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Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response
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In this paper spatial dynamics of the Beddington-DeAngelis predator-prey model is investigated. We analyze
the linear stability and obtain the condition of Turing instability of this model. Moreover, we deduce the
amplitude equations and determine the stability of different patterns. In Turing space, we found that this model
has coexistence of H0 hexagon patterns and stripe patterns, Hπ hexagon patterns, and H0 hexagon patterns. To
better describe the real ecosystem, we consider the ecosystem as an open system and take the environmental noise
into account. It is found that noise can decrease the number of the patterns and make the patterns more regular.
What is more, noise can induce two kinds of typical pattern transitions. One is from the Hπ hexagon patterns to
the regular stripe patterns, and the other is from the coexistence of H0 hexagon patterns and stripe patterns to the
regular stripe patterns. The obtained results enrich the finding in the Beddington-DeAngelis predator-prey model
well.
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I. INTRODUCTION

The Beddington-DeAngelis functional response was in-
troduced by Beddington [1] and DeAngelis et al. [2]. It is
similar to the well-known Holling-type functional response,
but it contains an extra term describing mutual interference
by predators. Some biologists have argued that in many
cases, especially when predators have to search for food
and consequently have to share or compete for food, the
functional response in a predator-prey model should be
predator dependent. Specifically, Skalski and Gilliam [3]
claimed that the predator-dependent functional response can
provide better descriptions of predator feeding over a range
of predator-prey abundances by comparing the statistical
evidence from 19 predator-prey systems with the three
predator-dependent functional responses (Hassell-Varley [4],
Beddington-DeAngelis [1,2], and Crowley-Martin [5]), and
in some cases the Beddington-DeAngelis functional response
preformed even better. This model represents most of the
qualitative features of the ratio-dependent models but avoids
the “low densities problem,” which is usually the source of
controversy.

The study of pattern formation in reaction-diffusion (RD)
systems is a very active research area. Since Turing [6] first
proposed RD theory to describe the range of spatial patterns
observed in the developing embryo, RD models have been
studied extensively to explain patterns in fish skin, mammalian
coat markings, phyllotaxis, predator-prey systems, terrestrial
vegetation, plankton, intertidal communities, and so on (see
Refs. [7–16]). Segel and Jackson [17] were the first to
call attention to the fact that Turing’s ideas would also be
applicable in population dynamics. At the same time, Gierer
and Meinhardt [18] gave a biologically justified formulation
of a Turing model and studied its properties by employing
numerical simulation. Levin and Segel [19] suggested this
scenario of spatial pattern formation as a possible origin
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of planktonic patchiness. In recent years there has been
considerable interest in spatial and temporal behavior of
interacting species in ecosystems. The dynamical behavior
between predator and prey has long been and will continue
to be one of the dominant themes in ecosystems due to its
universal existence and importance [20–25]. Unfortunately
most of the studies about the spatiotemporal predator-prey
system with functional response focus on the bifurcation
phenomena by varying the control parameter(s), and little
attention has been paid to study of the selection of the Turing
patterns.

Owing to the insightful work of many scientists over
recent years, we can now focus on pattern selection by
using the standard multiple-scale analysis [26–29], in which
the control parameter(s) and the derivatives are expanded in
terms of a small parameter ε and the Fredholm solubility
condition is used. In the neighborhood of the bifurcation
point (e.g., Hopf or Turing bifurcation point), the critical
amplitudes Aj (j = 1,2,3) follow the normal forms. Their
general forms can be derived from the standard techniques
of symmetry-breaking bifurcations. A normal form describes
perfect extended patterns, but slight variations in the patterns
can be included by means of spatial terms with suitable
symmetries, so that one arrives at the amplitude equations
[27,29,30].

However, the environments in models and laboratories are
much less complex than ecological environments, and thus
ecosystems can be modeled as open systems in which the
interaction between the component parts is nonlinear and
the interaction with the environment is noisy. Recently there
has been a growth of interest in a deeper understanding of
the role played by environmental noise in the dynamics of
ecosystems [31–33]. The presence of noise in ecosystems
gives rise to a rich variety of dynamical effects. The noise
through its interaction with the nonlinearity of the living
systems can cause new counterintuitive phenomena such
as stochastic resonance [34–36], noise-enhanced stability
[37,38], noise-delayed extinction [31,39,40], resonant acti-
vation [41,42], noise-induced transitions [43], and pattern
formation [13,36,44–46].
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In this paper we mainly focus on the dynamics of pattern
selection and noise-induced patterns in the Beddington-
DeAngelis predator-prey system. The paper is organized
as follows. In Sec. II we introduce the two-dimensional
Beddington-DeAngelis predator-prey model and the zero-flux
boundary conditions. In Sec. III we show the dynamical
behaviors of the model in the absence of noise. We make a
linear stability and obtain Turing bifurcation with zero-flux
boundary conditions. Furthermore, we carry out a nonlinear
analysis using multiple-scale analysis to derive the amplitude
equations and also present and discuss the results of Turing
pattern formation. In Sec. IV noise-induced patterns are
exhibited through extensive numerical simulations. Finally,
conclusions and discussions are presented in Sec. V.

II. THE MODEL

With the Beddington-DeAngelis or density-dependent
functional response and logistic prey growth, we can establish
a predator-prey model in the following form [47–53]:

dU

dt
= rU (1 − U

K
) − aUV

b + U + cV
,

(1)
dV

dt
= eaUV

b + U + cV
− dV,

where U (t) and V (t) stand for the prey and predator densities,
respectively, at time t . The parameter r is the intrinsic growth
rate of the prey, K is the carrying capacity of the prey,
e is the conversion rate of prey to predator, and d is the
mortality rate of the predator. The term aU

b+U+cV
is called the

Beddington-DeAngelis functional response. The parameter a

is the maximum number of prey that can be eaten by a predator
per unit time, and the parameter b is the saturation constant.
The parameter c scales the impact of the predator interference,
and the term cV measures the mutual interference between
predators.

In order to minimize the number of parameters involved
in model (1), it is extremely useful to write the system in
nondimensionalized form. We take

u = U

K
, v = cV

K
, dσ = adt

c
,

and then we have

du

dσ
= αu(1 − u) − uv

β + u + v
,

(2)
dv

dσ
= γ uv

β + u + v
− δv,

where α = cr
a

, β = b
K

, γ = ce, and δ = cd
a

.
As shown in Refs. [54–56], by a change of the independent

variable dσ → (β + u + v)dσ and still using the variable t

instead of σ , model (2) is equivalent to the polynomial system

du

dt
= αu(1 − u)(β + u + v) − uv := f (u,v),

(3)
dv

dt
= γ uv − δv(β + u + v) := g(u,v).

