constant, and D is the mass fractal dimension related
to some kind of box-counting quasimeasure (see Ref. [18]).
To meet this definition, the mass of three-dimensional region
W ⊂ �3

D occupying the volume V3 in E3 should be defined as

m =
∫

W

ρ(xi)dVD =
∫

W

ρ(xi)c3(xi,D)dV3, (2)

where dVD = c3(xi,D)dV3 is the infinitesimal volume el-
ement of �3

D , while dV3(dxi) is the infinitesimal volume
element in E3, such that the function providing transformation
between the Euclidean and fractal (quasi)measures is defined
as c3(xi,D) = dVD/dV3. Physically, the function c3(xi,D)
plays the role of the density of states in the fractal continuum,
i.e., describes how permitted states of particles forming the
fractal continuum are closely packed in the Euclidean space
(see Ref. [19]).

The symmetry and functional form of the transformation
function is defined by the symmetry of the fractal continuum.
Using the Cartesian coordinates, the infinitesimal volume
element in E3 can be defined as dV3 = ∏3

i dxi . Accordingly,
the infinitesimal volume element in the fractal continuum is
commonly defined as dVD = ∏3

i dx
αi

i (see Refs. [13,14,19]).
However, the presentation of fractal measure as the product of
infinitesimal elements along the fractional Cartesian coordi-
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nates implies that the fractal continuum can be treated as the
Cartesian product of three fractals with the fractal dimensions
0 < αi � 1, such that D = ∑3

i αi and the fractal dimensions
of intersections with Cartesian planes are dk = ∑2

i �=k αi [13].
Therefore, in the case of an isotropic fractal continuum (αi = α

for all i) it is expected that D = 3α and dk = 2α = (2/3)D,
whereas many isotropic fractals (e.g., percolation clusters
and porous media) obey a so-called Mandelbrot’s rule of
thumb for intersections [20], according to which dk = D − 1
(see also Ref. [21]). Moreover, more usually, D and dk are
independent characteristics of an anisotropic fractal [22]. So,
more generally, the infinitesimal volume element of �3

D can
be presented in the form

dVD = dζ xkdA
(k)
d (xi �=k)

= c
(k)
1 (xk �=i,j ,ζk)c(k)

2 (xi,xj ,dk)dxkdA
(k)
2 , (3)

where dA
(k)
d = c

(k)
2 (xi �=k,dk)dA

(k)
2 is the infinitesimal area

element on the intersection of fractal continuum with the
Cartesian plane (xi,xj ) ∈ E2 normal to axes k in �3

D , while
dA

(k)
2 is the infinitesimal area of this element in E2, and

the transformation function c
(k)
2 (xi �=k,�i �=k,dk) = dA

(k)
d /dA

(k)
2

represents the density of states on the intersection, and dζ xk =
c

(k)
1 (xk,ζk)dxk is the infinitesimal length element along the

normal to the intersection and c
(k)
1 (xk,ζk) is the density of

states along this normal.
Specifically, in the case of homogeneous fractal continuum

ρ(xi) = ρc = const in E3, and so from Eqs. (1)–(3) follows
that the density of states in the fractal continuum can be
represented in the following form:

c3(xi,D) = κk (xk/�k + 1)ζk−1 c
(k)
2 (xi �=k,�i �=k,dk), (4)

where �i is the lower cutoff along the axis i, κk = �
ζk−1
k , while

the scaling exponent ζk characterizing the density of states
along the direction of the normal to the intersection is defined
as

ζk = D − dk. (5)

It should be pointed out that, generally, ζk is not equal to
the fractal dimension αk of the intersection between the
modeled fractal and the normal to its intersection with a
two-dimensional plane. For example, the mass dimension of
the fractal continuum used to model the Menger sponge [see
Figs. 1(a) and 1(b)] should be equal to the mass dimension of
the sponge, i.e., D = ln 20/ ln 3, while the intersection of the
fractal continuum with a plane is characterized by the fractal
dimension dk = ln 8/ ln 3 equal to the fractal dimension of the
Menger sponge intersection with the two-dimensional plane
[see Figs. 1(c) and 1(d)]. Hence, to assure scaling behavior
(1), from Eq. (5) it follows that ζk = ln(2.5)/ ln 3, whereas the
fractal dimension of the intersection of the Menger sponge
with a line is equal to αk = ln 2/ ln 3 < ζk . Notice also that
dA

(k)
d = dζ xid

ζ xj = dx
dk/2
i dx

dk/2
j , where dk/2 = ln 8/ ln 9 >

D/3 > ζk > αk . Another pertinent example is the invasive
stochastic fractals constructed by employing the random
midpoint displacement algorithm linked to the fractional
Brownian walk with the Hurst exponent 0 < H < 1 [23]. In
E3 the mass dimension of these fractals is D = 3 − H and the

fractal dimensions of intersections are dk = D − 1 = 2 − H

and αk = D − 2 = 1 − H < 1, respectively [22] and [23],
whereas the scaling exponent (5) is independent on H and
is equal to ζk = 1 for any intersection of a two-dimensional
surface with the continuum model of an isotropic invasive
stochastic fractal characterized by the mass fractal dimension
2 < D = 3 − H < 3.

