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Exact exponential function solution of the generalized Langevin equation for autocorrelation
functions of many-body systems
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We show that an exact solution of the generalized Langevin equation (GLE) for the autocorrelations of a
many-body classical system can be given in an exponential functionality (EF) form. As a consequence, the power
spectrum of the correlation has a Lorentzian functionality, i.e., is represented by an infinite sum of Lorentzian
functions corresponding to the eigenmodes of the considered correlation. By means of the simple derivation
of the GLE by M. H. Lee [Phys. Rev. B 26, 2547 (1982)], we also show that, in practical cases of interest
to experimental spectroscopies, possible approximations of the EF are related to a reduction of the relevant
dynamical variables via a restriction of the dimensions of the orthogonalized space onto which the dynamics of
the system is projected.
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The study of the time behavior of properties of many-
particle systems and of the corresponding frequency spectra
has been done mostly with reference to the framework of
the generalized Langevin equation (GLE), derived by Mori
and Zwanzig (MZ) a long time ago [1–3]. The GLE is at the
same time the equation governing the dynamic behavior of
correlation functions of observables of the many-body system
and the place where the useful concepts of fluctuating forces
and memory functions are defined and introduced. This theory
has often been applied to study transport and the spectroscopic
properties of fluids [4].

The memory function approach leads to a hierarchy of GLE
equations which is solved through Laplace transformation and
gives the well-known continued fraction representation of the
spectra of correlation functions. However, this general result
is not cast in an easily tractable expression and is so formal
that it may appear physically empty, although the definition
of the related projection operators and memory functions is
clear enough. The difficulty of physically interpreting the GLE
hierarchy, which is related to the precise time dependence of
memory functions, together with the difficulty of physically
interpreting the truncation of the continued fraction spectra at a
certain level, has led sometimes to improper applications and to
incorrect approximations of the memory function expressions.

Lee [5–7] has presented a method of solution of the dynamic
many-body problem with the derivation of recurrence relations
and continued fraction spectra, based on an orthogonalization
procedure in the Hilbert space that provides a clearer connec-
tion to physical concepts, though arriving at a description of
the spectra analogous to that of the MZ theory.

Here, starting from the Lee derivation and going few steps
further, we will show that a general “Lorentzian functionality”
(LF) of spectra and “exponential functionality” (EF) of
correlation functions can be given, and that approximations
for the frequency and time behaviors, respectively, can be
directly related to the contraction of the dimensionality of the
assumed Hilbert space in which the dynamics of the system is
represented. This gives a precise physical meaning to possible
practical approximations of the EF of correlations and LF of
spectra.

We are interested in the behavior of a classical many-
body system and therefore classical correlation functions
and spectra. Similarly to Lee [5], let us start considering
a dynamical Hermitian variable A of an N -body system
at thermodynamic equilibrium. The time evolution of A is
governed by the Liouville equation

d

dt
A(t) = iLA(t), (1)

where L is the Liouville operator, LA = i {H,A}, {. . . , . . .}
denotes a Poisson bracket, and H is the total Hamiltonian.
Equation (1) can be formally solved as

A(t) = exp(iLt)A =
∞∑

ν=0

(tν/ν!)A(ν), (2)

where A(ν) = (iL)νA = [dνA(t)/dtν]t=0 are the initial-time
derivatives of A(t) and A(0) ≡ A.

An inner product (A,B) is defined as the correlation
function of A and B, (A,B) ≡ 〈A∗B〉, where 〈. . .〉 denotes a
classical statistical average at thermodynamic equilibrium and
for convenience we make the choice 〈A〉 = 0. Equations (1)
and (2), together with the above definition of the inner product,
define a Hilbert space S, where however the complete set {A(ν)}
describing the dynamics of A is not orthogonal.