When combined with the spatial factor, we have the following
system:

∂u

dt
= αu(1 − u)(β + u + v) − uv + d1∇2u,

(4)
∂v

dt
= γ uv − δv(β + u + v) + d2∇2v,

where the nonnegative constants d1 and d2 are, respectively,
prey and predator diffusion coefficients. ∇2 = ∂2

∂X2+∂Y 2 is the
Laplacian operator in two-dimensional space.

To research the spatial effects due to the presence of
noise, we consider a discrete-time evolution model (a coupled
map lattice) [46,57]. The model with multiplicative noise
corresponding to model (4) is given by

un+1
i,j = αun

i,j

(
1 − un

i,j

)(
β + un

i,j + vn
i,j

) − un
i,j v

n
i,j

+un
i,jU

n
i,j + d1

∑
p

(
un

p − un
i,j

)
,

(5)
vn+1

i,j = γ un
i,j v

n
i,j − δvn

i,j

(
β + un

i,j + vn
i,j

)
+ vn

i,jV
n
i,j + d2

∑
p

(
vn

p − vn
i,j

)
,

where un
i,j and vn

i,j represent, respectively, the densities of the
prey and predator in the site (i,j ) at the time step n.

∑
p

indicates the sum over the four nearest neighbors in the map
lattice. White noise is the limiting case of colored noise, so
we consider the more general case-colored noise in the present
paper. The noise terms Un

i,j and V n
i,j are Ornstein-Uhlenbeck

processes obeying the following statistical properties
[46,58]:

〈U (t)〉 = 〈V (t)〉 = 0, (6)

〈U (t)U (t + τ )〉 = 〈V (t)V (t + τ )〉 = q

2τc

e−τ/τc , (7)〈
Un

i,jV
m
i,j

〉 = 0, ∀ n, m, i, j, (8)

where τc is the correlation time of the process and q is the
noise intensity.

In the following sections, models (4) and (5) are to be
analyzed under the following positive initial conditions and
Neumann boundary conditions:

u(X,Y,0) > 0, v(X,Y,0) > 0,

(X,Y ) ∈ � = [0,LX] × [0,LY ], (9)
∂u

∂n
= ∂v

∂n
= 0,(X,Y ) ∈ ∂�.

In the above, LX and LY give the size of the system in
the directions of X and Y , respectively, n is the outward
unit normal vector of the boundary ∂�, and we assume ∂�

is smooth. The main reason for choosing such boundary
conditions is that we are interested in the self-organization
of the pattern. Neumann boundary conditions imply that
the boundary of the model domain is simply reflective, and
that the domain is isolated or insulated from the external
environment [59]. At the same time, Neumann boundary
conditions imply that there are no fluxes of populations through
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the boundary; i.e., no external input is imposed from outside
[9].

III. DYNAMICAL BEHAVIOR OF MODEL (4)

A. Linear stability analysis

In the absence of diffusion, model (4) corresponds to
model (1). Recall that (u,v) is an equilibrium point of model
(3) if it satisfies f (u,v) = 0 and g(u,v) = 0. Model (3)
has two equilibrium solutions in the positive quadrant. One
equilibrium point, given by (u,v) = (1,0), is of no interest
since it corresponds to the prey at its carrying capacity with no
predator. Another equilibrium point is given by E∗ = (u∗,v∗),
where

u∗ = αγ − γ + δ +
√

(αγ − γ + δ)2 + 4αγ δβ

2αγ
,

v∗ =
(γ

δ
− 1

)
u∗ − β.

We can prove that it is necessary for β to be in the interval
(0,

γ−δ

δ
) to ensure (u∗,v∗) a positive equilibrium. Moreover,

(u∗,v∗) satisfies |J(u∗,v∗)| > 0, where J is the Jacobian matrix
of model (3). The proof can be seen in Appendix A.

From the biological perspective, we are interested in
studying the stability behavior of the interior equilibrium point
E∗. The Jacobian matrix corresponding to this equilibrium
point is as follows:

J =
(

a11 a12

a21 a22

)
,

where

a11 = α(1 − u∗)(β + u∗ + v∗) − αu∗(β + u∗ + v∗)

+αu∗(1 − u∗) − v∗,
a12 = αu∗(1 − u∗) − u∗, (10)

a21 = γ v∗ − δv∗,
a22 = γ u∗ − δ(β + u∗ + v∗) − δv∗.

The Turing condition is the one in which the uniform
steady state of the RD system is stable for the corresponding
ordinary differential equations, but it is unstable in the partial
differential equations with diffusion terms. First, we address
the temporal stability of the uniform state to nonuniform
perturbations [60]:(

u

v

)
=

(
u∗
v∗

)
+ ε

(
uk

vk

)
eλt+ik·r + c.c. + O(ε2), (11)

where λ is the growth rate of perturbations in time t , i is
the imaginary unit and i2 = −1, k · k = k2 and k is the wave
number, r = (X,Y ) is the spatial vector in two dimensions, and
c.c. stands for the complex conjugate. The linear instability
(ε 	 1) of the uniform state is deduced from the dispersion
relations. After substituting Eq. (7) into Eq. (4), one finds the
characteristic equation for the growth rate λ as the determinant
det A, where

A =
(

a11 − d1k
2 − λ a12

a21 a22 − d2k
2 − λ

)
.

Then we can obtain the eigenvalues λk as follows:

λk = trk ±
√

(trk)2 − 4
k

2
, (12)

where

trk = a11 + a22 − k2(d1 + d2) = trJ − k2(d1 + d2),


k = a11a22 − a12a21 − k2(a11d2 + a22d1) + k4d1d2

= 
J − k2(a11d2 + a22d1) + k4d1d2.

Hopf bifurcation occurs when Im(λk) 
= 0, Re(λk) = 0, at
k = 0; i.e., a11 + a22 = 0. Then we can get the critical value
of the Hopf bifurcation parameter βH :

βH = γ 2 −αγ 2 −γ 2δ+αγ 3 −γ 3 +δγ 3 −δ2 +2γ δ2 −δ2γ 2

(−γ − δ + δγ )2
.