Furthermore, in the case of isotropic fractal contin-
uum Eq. (4) can be rewritten in the cylindrical coordi-
nates as c3 = κrz(z/�0 + 1)D−d−1(r/�d + 1)d−2, where r =√

x2 + y2, κrz = �D−d−1
z �d−2

r , and the fractal dimensions D

and d can be independent. In the spherical coordinates
the densities of states in the fractal continuum and on
its intersection with a sphere of radius r =

√
x2 + y2 + z2

can be expressed as c3 = (r + �0)D−3 and c2 = (r + �0)d−2,
respectively, c1 = (r + �0)D−d−1. On the other hand, if the
modeled fractal medium can be treated as the Cartesian
product of three fractals with fractal dimensions 0 < αk � 1,
such that dk = ∑2

i �=k αk , Eq. (4) can be rewritten in the

form c3 = ∑3
k κk(xk/�k + 1)αk−1, similar to the one used in

Refs. [13] and [14], and so the right-hand side of
Eq. (2) represents the Riemann-Liouville fractional in-
tegral up to a numerical factor 8πD/2/	(D/2), where
	(· · ·) denotes the gamma function. Here, it is pertinent
to note that regardless of the homogeneity of �3

D , the
density distribution in E3 possesses the long-range corre-
lations characterized by the power-law scaling behavior of
the density-density correlation function 〈ρ(xi)ρ(xi + λ〉 =
V −1

3

∫
W

ρ(xi)ρ(xi + λ)c3(xi,D)dV3 ∝ |λ|D−3 for any λ � �0.
From Eqs. (2)–(5) it follows that the fractal continuum flow

through the intersection with a two-dimensional Euclidean
plane obeys the following generalization of the Green-Gauss
divergence theorem:∫

A

uknkdA
(k)
d

=
∫

A

ukc
(k)
2 (xi �=k,dk)dA

(k)
2 =

∫
W

c
(k)
2 (xi �=k,�i �=k,dk)

∂uk

∂xk

dV3

=
∫

W

c−1
3 (xi/�i,D)c(k)

2 (xi �=k,�i �=k,dk)
∂uk

∂xk

dVD

=
∫

W

∇H
k ukdVD, (6)

where 
u = uk
ek is a velocity field [24], 
n = nk
ek is a vector of
normal (see Fig. 1), and the summation over repeated indexes is
presumed [25], while the symbol ∇H

i denotes the local partial
fractional derivative

∇H
k =

(
xk

�k

+ 1

)1−ζk ∂

∂xk

, (7)

associated with the Hausdorff derivative defined in Ref. [17]
as

dH

dxζ
f = lim

x→x ′

f (x ′) − f (x)

x ′ζ − xζ
, (8)

where the exponents ζk are defined by Eq. (5). It is
straightforward to verify that the Hausdorff derivative (8)
is the inverse to the Riemann-Liouville fractional integral
up to a constant ζ−1 [26]. In addition, ∇H

i const = 0,
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∇H
i (ψϕ) = ψ∇H

i ϕ + ϕ∇H
i ψ , while ∇H

i ∇H
j ψ = ∇H

j ∇H
i ψ =

χ (i)(xi)χ (j )(xj ) ∂2

∂xi∂xj
ψ , for i �= j , where

χ (i) = (xi/�i + 1)1−D+di , (9)

and so the fractional (Hausdorff) Laplacian �H has the
following form:

∇H
i ∇H

i ψ = (
χ (i))2

[(
∂2ψ

∂x2
i

)
+ 1 − D + dk

xi + �i

(
∂ψ

∂xi

)]
,

(10)

which differs from the local fractional Laplacian introduced in
Ref. [27] and later used in Ref. [28].

Furthermore, we can construct the local fractional (Haus-
dorff) operators for the vector calculus on the fractal contin-
uum. Specifically, the Hausdorff divergence of vector field

� = (ψ1,ψ2,ψ3) is defined as

divH

� =

3∑
i

∇H
i �i, (11)

while the Hausdorff gradient vector of scalar function ψ(xi) is
gradHψ = 
∇H ψ = (∇H

1 ψ)
e1 + (∇H
2 ψ)
e2 + (∇H

3 ψ)
e3. This
leads to the Hausdorff curl operator of a vector field in the
following form

rotH 
� = ∇H × 
�,or ∇H
i �j = εkij∇H

i �j , (12)

where εijk is the Levi-Civita symbol. It is straightfor-
ward to verify that the Hausdorff operators (10)–(12) obey

the identities which resemble the fundamental identities
of the conventional vector calculus, i.e., divH rotH 
� = 0,
rotH gradHψ = 0, divH gradH ψ = �Hψ . Notice also that the
fractal (quasi)metric defined by Eqs. (1)–(5) implies the
conversion of fractional differential operators defined by
Eqs. (8)–(12) into the conventional ones in the case of the
isotropic fractal continuum obeying the Mandelbrot rule of
thumb for intersection.