The Gram-Schmidt (GS) process permits us to construct
an orthogonal set {fν} out of {A(ν)} with the starting choice
f0 = A and then to rewrite A(t) as

A(t) =
∞∑

ν=0

aν(t)fν, (3)

with (fν,fμ) = δνμMν , aν(t) = (fν,A(t))/Mν and, in par-
ticular, a0(t) = (A,A(t))/(A,A). The initial-time values are
aν(0) = δν0. The following recurrence relation is found to
hold [5]:

fν+1 = ḟν + �νfν−1 (4)
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for ν � 1, with ḟν = iLfν and �ν = Mν/Mν−1 =
(fν,fν)/(fν−1,fν−1). Equation (4) can be used to successively
derive the explicit expression of

fν = fν(A,A(1),A(2), . . . ,A(ν); �1,�2, . . . ,�ν−1) (5)

starting from f0 = A with f−1 = 0 and �0 ≡ 1.
The substitution of Eq. (2) into the Liouville equation (1)

and the use of the recurrence relation (4) yields a recurrence
relation for the correlations aν(t) [5]; i.e.,

aν−1(t) = ȧν + �ν+1aν+1(t) (6)

for ν � 1 and ȧν = daν(t)/dt with a−1 = 0. Because of (6),
the Laplace transforms aν(z) = L[aν(t)] are such that

1 = za0(z) + �1a1(z), (7a)

aν−1(z) = zaν(z) + �ν+1aν+1(z), (7b)

which can also be written

a0(z) =
[
z + �1a1(z)

a0(z)

]−1

, (8a)

aν(z)

aν−1(z)
=

[
z + �ν+1aν+1(z)

aν(z)

]−1

, (8b)

with ν � 1. If we now define

K0(z) = a0(z), (9a)

Kν(z) = �ν

aν(z)

aν−1(z)
, (9b)

from Eqs. (8) it follows that

K0(z) = [z + K1(z)]−1, (10a)

Kν(z) = �ν[z + Kν+1(z)]−1, (10b)

which in the time domain correspond to

K̇0(t) +
∫ t

0
dt ′K1(t − t ′)K0(t ′) = 0, (11a)

K̇ν(t) +
∫ t

0
dt ′Kν+1(t − t ′)Kν(t ′) = 0, (11b)

with ν � 1 and K0(t = 0) = 1, Kν(t = 0) = �ν . This is the
hierarchy of GLE equations identifying {Kν(t)} as the set of
memory functions of a0(t) = K0(t). MZ have demonstrated
that {Kν(t)} are correlation functions of variables of the many-
body system which can be properly defined and denoted as
“fluctuating forces” [1,3]. In particular it can be shown that
these “forces” are directly related to the {fν} [6]. From the
definition (9b) of Kν(z) we also have

aν(t) = 1/�ν

∫ t

0
dt ′Kν(t − t ′)aν−1(t ′)

=
(

ν∏
i=1

1

�i

) ∫ t

0
dtν

∫ tν

0
dtν−1 · · ·

∫ t2

0
dt1

×Kν(t − tν)Kν−1(tν − tν−1) . . . K1(t2 − t1)a0(t1),

(12)

indicating that the {aν(t)} components of A(t) in the manifold
{fν} are successively generated starting from a0(t1) for
t > tν > tν−1 > . . . > t2 > t1 > 0 via convolutions with the

memory functions Kμ(t − tμ) where μ � ν. In other words,
since the norm ‖A(t)‖ = (A(t),A(t))/(A,A) = 1, the dynamic
of the vector A(t) in the Hilbert space S is a rotation which
successively in time acquires components aν(t) which are
driven by a memory function correlation with the previous one
aν−1(t ′) for t > t ′. These considerations clarify that Eq. (3)
is a possible way of building up A(t) in S starting from its
autocorrelation and then summing, in a sequential process,
correlations of A(t) itself with increasing-order derivatives at
t = 0, which are brought in particular combinations up to A(ν)

by the fν .
Equations (9) can be combined to give the continued

fraction representation of a0(z) and Kν(z) which is also the
result of the MZ theory; i.e.,

a0(z) = 1

z + �1

z + �2
z+··· ,

(13a)

Kν(z) = �ν

z + �ν+1

z + �ν+2

z+··· ,

(13b)

with ν � 1. Equation (13b) clarifies that Kν(z) is defined with
respect to the subspace Sν ⊂ S, which is also a Hilbert space
spanned by fν , fν+1, . . ..