(13)

Turing bifurcation occurs when Im(λk) = 0, Re(λk) = 0, at
k = kT 
= 0, and the wave number kT satisfies

k2
T =

√

J
d1d2

=
√

u∗v∗√(αγ − γ + δ)2 + 4αγ δβ

d1d2
. (14)

We can obtain the critical value of the Turing bifurcation
parameter βT . Since βT is too long, we do not show
its accurate expression in this paper. At the Turing bi-
furcation threshold, the spatial symmetry of the system is
broken, and the patterns are stationary in time and oscilla-
tory in space with the corresponding wavelength λT = 2π

kT

[61–63].
Now, let us discuss the bifurcations represented by these

formulas in the parameter region spanned by the parameters α

and β that can be seen from Fig. 1. All of the spatial models
are induced in this parameter region. For overall analysis, we
show the real part of the eigenvalue as β is decreased, which
can be seen in Fig. 2

FIG. 1. (Color online) Bifurcation diagram of model (4). We
set the parameter values as δ = 0.6,γ = 0.9,d1 = 0.01,d2 = 1. The
figure shows the Turing space (marked T), i.e., the region bounded
by the Turing bifurcation line (the red (upper) line) and the Hopf
bifurcation line (the green (light gray) line).
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FIG. 2. (Color online) The real part of the eigenvalue as β is
decreased. We set the parameter values as α = 0.095,δ = 0.6,γ =
0.9,d1 = 0.01,d2 = 1. The value of β is as follows: 1: β = 0.12; 2:
β = 0.102; 3: β = 0.09; 4: β = 0.06; 5: β = 0.03; 6: β = 0.02.

B. Spatial dynamics of model (4)

1. Amplitude equations

The standard multiple-scale analysis yields the well-known
amplitude equations [27,29,30]. This method is based on the
fact that near the instability threshold the basic state is unstable
only in regard to perturbations with wave numbers close to
the critical value kT [defined as Eq. (14)]. In other words,
close to the onset β = βT , the eigenvalues associated with the
critical modes are close to zero, and they are slowly varying
modes, whereas the off-critical modes relax quickly, so only
perturbations with k around kT need considering. The whole
dynamics can be therefore reduced to the dynamics of the
active slow modes [64]. The stability and selection of different
patterns close to the onset can be derived from the amplitude
equations that govern the dynamics of these active modes.
Turing patterns (e.g., hexagon and stripe patterns) are thus
well described by a system of three active resonant pairs
of modes (kj , − kj ) (j = 1,2,3) making angles of 2π/3 and
|kj | = kT .

In order to obtain the amplitude equations, we should first
write the linearized form of model (4) at the equilibrium point
E∗ as follows:

∂x

dt
= a11x + a12y + α

[
1 −

(
γ

δ
+ 2

)
u∗

]
x2

+ [α(1 − 2u∗) − 1]xy − αx2y − αx3 + d1∇2x,

∂y

dt
= a21x + a22y + (γ − δ)xy − δy2 + d2∇2y. (15)

Close to onset β = βT , the solutions of model (4) can be
expanded as

U = US +
3∑

j=1

U0[Aj exp(ikj · r) + Āj exp(−ikj · r)]. (16)

At the same time, the solutions of model (15) can be expanded
as

U0 =
3∑

j=1

U0[Aj exp(ikj · r) + Āj exp(−ikj · r)], (17)

where US represents the uniform steady state and U0 =
[(a∗

11d2 + a∗
22d1)/(2a∗

21d1),1]T is the eigenvector of the lin-
earized operator. In other words, U0 defines the direction of
the eigenmodes in concentration space (i.e., the ratio of x and
y). Aj and the conjugate Āj are, respectively, the amplitudes
associated with the modes kj and −kj . From the standard
multiple-scale analysis, up to the third order in the perturba-
tions, the spatiotemporal evolution of the amplitudes Aj is
described through the equations, i.e., amplitude equations:

τ0
∂A1

dt
= μA1 + hĀ2Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

τ0
∂A2

dt
= μA2 + hĀ1Ā3 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A2,

τ0
∂A3

dt
= μA3 + hĀ1Ā2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A3,

(18)

where μ = (βT − β)/βT is a normalized distance to onset and
τ0 is a typical relaxation time. Notably, for model (15), the
distance to onset, μ, increases when the bifurcation parameter
β decreases.

The form of Eqs. (18) is general for Turing bifurcation,
but the exact expressions of the coefficients are specific to the
model. Next, we will obtain the exact but complex expressions
of the coefficients τ0,h,g1, and g2. The parameters that do not
appear in the above will be explained in Appendix B.

Setting X = (x,y)T , N = (N1,N2), model (15) can be
converted to the following system:

∂X
∂t

= LX + N, (19)

where

L =
(

a11 + d1∇2 a12

a21 a22 + d2∇2

)
,

N =
(

N1

N2

)
=

(
α
[
1 − (

γ

δ
+ 2

)
u∗]x2 + [α(1 − 2u∗) − 1]xy − αx2y − αx3

(γ − δ)xy − δy2

)
.

During the calculation, we just analysis the behavior of the controlled parameter close to onset β = βT . With this method, we
can expand β in the following term:

βT − β = εβ1 + ε2β2 + ε3β3 + O(ε4), (20)
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where ε is a small parameter. Expanding the variable X and the
nonlinear term N according to this small parameter, we have
the following results:

X =
(

x

y

)
= ε

(
x1

y1

)
+ ε2

(
x2

y2

)
+ ε3

(
x3

y3

)
+ O(ε4), (21)

N = ε2h2 + ε3h3 + O(ε4), (22)

where h2 and h3 are corresponding to the second and the third
orders of ε in the expansion of the nonlinear term N . At the
same time, the linear operator L can be expanded as follows:

L = LT + (βT − β)M, (23)

where

LT =
(

a∗
11 + d1∇2 a∗

12

a∗
21 a∗

22 + d2∇2

)
, M =

(
b11 b12

b21 b22

)
.