It should be emphasized that the geometric framework
in which the hydrodynamics of the fractal continuum is
developed is the three-dimensional Euclidean space. Hence,
the fractal metric defined by Eqs. (1)–(5) implies that the
fractal Jacobian matrix of the transformation between the
initial xi ∈ �3

D and current coordinates Xi(t) = Xi ∈ �3
D has

the form J 3
D = [∇H

i Xj ] and so the determinant of the fractal
Jacobian is defined as

JD = εijk∇H
1 Xi∇H

2 Xj∇H
3 Xk, (13)

where εijk is the Levi-Civita symbol. Consequently, the fractal
material time derivative should be defined as(

d

dt

)
D

ψ = ∂

∂t
ψ + uk∇H

k ψ

= ∂

∂t
ψ + uk

(
xk

�k

+ 1

)1−ζk ∂

∂xk

ψ, (14)

such that ( d
dt

)DJD = JD∇H
i ui , and so the generalization of the

Reynolds transport theorem for a fractal continuum reads as
follows:

(
d

dt

)
D

∫
Wt

ψdVD =
(

d

dt

)
D

∫
W0

ψJDdV 0
D =

∫
W0

[(
d

dt

)
D

ψJD + ψ

(
d

dt

)
D

JD

]
dV 0

D =
∫

W0

[(
d

dt

)
D

ψ + ψ∇H
k uk

]
JDdV 0

D

=
∫

Wt

[(
d

dt

)
D

ψ + ψ∇H
k uk

]
dVD =

∫
Wt

(
∂

∂t
ψ + ∇H

k (ψuk)

)
dVD =

∫
Wt

∂

∂t
ψdVD +

∫
A

ψuknkdA
(k)
d ,

(15)

where ψ(xi,t) is any quantity accompanied by a moving
material system Wt [29].

Furthermore, using Eqs. (3)–(15), it is straightforward to
derive the fundamental conservation laws for fractal contin-
uum. Specifically, the equation of continuity can be written in
the form

∂ρc

∂t
= −divH (ρc 
u), (16)

where the Hausdorff divergence is defined by Eq. (11). Taking
into account the Green-Gauss divergence theorem for fractal
continuum (6), from Eq. (16) it follows that the velocity field
in a stationary flow of an incompressible fractal continuum is
solenoidal in the sense that for any closed surface ∂W the net
total flux through the surface is equal to zero, in contrast to
the opposite statement in Ref. [11]. It is pertinent to note that
the solenoidal velocity field in the fractal continuum can be
expressed as the Hausdorff curl (12) of a vector potential 
�,
i.e., 
u = rotH 
�, such that divH 
u = 0, whereas

∑3
i

∂ui

∂xi
�= 0.

The equation of balance of energy density e(xi,t) in the
fractal continuum flow has the form

ρc

(
d

dt

)
D

e = ρc

∂e

∂t
+ uiρc∇H

i e = σij∇H
j ui + ρc∇H

i qi,

(17)

where σij is the stress tensor and 
q = qini is the density of
heat flux. Finally, the balance of density of momentum in the
fractal continuum is governed by the following equation:

(
d

dt

)
D

uk = ∂

∂t
uk + ui∇H

i uk = fk + ρ−1
c ∇H

i σki, (18)

where fk is the density of volume forces, e.g., the gravitational
constant g = fz. It is imperative to point out that the forms of
conservation equations (16)–(18) are determined by the fractal
(quasi)metric defined by Eqs. (1)–(5). Hence Eqs. (16)–(18)
can be used to model any type of mechanical behavior of fractal
media within the fractal continuum framework, e.g., elastic or
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plastic deformations and flow of Newtonian or non-Newtonian
fluids.