The continued fractions (13) can be expressed as ratios of
polynomials in z [8]:

a0(z) = lim
λ→∞

det D(λ,1)(z)

det D(λ,0)(z)
, (14a)

Kν(z) = lim
λ→∞

�ν

det D(λ,ν+1)(z)

det D(λ,ν)(z)
, (14b)

where D(λ,ν)(z) is a (λ − ν)-dimensional tridiagonal symmetric
matrix whose elements are D(λ,ν)

αα = z, D
(λ,ν)
αβ = i�

1/2
α+νδα,β−1

where 1 � α < β � λ − ν.
Denoting by {z(λ,ν)

j } = {z(λ,ν)
1 ,z

(λ,ν)
2 , . . . ,z

(λ,ν)
λ−ν } the set of

zeros of the polynomial det D(λ,ν)(z), which can be derived
explicitly by diagonalizing the matrix D(λ,ν)(z) itself, expres-
sions (13) can also be written

a0(z) = lim
λ→∞

λ∑
j=1

I
(λ,0)
j

z − z
(λ,0)
j

, (15a)

Kν(z) = lim
λ→∞

λ−ν∑
j=1

I
(λ,ν)
j

z − z
(λ,ν)
j

, (15b)

where the residues I
(λ,ν)
j are

I
(λ,ν)
j = lim

z→z
(λ,ν)
j

(
z − z

(λ,ν)
j

)
Kν(z), (16)

which also holds for ν = 0, i.e., for K0(z) = a0(z).
From Eqs. (15) by Laplace antitransformation we can now

write the normalized correlation function a0(t) and memories
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Kν(t) for a classical system as

a0(t) =
∞∑

j=1

I
(0)
j exp

(
z

(0)
j |t |), (17a)

Kν(t) =
∞∑

j=1

I
(ν)
j exp

(
z

(ν)
j |t |), (17b)

where we can now drop the superscript λ having taken the
limit to infinity. Here, as well as in Eqs. (15), I

(ν)
j and z

(ν)
j

appear as amplitudes and eigenfrequencies, respectively, of
a normal mode representation of a0(t) and Kν(t), and they
may either be real or form pairs of complex conjugate values
in agreement with the reality of all correlation functions of
observables of classical systems.

Equations (17) are the main output of this analysis, as they
establish as a general result the EF solutions of the GLE (10a).
In particular, for the correlation function a0(t), the solution of
the GLE provided by Eq. (17a) in the form of an expansion
with respect to a set of exponential functions is a reorganization
of, and an alternative to, the usual power expansion

a0(t) =
∞∑

n=0

〈ωn〉
n!

tn, (18)

where 〈ωn〉 = (−i)n(A,A(n))/(A,A) is the nth normalized
spectral moment of a0(t). For a classical system 〈ωn〉 = 0
for odd n. Moreover, as appears obvious from the definition
of the set {�ν} = {�1,�2, . . . ,�ν}, all three sets {�ν}, {I (0)

j },
{z(0)

j } may be expressed in terms of {〈ωn〉}. In particular from

the expression of the moments and Eq. (15) we see that {I (0)
j }

and {z(0)
j } satisfy in general a set of relations of the form

∞∑
j=1

I
(0)
j

(
z

(0)
j

)k = ik〈ωk〉 (19)

for k � 0. Similar considerations can also be given for all the
memory functions Kν(t) of Eq. (17b).

The solutions (17a) and (18) for the time behavior of
the correlation function a0(t) are both exact. However, when
approximated as partial summations of a finite number of
terms, they are in some sense complementary to each other,
since the form (18) is useful in describing the behavior at
short times, while (17) can be useful at longer times. In fact,
truncation of (18) is equivalent to retain a few lowest-power
terms, while the approximation (17a), obtained by keeping
the first few exponential functions, amounts to truncating the
continued fraction (13a) so that only the lowest powers of z

appear in the polynomial ratio of Eqs. (14a). Obviously both
approximations violate the physical request that all frequency
moments of (A,A(t)) must be determined and finite, thus
restricting the validity of Eq. (19) to a limited number of
values of k.