The core of the standard multiple-scale analysis is separating
the dynamical behavior of the system according to different
time scale or spatial scale. We just need to separate the time
scale for model (19) (i.e., T0 = t , T1 = εt , T2 = ε2t). Each
time scale Ti can be considered as an independent variable. Ti

corresponds to the dynamical behaviors of the variables whose
scales are ε−i . So the derivative with respect to time converts
to the following term:

∂

∂t
= ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ O(ε3). (24)

For solution (17), we can consider the foundation of the
solution independent of time. As amplitude A is a variable
that changes slowly, the derivative with respect to time ∂

∂T0
that

corresponds to the variable that changes fast does not have an
effect on the amplitude A. Then we have the following result:

∂A

∂t
= ε

∂A

∂T1
+ ε2 ∂A

∂T2
+ O(ε3). (25)

Substituting Eqs. (21), (22), (23), and (24) into Eq. (19) and
expanding Eq. (19) according to different orders of ε, we can
obtain three equations as follows:
The first order of ε:

LT

(
x1

y1

)
= 0;

The second order of ε:

LT

(
x2

y2

)
= ∂

∂T1

(
x1

y1

)
− β1M

(
x1

y1

)
− h2;

The third order of ε:

LT

(
x3

y3

)
= ∂

∂T1

(
x2

y2

)
+ ∂

∂T2

(
x1

y1

)

−β1M
(

x2

y2

)
− β2M

(
x1

y1

)
− h3.

For the first order of ε:

LT

(
x1

y1

)
= 0. (26)

As LT is the linear operator of the system close to the onset,
(x1,y1)T is the linear combination of the eigenvectors that
corresponds to the eigenvalue 0. Solving the first order of ε,
we have(

x1

y1

)
=

(
a∗

11d2−a∗
22d1

2a∗
21d1

1

)
[W1 exp(ik1r) + W2 exp(ik2r)

+W3 exp(ik3r)] + c.c., (27)

where |kj | = k∗
T , Wj is the amplitude of the mode exp(ikj r)

when the system is under the first-order perturbation. Its form
is determined by the perturbational term of the higher order.

For the second order of ε, we have

LT

(
x2

y2

)
= ∂

∂T1

(
x1

y1

)
− β1

(
b11x1 + b12y1

b21x1 + b22y1

)
−

({
α
[
1 − (

γ

δ
+ 2

)
αγ−γ+δ+c

2αγ

]
x2

1 + (
α − 1 − αγ−γ+δ+c

γ

)
x1y1

(γ − δ)x1y1 − δy2
1

)
=

(
Fx

Fy

)
.

(28)

According to the Fredholm solubility condition, the vector function of the right-hand side of Eq. (28) must be orthogonal with
the zero eigenvectors of operator L+

c to ensure the existence of the nontrivial solution of this equation. L+
c is the adjoint operator

of Lc. In this system the zero eigenvectors of operator L+
c are(

1

− 2a∗
21d2

a∗
11d2−a∗

22d1

)
exp(−ikj r) + c.c., j = 1,2,3. (29)

The orthogonality condition is (
1, − 2a∗

21d2

a∗
11d2 − a∗

22d1

) (
F i

x

F i
y

)
= 0, (30)

where F i
x and F i

y , separately, represent the coefficients corresponding to exp(ikj r) in Fx and Fy . Taking exp(ik1r), for example,
we have(

F 1
x

F 2
x

)
=

(
l ∂W1

∂T1
∂W1
∂T1

)
− β1

(
b11lw1 + b12w1

b21lw1 + b22w1

)
−

(
2αl2

[
1 − (

γ

δ
+ 2

)
αγ−γ+δ+c

2αγ

]
W̄2W̄3 + 2l

(
α − 1 − αγ−γ+δ+c

γ

)
W̄2W̄3

2l(γ − δ)W̄2W̄3 − 2δW̄2W̄3

)
.

(31)
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Using the orthogonality condition, we can obtain the following result:

d2 − d1

d2
l
∂W1

∂T1
= β1

[
lb11 + b12 − d1

d2
l(lb21 + b22)

]
W1 +

{
2αdl2 + 2el − d1

d2
l[2l(γ − δ) − 2δ]

}
W̄2W̄3. (32)

The other two equations can be obtained through the transformation of the subscript of W . Solving Eq. (28), we have(
x2

y2

)
=

(
X0

Y0

)
+

3∑
j=1

(
Xj

Yj

)
exp(ikj r) +

3∑
j=1

(
Xjj

Yjj

)
exp(i2kj r)

+
(

X12

Y12

)
exp[i(k1 − k2)r] +

(
X23

Y23

)
exp[i(k2 − k3)r] +

(
X31

Y31

)
exp[i(k3 − k1)r] + c.c. (33)

The coefficients in Eq. (33) are obtained by solving the sets of the linear equations about exp(0), exp(ikj r), exp(i2kj r), and
exp(i(kj − kk)r). With this method, we have(

X0

Y0

)
=

(
x0

y0

)
(|W1|2 + |W2|2 + |W3|2),Xi = lYi,(

Xjj

Yjj

)
=

(
x11

y11

)
W 2

j ,

(
Xjk

Yjk

)
=

(
x∗

y∗

)
WjW̄k.

For the third order of ε, we have

LT

(
x3

y3

)
= ∂

∂T1

(
x2

y2

)
− β1

(
b11x2 + b12y2

b21x2 + b22y2

)
− β2

(
b11x1 + b12y1

b21x1 + b22y1

)

−
(

2α
[
1 − (

γ

δ
+ 2

)
αγ−γ+δ+c

2αγ

]
x1x2 + (

α − 1 − αγ−γ+δ+c

γ

)
(x1y2 + x2y1)

(γ − δ)(x1y2 + x2y1) − 2δy1y2

)
−

(
αx2

1y1 + αx3
1

0

)
. (34)

Using the Fredholm solubility condition again, we can obtain

d2 − d1

d2
l
∂W1

∂T2
+ d2 − d1

d2
l
∂Y1

∂T1

= β2

[
lb11 + b12 − d1

d2
l(lb21 + b22)

]
W1 + β1

[
lb11 + b12 − d1

d2
l(lb21 + b22)

]
Y1

+
{

2αdl2 + 2el − d1

d2
l[2l(γ − δ) − 2δ]

}
(W̄2Ȳ3 + W̄3Ȳ2) − [G1|W1|2 + G2(|W2|2 + |W3|2)]W1. (35)

The other two equations can be obtained through the trans-
formation of the subscript of W . The amplitude Ai can be
expanded as

Ai = εWi + ε2Vi + O(ε3). (36)

Equations (32) and (35) separately multiplying by ε2 and
ε3, and using Eqs. (25) and (36) to merge the variables, we
can obtain the amplitude equation corresponding to A1 as
follows:

τ0
∂A1

∂t
= μA1 + hĀ2Ā3

− [g1|A1|2 + g2(|A2|2 + |A3|2)]A1. (37)

The other two equations of Eqs. (18) can be obtained through
the transformation of the subscript of A. The exact expressions
of the coefficients τ0,h,g1, and g2 are shown in Appendix B.