From Eq. (18) it immediately follows that the generalization
of the Bernoulli integral for a steady incompressible flow of
inviscid fractal continuum in the gravitational field can be
represented as

3∑
k

u2
k

2
+ p

ρc

+ g(D − dz)�z

(
z

�z

+ 1

)D−dz

= h = const,

(19)

where the notations z = x3, �z = �3, and dz = d3 are used,
while h is the total hydraulic head. Notice that if 0 < D −
dz � 1, the gravitational head [third term on the left-hand side
of Eq. (19)] increases with the fluid elevation more slowly
than in the Euclidean case. Accordingly, in the hydrostatic
equilibrium, the pressure distribution in a homogeneous fractal
continuum has the form

p(z) = p0 − g(D − dz)ρc�z

(
z

�z

+ 1

)D−dz

, (20)

where p0 = p(z = 0) is the pressure on the free surface
normal to the gravitational field. Notice the difference between
Eqs. (19) and (20) and the corresponding equations derived
in Ref. [11]. It is pertinent to point out that Eq. (20) can
be relatively easily verified in laboratory experiments with
prefractal reservoirs, e.g., the Menger sponge, because if D −
dz < 1, Eq. (20) predicts that the rate of fluid discharge from
a fractal reservoir is considerable less than the discharge rate
expected according to the Torricelli equation (see Ref. [30]).

To develop the hydrodynamics of fractal continuum flow,
we need to define the constitutive relations between the dis-
placements, flow velocities, and external forces. Experimental
observations suggest that many fluids, such as water and oils,

obey the linear relation between the shear stresses and the
pure shear strain rates. Fluids possessing such behavior are
called Newtonian fluids [30]. In the case of fractal continuum
the strain tensor is defined by the fractal Jacobian J 3

D .
Hence, the tensor of stresses in an incompressible Newtonian
fractal continuum flow (∇H

i ui = 0) should be written in the
form

σij = −pδij + μ
(∇H

i uj + ∇H
j ui

)
, (21)

where p is the fluid pressure, μ is the dynamic viscosity, and
δij is Kronecker’s delta. Notice that Eq. (21) expresses the
linear relation between the shear stresses and the pure shear
strain rates in the fractal continuum, whereas the conventional
form of the constitutive equation used the hydrodynamic of the
Euclidean flow in the case of fractal continuum flow describes
a non-Newtonian fluid behavior.

Substituting Eq. (21) into Eq. (18) we obtain the general-
ization of Navier-Stokes equations for incompressible fractal
continuum flow represented by the following set of no linear
partial differential equations:

∂

∂t
uk + χ (i)ui

∂uk

∂xi

= fk − ρ−1
c χ (k) ∂p

∂xk

+νχ (i) ∂

∂xi

(
χ (i) ∂uk

∂xi

+ χ (k) ∂ui

∂xk

)
,

(22)

where ν = μ/ρc is the kinematic viscosity and functions
χ (i)(xi) are defined by Eq. (9). Notice that Eqs. (22) are
converted into the classical Navier-Stokes equations when
dk = d = D − 1, whereas if dk > D − 1, the long-range
density-density correlations in E3 introduce the long-range
correlations in the fractal continuum flow.

Equations (16)–(22) describe the hydrodynamic of fractal
continuum flow. Here, it is noteworthy to emphasize that

FIG. 1. Illustration of the mapping of discontinuous prefractal Menger sponge (a) into the fractal continuum with the mass fractal dimension
D = ln 20/ ln 3 (b). Notice that the intersection of the Menger sponge with a plane is the Sierpinski carpet of the fractal dimension d = ln 8/ ln 3
(c), while the intersection Menger sponge with a line is the Cantor set with the fractal dimension α = ln 2/ ln 3 [dashed line in (c)], whereas the
density of states along the normal to the intersection of the fractal continuum with the plane [see (d)] is characterized by the scaling exponent
ζ = ln(2.5)/ ln 3 > α [see Eqs. (3)–(5)].
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the flow of an isotropic fractal continuum with d = D − 1
is governed by conventional hydrodynamic equations for the
three-dimensional flow, while the mapping of fluid flow in
a fractal pore space to the fractal continuum flow implies
that the density of fractal continuum is equal to ρc = φρf ,
where ρf is the fluid density and φ is the medium porosity
(see Fig. 1). Furthermore, it is easy to understand that the
mass fractal dimension of the fractal continuum flow should
be equal to the fractal dimension of the backbone of the pore
space Dbb, rather than to the mass fractal dimension of pores
Dp � Dbb (see Ref. [31]), and so the intersections of the
fractal continuum with the Cartesian planes are characterized
by the fractal dimensions of the backbone intersections with
two-dimensional Cartesian planes.

The hydrodynamics of fractal continuum flow developed
in this work permits to improve the fractal approach to model

the pumping well pressure response that is widely used in
petroleum engineering (see Refs. [8–11,32,33] and references
therein). This requires the definition of an analog of the Darcy
law for fractal continuum flow, instead of the commonly
used Darcy law with the spatially or/and time-dependent
permeability (see Refs. [32] and [33]). Furthermore, the fractal
continuum approach employing the local fractional differential
operators can be used to model the fractal systems of diverse
nature within a continuum framework, e.g., mechanics of
elastic or viscoelastic fractal continuum and electrodynamics
of fractal continuum.
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