The normalized power spectrum of (A,A(t)), given
by I (ω) = (1/π )Re a0(z = iω), is composed of two parts

obtained by grouping all z
(0)
j according to whether they are

real or complex:

I (ω) = 1

π

[∑
p

−Ipzp

z2
p + ω2

+
∑

q

−I ′
qz

′
q + I ′′

q (ω − z′′
q)

(z′
q)2 + (ω − z′′

q)2

]
, (20)

where p labels the real z
(0)
j while each q refers to a pair of

complex conjugate zeros written as z′
q ± iz′′

q , with respective
amplitudes I ′

q ± iI ′′
q . Equation (20) gives the power spectrum

as a sum of an infinite number of Lorentzian shapes (LF).
Low-order approximations of (19) have been already used to
analyze experimental spectra [9]. Also, an LF behavior of
neutron spectra has been reported by de Schepper and Cohen
[10], though derived in the different framework of generalized
kinetic theory for hard-sphere fluids.

From the previous discussion we derive the following
conclusions:

(1) The time-dependent autocorrelation function a0(t) of
a dynamical variable of a many-body classical system at
thermodynamic equilibrium can always be written in terms of
an infinite sum of exponential functions; the same is true for
all memory functions Kν(t). Similarly, the power spectrum of
a0(t) and Kν(t) can be written as an infinite sum of Lorentzian
shapes.

(2) Normal modes for a0(t) and Kν(t) can then be defined
with eigenfrequencies and intensities determined solely by the
values of the frequency moments of a0(t).

(3) The above properties are direct consequences of the
dynamical description given by the Liouville equation (1).

(4) In practical cases the exponential representation of
either a0(t) or Kν(t) must be approximated. The obvious way
of approximating, similarly to what is done in power series
expansions, is then to retain few modes in the summations
(17). In doing so, one automatically goes into a long-time
representation where the properties at t = 0 cannot be exactly
reproduced; the theoretical spectra at sufficiently high fre-
quency will not be able to represent real experimental spectra.
The EF expression of a0(t) in general converges at long times
faster than the power expansion (18) because it includes in an
effective way all powers of t .

(5) The “few”-mode approximation, which can be directly
applied either to a0(t) or to I (ω) with the restriction 1 � j �
ν0, from the practical point of view is exactly the same as
truncating the continued fraction representation of the spectra
(13a) at an appropriate level ν0; however, it is directly linked
to the concept of retaining an appropriate number of normal
modes in the description of the correlation which is not evident
at all in the continued fraction alone. This truncation can be
carried out by exploiting the Markovian approximation to the
memory function Kν0 (t); i.e., Kν0 (t) = 2�ν0δ(t). All the other
Kν(t) with ν < ν0 are then represented by sums of exponential
functions, meaning that the Markovian approximation is
consistent with the present theory since it maintains the EF
and LF structures.

(6) The “few”-mode approximation, as well as the trun-
cation of the continued fraction (13a) at the level ν0, has the
same effect as the contraction of the general Hilbert space
S down to ν0 dimensions, which is the same as considering
for the reconstruction of a0(t) and I (ω) only the manifold
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{f1,f2, . . . ,fν0}. The previous observation links the few-mode
approximation to the well-defined physical fact of considering
in the time evolution of a0(t) only correlations of A(t) with
A(ν) up to ν = ν0.

We believe that the general solution of the dynamic problem
in a many-body classical system of particles given by the
EF representation of the autocorrelation a0(t) permits us to
define in a very general form appropriate eigenfrequencies of
modes which drive the time evolution of any autocorrelation

in the many-body system. This EF representation should be
the starting point for the search of approximated forms in
the analysis of experimental spectra. This approach leads in a
natural way to the determination of the eigenmodes of a0(t) by
fitting to the available data a suitably chosen approximation.
The values of the eigenfrequencies z

(0)
j and of the respective

amplitudes I
(0)
j depend on the order and the type of performed

approximation.
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