2. Amplitude instability

Each amplitude in Eqs. (18) can be decomposed to
mode ρi = |Ai | and a corresponding phase angle ϕi . Then,
substituting Ai = ρi exp(iϕi) into Eqs. (18) and separating the

real and imaginary parts, we can get four differential equations
of the real variables as follows:

τ0
∂ϕ

dt
= −h

ρ2
1ρ

2
2 + ρ2

1ρ2
3 + ρ2

2ρ2
3

ρ1ρ2ρ3
sin ϕ,

τ0
∂ρ1

dt
= μρ1 + hρ2ρ3 cos ϕ − g1ρ

3
1 − g2(ρ2

2ρ
2
3 )ρ1,

(38)

τ0
∂ρ2

dt
= μρ2 + hρ1ρ3 cos ϕ − g1ρ

3
2 − g2(ρ2

1ρ
2
3 )ρ2,

τ0
∂ρ3

dt
= μρ3 + hρ1ρ2 cos ϕ − g1ρ

3
3 − g2(ρ2

1ρ
2
2 )ρ3,

where ϕ = ϕ1 + ϕ2 + ϕ3.
The dynamical system (38) possesses five kinds of solutions

[65].
(1) The stationary state (O), given by

ρ1 = ρ2 = ρ3 = 0, (39)

is stable for μ < μ2 = 0 and unstable for μ > μ2.
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FIG. 3. (Color online) Bifurcation diagram of model (4). We set
the parameter values as α = 0.095,δ = 0.6,γ = 0.9,d1 = 0.01,d2 =
1. H0: hexagon patterns with ϕ = 0; Hπ : hexagon patterns with ϕ =
π ; S: stripe patterns. Solid curve: stable state; dashed line: unstable
state. μ1 = −0.005027870678, μ2 = 0, μ3 = 0.1786762799, μ4 =
0.6618985686.

(2) Stripe patterns(S), given by

ρ1 =
√

μ

g1

= 0, ρ2 = ρ3 = 0, (40)

are stable for μ > μ3 = h2g1

(g2−g1)2 and unstable for μ < μ3.
(3) Hexagon patterns (H0,Hπ ) are given by

ρ1 = ρ2 = ρ3 = |h| ±
√

h2 + 4(g1 + 2g2μ)

2(g1 + 2g2)
, (41)

with ϕ = 0 or π , and exist when

μ > μ1 = −h2

4(g1 + 2g2)
. (42)

The solution ρ+ = |h|+
√

h2+4(g1+2g2μ)
2(g1+2g2) is stable only for

μ < μ4 = 2g1 + g2

(g2 − g1)2
h2, (43)

and ρ− = |h|−
√

h2+4(g1+2g2μ)
2(g1+2g2) is always unstable.

(4) The mixed states are given by

ρ1 = |h|
g2 − g1

, ρ2 = ρ3 =
√

μ − g1ρ
2
1

g1 + g2
, (44)

with g2 > g1. They exist when μ > μ3 and are always
unstable.

The analysis results from the above can be seen in Fig. 3.
When the control parameter μ increases to the critical point
μ2 = 0, the stationary state of the system begins to lose
stability. The system first form hexagon patterns through the
nonequilibrium phase transition. If the coefficient h of the
second term in Eq. (37) is greater than zero, the hexagon
patterns are H0 (i.e., ϕ = 0). On the other hand, the hexagon
patterns are Hπ (i.e., ϕ = π ). In the former case, ϕ = π is
always unstable. In the latter case, ϕ = 0 is always unstable.
The emergence of hexagon patterns is caused by subcritical
bifurcation. In other words, the system exists a bistable region
in the range of the control parameter (i.e., μ1 < μ < μ2).
The hexagon patterns and the stationary state are all stable
in this region. The emergence of stripe patterns derives from
supercritical bifurcation. But they are unstable for μ < μ3, and

they are stable only for μ > μ3. Because the hexagon patterns
lose stability only for μ > μ4, the system exists in another
bistable state (i.e., the bistable state between the hexagon
patterns and the stripe patterns) when the control parameter lies
in the range μ3 < μ < μ4. The system transfers to the stripe
patterns from the hexagon patterns when the control parameter
μ exceeds μ4. In another case, the system transfers to the
hexagon patterns from the stripe patterns when μ decreases to
the level less than μ3.

3. Pattern formation of model (4)

In this section we perform extensive numerical simulations
of the spatially extended model (4) in two-dimensional spaces,
and the qualitative results are shown here. All our numerical
simulations employ the Neumann boundary conditions with a
system size of 200 × 200. The space step is dr = 1.25, and
the time step is dt = 0.05.

We keep α = 0.095, δ = 0.6, γ = 0.9, d1 = 0.01,

d2 = 1. Then we can find that g1 = 97025.80711,g2 =
165376.3004, h = −92.75375240, μ1 = −0.005027870678,

μ2 = 0, μ3 = 0.1786762799, and μ4 = 0.6618985686. Ob-
viously the parameter values of g1,g2, and h have the
following relations: g2 > g1 > 0 and g2 > g1 � |h|. Other-
wise it is necessary to include some other terms up to the
fourth order or higher. At the same time, we know that
when μ = μ2,μ3, and μ4, the corresponding values of β

are β = 0.1017547291,0.08357357133, and 0.03440341948,
respectively.

Initially the system is placed in the stationary state (u∗,v∗).
We run the numerical simulations until they reach a stationary
state or until they show a behavior that does not seem to change
its characteristics any longer. In the numerical simulations,
different types of dynamics are observed, and we have found
that the distributions of u and v are always of the same type.
Consequently we can restrict our analysis of pattern formation
to one distribution. In this paper we just show the distribution
of v. Next, we will show the Turing patterns for the parameters
(α,β) located in the Turing space.

The parameter values of Figs. 4–6 are in the domain of
Turing space. All of the figures show the evolution of the
spatial patterns of the 0, 10 000, 100 000, 200 000, 300 000,
and 400 000 iterations, with random small perturbation of
the stationary solution (u∗, v∗) of the spatially homogeneous
system.

From Fig. 4 we can see that the Hπ hexagon patterns prevail
over the whole domain finally, and the dynamics of the system
does not undergo any further changes. The parameter values
set in Fig. 4 satisfy μ2 < μ = 0.03689979760 < μ3. As h =
−92.75375240 < 0, we can obtain that it just emerges Hπ

hexagon patterns under this circumstance according to the
analysis above. That is to say, the numerical simulation is
compatible with the theoretical analysis. At the same time,
we should pay attention to the situation that μ is very close
to μ2; i.e., β is very close to the Turing bifurcation line in
the Turing space. Under this circumstance, the stationary state
begins to lose stability and the Hπ hexagon patterns come into
being very slowly. This is the universal phenomenon of critical
slowing down.

021924-7



XIAO-CHONG ZHANG, GUI-QUAN SUN, AND ZHEN JIN PHYSICAL REVIEW E 85, 021924 (2012)

FIG. 4. (Color online) Snapshots of contour pictures of the time evolution of v at different instants with α = 0.095,δ = 0.6,γ = 0.9,d1 =
0.01,d2 = 1,β = 0.098 and the parameter values in the Turing space. (a) 0 iteration; (b) 10 000 iterations; (c) 100 000 iterations; (d) 200 000
iterations; (e) 300 000 iterations; (f) 400 000 iterations.

Figure 5 shows that stationary stripe patterns and H0

hexagon patterns emerge mixed in the distribution of the
predator quantity. The parameter values set in Fig. 5 satisfy
μ3 < μ = 0.2629335186 < μ4. The numerical simulation is
corresponding to the theoretical analysis. The system is
bistable, and these two kinds of patterns can exist at the same
time. This phenomenon is called the pinning effect [66]. When
μ increases to the second critical point μ3, the hexagon patterns
begin to lose stability, and the system transfer to the stripe
patterns from the hexagon patterns gradually.

Figure 6 shows that there are only H0 hexagon patterns in
the distribution of the predator quantity. The parameter values
set in Fig. 6 satisfy μ = 0.7543111731 > μ4. The numerical
simulation cannot correspond to the theoretical analysis. This
phenomenon cannot be explained by the amplitude equations.
This is the reentry of the hexagon patterns and can be explained
as follows: When the system gets away from the Turing critical
bifurcation line, some of the primary slave modes turn into
active modes. We cannot adiabatically eliminate them when
deducing the amplitude equations. On the contrary, we should
add them into the amplitude equations. When the uniform-state
mode with 0(|k| = 0) turns into the active mode, another third-
order term, A0Ā2Ā3, is added into the amplitude equation of
A1. This term satisfies the resonance relation k1 = −k2 − k3 +
0 (the angles of k1,k2 and k3 are all 2π/3). At the same time,
A0Ā1Ā3 and A0Ā1Ā2 are added into the amplitude equations
of A2 and A3. These new terms result in the stability of the
hexagon patterns again [65].

To gain more insight into the patterns, we perform the power
spectra of the simulation patterns using the two-dimensional

Fourier transform. In Fig. 7 we show our three simulation
patterns with their two-dimensional power spectra for β =
0.098,0.075, and 0.025, respectively. For β = 0.098 and
0.075, the figures have similar spatial frequency in the length
of the space unit, and they present one mode with different
wave numbers. For β = 0.025, we find that the figure has two
modes with different wave numbers.

IV. PATTERN FORMATION OF MODEL (5)

In this section we rely on numerical integration of model
(5). We consider spatiotemporal evolution of this system with
colored noise evolving in the time when the system lies within
the regime of Turing space. We are interested in how noise
affects the dynamics for fixed deterministic parameters and
the extent to which noise is capable of changing the patterns
exhibited by the deterministic system. Taking multiplicative
colored noise into account, we consider the noise-induced
patterns corresponding to the three typical types of patterns
in the deterministic system.

Figure 8 shows the spatial patterns, which are correspond-
ing to the Hπ hexagon patterns, for different values of the
noise intensity q and fixed temporal correlation τc. When
there is no noise, the Hπ hexagon patterns emerge. For the
small value of noise intensity q = 10−11, the Hπ hexagon
patterns are only slightly perturbed by the noise as depicted in
Fig. 8(b), but the number of the patterns decreases. Increasing
the noise intensity to q = 10−9, the system transfers from the
Hπ hexagon patterns to the regular stripe patterns through the
pattern transition. When the noise intensity is increased to
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FIG. 5. (Color online) Snapshots of contour pictures of the time evolution of v at different instants with α = 0.095,δ = 0.6,γ = 0.9,d1 =
0.01,d2 = 1,β = 0.075 and the parameter values in the Turing space. (a) 0 iteration; (b) 10 000 iterations; (c) 100 000 iterations; (d) 200 000
iterations; (e) 300 000 iterations; (f) 400 000 iterations.

FIG. 6. (Color online) Snapshots of contour pictures of the time evolution of v at different instants with α = 0.095,δ = 0.6,γ = 0.9,d1 =
0.01,d2 = 1,β = 0.025 and the parameter values in the Turing space. (a) 0 iteration; (b) 10 000 iterations; (c) 100 000 iterations; (d) 200 000
iterations; (e) 300 000 iterations; (f) 400 000 iterations.
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FIG. 7. (Color online) Stable Turing patterns that come from the numerical simulations of model (4) and their corresponding power
spectrum. Left-hand row: β = 0.098; middle row: β = 0.075; right-hand row: β = 0.025.

q = 10−7, there are only Hπ hexagon patterns, but the Hπ

hexagon patterns are more regular. With regard to the pattern
transition, we can give an intuitive explanation as follows.
Noise can make the Hπ hexagon patterns become bigger and
bigger. As the increase of the noise intensity, the Hπ hexagon
patterns break up into stripe patterns gradually, and these stripe
patterns join into regular stripe patterns eventually. When
the noise intensity is increased to a certain extent, the stripe
patterns break up into shorter stripe patterns, and these stripe
patterns join into regular Hπ hexagon patterns eventually.

Figure 9 shows the spatial patterns, which are correspond-
ing to the coexistence of H0 hexagon patterns and stripe
patterns, for different values of the noise intensity q and fixed
temporal correlation τc. When there is no noise, we notice the
coexistence of H0 hexagon patterns and stripe patterns. For
the small value of noise intensity q = 10−11, the Hπ hexagon
patterns remain nearly the same as depicted in Fig. 9(b), but the
number of patterns decreases. Increasing the noise intensity to

q = 10−9, the stripe patterns dominate the domain eventually.
When the noise intensity is increased to q = 10−7, the system
transfers from the coexistence of H0 hexagon patterns and
stripe patterns to the regular stripe patterns through the pattern
transition. As described in Fig. 8, with the increase of the
noise intensity, noise can make the H0 hexagon patterns and
stripe patterns become bigger and bigger, and the H0 hexagon
patterns and stripe patterns join into regular stripe patterns
eventually. However, the stripe patterns do not break up into
Hπ hexagon patterns again.

Figure 10 shows the spatial patterns, which are correspond-
ing to the H0 hexagon patterns, for different values of the
noise intensity q and fixed temporal correlation τc. When
there is no noise, we discover the H0 hexagon patterns. For
different values of noise intensity q = 10−11, q = 10−9, and
q = 10−7, the H0 hexagon patterns do not transfer to other
types of patterns, but the number of the patterns decreases
in each case, and the H0 hexagon patterns become more and

FIG. 8. (Color online) Snapshots of contour pictures of v as the value of noise intensity q being increased. Parameter values used:
α = 0.095,δ = 0.6,γ = 0.9,d1 = 0.01,d2 = 1,β = 0.098,τc = 1. (a) q = 0; (b) q = 10−11; (c) q = 10−9; (d) q = 10−7.
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FIG. 9. (Color online) Snapshots of contour pictures of v as the value of noise intensity q being increased. Parameter values used:
α = 0.095,δ = 0.6,γ = 0.9,d1 = 0.01,d2 = 1,β = 0.075,τc = 1. (a) q = 0; (b) q = 10−11; (c) q = 10−9; (d) q = 10−7.

more regular with the increase of the noise intensity. We can
see that noise has less effect on the H0 hexagon patterns. In
other words, the H0 hexagon patterns are more stable than the
other two types of patterns. Similarly, noise can make the H0

hexagon patterns bigger. But different from the Hπ hexagon
patterns, there is no pattern transition in this case. The H0

hexagon patterns just become more regular eventually.

V. DISCUSSION AND CONCLUSIONS

This study presents the Turing pattern selection and
noise-induced patterns in the Beddington-DeAngelis predator-
prey model. For the model without noise, we find that the
predator-prey model with a Beddington-DeAngelis functional
response has rich dynamical behaviors. More specifically, in
the range μ2 < μ < μ3, Hπ hexagon patterns emerge; in
the range μ3 < μ < μ4, there coexist H0 hexagon patterns
and stripe patterns; and in the range μ > μ4, there appear
H0 hexagon patterns. In this study we find an interesting
phenomenon that by increasing the systems’s prey carrying
capacity, i.e., decreasing the value of β, the density of the
predators decreases gradually. This is called a “paradox of
enrichment,” which has been studied by some researchers
[67,68]. However, in some previous work it is called the
hypothesis of “the paradox of enrichment” [69–73]. For this
reason, we consider the ecosystem as an open system to better
describe the real ecosystem. Taking the environmental noise
into account, we find that noise can decrease the number
of the patterns and make the patterns more regular. What is
more, noise can induce the typical pattern transitions from the
Hπ hexagon patterns to the regular stripe patterns and from
the coexistence of H0 hexagon patterns and stripe patterns
to the regular stripe patterns. Another interesting result is
that the H0 hexagon patterns are more stable than the Hπ

hexagon patterns and the coexistence of H0 hexagon patterns
and stripe patterns. We also find that noise can change the
density of the predators. In a word, noise can affect the pattern
structures.

Neuhauser and Pacala [74] formulated the Lotka-Volterra
model as a spatial model. They found the striking result that the
coexistence of patterns is actually harder to obtain in the spatial
model than in the nonspatial one. In this paper we obtain the
coexistence of stationary stripe patterns and hexagon patterns.
From the analysis and the numerical simulations in Sec. III, we
find this study valuable in two aspects. First, it establishes the
amplitude equations for the active modes, which determine the
stability of the amplitudes toward uniform and inhomogeneous
perturbations. Second, it illustrates different Turing patterns
close to the onset of the Turing bifurcation line through
numerical simulations, which indicate that the dynamics of the
model exhibit complex pattern replication. At the same time,
we find that when the system is not so close to the critical
points μ2 and μ3, the numerical results cannot correspond
perfectly to our theoretical analysis, which can be seen in
Fig. 11. That is to say, our theoretical analysis is appropriate
just for the adjacent domains of the critical points μ2 and
μ3. When the system gets away from the critical points, the
theoretical analysis is not so accurate. Through the patterns in
this paper, we can find that the transition from Hπ hexagon
patterns to the coexistence of stripe patterns and H0 hexagon
patterns is a gradual progress. In the range μ2 < μ < μ3, as
μ moves away from μ2; i.e., with the decrease of β, the Hπ

hexagon patterns break up into stripe patterns gradually, and
these stripe patterns join into longer stripe patterns. When μ

is very close to μ3, there are nearly stripe patterns left. When
μ exceeds μ3, the stripe patterns break up into H0 hexagon
patterns gradually. Finally, there are only H0 hexagon patterns
left.

FIG. 10. (Color online) Snapshots of contour pictures of v as the value of noise intensity q being increased. Parameter values used:
α = 0.095,δ = 0.6,γ = 0.9,d1 = 0.01,d2 = 1,β = 0.025,τc = 1. (a) q = 0; (b) q = 10−11; (c) q = 10−9; (d) q = 10−7.
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FIG. 11. (Color online) Snapshots of contour pictures of v and the parameter values in the Turing space. (a) β = 0.095, μ =
0.06638245874 ∈ (μ2,μ3); (b) β = 0.09, μ = 0.1155202241 ∈ (μ2,μ3); (c) β = 0.085, μ = 0.06638245874 ∈ (μ2,μ3); (d) β = 0.083,
μ = 0.1155202241 ∈ (μ3,μ4); (e) β = 0.045, μ = 0.5577601126 ∈ (μ3,μ4); (f) β = 0.035, μ = 0.6560356433 ∈ (μ3,μ4).
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APPENDIX A

Model (3) has a unique equilibrium (u∗,v∗) with
u∗ > 0,v∗ > 0 if 0 < β <

γ−δ

δ
. Moreover, (u∗,v∗) satisfies

|J(u∗,v∗)| > 0.
Proof. From the above, we know that α,β,γ , and δ are all

positive constants. Obviously u∗ is larger than zero. Since v∗ =
( γ

δ
− 1)u∗ − β, γ > δ is the necessary condition for v∗ > 0.

Letting v∗ > 0, we obtain β <
γ−δ

δ
. So 0 < β <

γ−δ

δ
ensures

v∗ > 0.
By f (u∗,v∗) = g(u∗,v∗) = 0, we have

α(1 − u∗)(β + u∗ + v∗) = v∗, γ u∗ = δ(β + u∗ + v∗).

Equations (10) can be converted into the following form:

a11 = −αγ

δ
(u∗)2 + αu∗(1 − u∗),

a12 = αu∗(1 − u∗) − u∗,
a21 = γ v∗ − δv∗,
a22 = −δv∗.

Then we can have

|J(u∗,v∗)| = a11a22 − a12a21

= αγ (u∗)2v∗−αδu∗v∗(1 − u∗)−αγu∗v∗(1 − u∗)

+αδu∗v∗(1 − u∗) + γ u∗v∗ − δu∗v∗

= u∗v∗[αγ (2u∗ − 1) + γ − δ]

= u∗v∗√(αγ − γ + δ)2 + 4αγ δβ > 0.

APPENDIX B: THE PARAMETERS THAT ARE NOT
EXPLAINED IN THE ABOVE

Substituting βT for β in a11, a12, a21, a22, we obtain a∗
11, a∗

12,
a∗

21, a∗
22. The expression of some parameters are as follows:

c =
√

(αγ − γ + δ)2 + 4αγ δβT , d = 1 −
(

γ

δ
+ 2

)
αγ − γ + δ + c

2αγ
, e = α − 1 − αγ − γ + δ + c

γ
,

l = a∗
11d2 − a∗

22d1

2a∗
21d1

, b11 = −δ

c

(
γ − α ∗ γ

δ
− δ

γ

)
+ 1 + δ

γ
, b12 = δ2

γ c
+ δ

γ
, b21 = − (γ − δ)2

c
+ γ − δ,
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b22 = δ(γ − δ)

c
− δ, k∗

T
2 =

√
a∗

11a
∗
22 − a∗

12a
∗
21

d1d2
,

x0 = 1

a∗
11a

∗
22 − a∗

12a
∗
21

(
a∗

22

{
2αl2

[
1 −

(
γ

δ
+ 2

)
αγ − γ + δ + c

2αγ

]
+ 2l

(
α − 1 − αγ − γ + δ + c

γ

)}
− a∗

12[2l(γ − δ) − 2δ]

)
,

y0 = 1

a∗
11a

∗
22 − a∗

12a
∗
21

(
−a∗

21

{
2αl2

[
1 −

(
γ

δ
+ 2

)
αγ − γ + δ + c

2αγ

]
+2l

(
α − 1 − αγ − γ+δ + c

γ

)}
+ a∗

11

[
2l(γ − δ) − 2δ

])
,

x11 = 1(
a∗

11 − 4d1k
∗
T

2)(a∗
22 − 4d2k

∗
T

2) − a∗
12a

∗
21

({(
a∗

22 − 4d2k
∗
T

2
)(

αl2

[
1 −

(
γ

δ
+ 2

)
αγ − γ + δ + c

2αγ

]

+ l

(
α − 1 − αγ − γ + δ + c

γ

)}
− a∗

12[l(γ − δ) − δ]

)
,

y11 = 1(
a∗

11 − 4d1k
∗
T

2)(a∗
22 − 4d2k

∗
T

2) − a∗
12a

∗
21

(
−a∗

21

{
αl2

[
1 −

(
γ

δ
+ 2

)
αγ − γ + δ + c

2αγ

]
+ l

(
α − 1 − αγ − γ + δ + c

γ

)}

+ (
a∗

11 − 4d1k
∗
T

2)[l(γ − δ) − δ]

)
,

x∗ = 1(
a∗

11 − 3d1k
∗
T

2)(a∗
22 − 3d2k

∗
T

2) − a∗
12a

∗
21

((
a∗

22 − 3d2k
∗
T

2){2αl2

[
1 −

(
γ

δ
+ 2

)
αγ − γ + δ + c

2αγ

]

+ 2l

(
α − 1 − αγ − γ + δ + c

γ

)}
− a∗

12[2l(γ − δ) − 2δ]

)
,

y∗ = 1(
a∗

11 − 3d1k
∗
T

2)(a∗
22 − 3d2k

∗
T

2) − a∗
12a

∗
21

(
−a∗

21

{
2αl2

[
1 −

(
γ

δ
+ 2

)
αγ − γ + δ + c

2αγ

]

+ 2l

(
α − 1 − αγ − γ + δ + c

γ

)}
+ (

a∗
11 − 3d1k

∗
T

2)[2l(γ − δ) − 2δ]

)
,

G1 = d1

d2
l{(γ − δ)[l(y11 + y0) + x11 + x0] − 2δ(y11 + y0)} − [2αdl(x11 + x0) + el(y11 + y0) + e(x11 + x0) − 3αl2 − 3αl3],

G2 = d1

d2
l{(γ − δ)[l(y∗ + y0) + x∗ + x0] − 2δ(y∗ + y0)} − [2αdl(x∗ + x0) + el(y∗ + y0) + e(x∗ + x0) − 6αl2 − 6αl3],

τ0 = (d2 − d1)l

βT d2
[
lb11 + b12 − d1

d2
l(lb21 + b22)

] , h =
{
2αdl + 2e − d1

d2
[2l(γ − δ) − 2δ]

}
l

βT

[
lb11 + b12 − d1

d2
l(lb21 + b22)

] ,

g1 = G1

βT

[
lb11 + b12 − d1

d2
l(lb21 + b22)

] , g2 = G2

βT

[
lb11 + b12 − d1

d2
l(lb21 + b22)

] .
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