
PHYSICAL REVIEW E 85, 021921 (2012)

Classifying general nonlinear force laws in cell-based models via the continuum limit
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Although discrete cell-based frameworks are now commonly used to simulate a whole range of biological
phenomena, it is typically not obvious how the numerous different types of model are related to one another,
nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on
the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the
continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients
is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case
excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models.
Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can
be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from
previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations.
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I. INTRODUCTION

The modeling of multicellular systems has applications
across a range of life science disciplines, from biofilm forma-
tion to tumor growth and, naturally, a whole host of different
mathematical modeling techniques have been employed in dif-
ferent contexts. However, as the use of mathematical models in
the life sciences becomes more common, so the need to clearly
distinguish between and relate particular modeling frame-
works becomes increasingly important. In many cases, the only
tool available to perform such comparisons is brute force nu-
merical computation but as parameters are often not compara-
ble across different models, it can be difficult to gain qualitative
insight and make generalizations based solely upon simulation
results.

One approach to modeling cell populations, which provides
a natural platform in which cell-level properties, such as
elasticity, adhesion, motility, and cell proliferation, can be
related to experimental measurements, is to treat the cells,
or parts thereof, as discrete entities. The discrete models
can easily account for important biological phenomena, such
as heterogeneity between cells within a population or the
effect of noise at various scales. Discrete cell-level models
can themselves, broadly speaking, be separated into two
categories: on- and off-lattice. In traditional cellular automata
(CA) each biological cell is represented by a single grid point
and automaton rules are chosen that simulate a particular
biological phenomenon [1]. The use of CA is widespread in
biological modeling (e.g., [2–7]) with the main advantages
being ease of implementation and computational efficiency
at large numbers of cells. However, it can be difficult to
relate automaton rules to biomechanics, primarily as a result
of the restriction of cell locations to discrete lattice points.
Moreover, the lattice can induce artifacts into simulation
results.

Another class of on-lattice discrete models is the cellular
Potts model, in which a cell is represented by a number of
lattice points. Using the Metropolis algorithm, a given cell
population is assumed to minimize a global energy function
which is defined such that individual cells exhibit particular
phenomena, such as volume conservation or chemotactic
movement [8]. The higher resolution of cells in the cellular
Potts model compared to traditional cellular automata allows
certain biologically relevant quantities, such as a cell’s bound-
ary area, to be simulated and, relative to CA, lattice artifacts
are greatly reduced. However, in comparison with CA, the
additional resolution of a given cell on the CA lattice increases
the computational load associated with the simulations.

In contrast to cellular automata, cells in off-lattice models
can occupy positions in continuous space (e.g., [9–13]). Cell
positions are updated by balancing physically motivated forces
and solving Newton’s second law in the overdamped limit.
Neglecting cell-cell friction, the equation of motion for the ith
cell in a population is given by an equation of the form

ηṙi =
∑

j

Fij , i = 1, . . . ,N, (1)

where ri represents the cell position, η is the cell damping
constant, Fij is the force exerted on the ith cell by the j th cell,
the sum is taken over nearest neighbors, and N is the number
of cells in the system [12,14,15]. The damping term is assumed
to originate from cell-matrix or internal cell friction. Among
the advantages of the off-lattice models is that experimentally
testable aspects of cell-cell mechanics can be incorporated in
the force laws.

The force law in Eq. (1) is chosen to capture specific
interactions between pairs of cells and typically accounts for
elastic repulsion, as cells approach one another, and attractive
adhesion, owing to surface adhesion molecules. One of the
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simplest representations of the elastic and adhesive forces is
to model them using a linear force law [12,16]. However,
a limitation of this approach is that the rate at which the
repulsive force between a pair of neighboring cells increases
as they approach one another is not sufficiently large. Hence,
variations have been considered in which the force between
a pair of cells is linear at large separations but exponentially
increases for low separations [17]. Even with this modification,
the linear force regime can be criticized as there is not a
natural interpretation of the spring constant for a complex
object such as a cell. Hence, the Hertz model of elastic
contact between nonadhering spheres and variations thereof
are often used to model elastic cell interactions [11,14]. Here
the model parameters are physically measurable quantities,
such as the modulus of elasticity and Poisson’s ratio. As well
as mechanically motivated models of cell-cell interactions,
phenomenological models that exhibit the properties of large
short-range repulsion and weak long-range attraction, such as
the Lennard-Jones force law, have been used to simulate cell-
cell interactions (e.g., [18,19]) in the off-lattice framework.
However, such models have their origins in the approximation
of molecular interactions and, as such, it is not obvious how
they can be parametrized in biological systems.

A problem with discrete descriptions of cell behavior is
that they can become computationally inefficient at the large
numbers of cells required to represent many biological systems
of interest. Moreover, metrics for relating population-scale
measurements to cellular-scale model details are limited.
By deriving continuum models these problems can, to a
certain extent, be overcome: the resulting partial differential
equations (PDEs) can be solved to simulate large numbers of
cells and traditional applied mathematics techniques, such as
perturbation and bifurcation theory, can be used to analyze
the continuum models, at least in relevant limits. Thus, in
particular limiting cases, continuum approximations can be
used to develop insight into the behavior of the underlying
simulations and the biological problem.

The coarse-graining of discrete models to derive contin-
uum equations that yield further insight into discrete model
behavior is becoming an increasingly utilized technique in
biological modeling [16,20–27]. The details of the particular
coarse-graining technique used depend strongly on the type
of discrete model under consideration, but an emerging theme
is that nonlinear diffusion equations can provide a means of
analyzing and categorizing discrete simulations: for example,
Alber and co-workers [21,22] have derived limiting nonlinear
PDEs which describe cell chemotaxis and adhesion in the
cellular Potts model; Simpson and co-workers [26,27] have
derived nonlinear diffusion equations that describe stochastic
cellular automaton models at the population scale; Bodnar and
Velazquez [25] have shown that a porous medium equation
can describe the behavior of a system of particles interacting
via a repulsive potential; and Murray et al. [16], considering
the special case of an off-lattice linear spring-based model
in one spatial dimension, have shown that the discrete
equations of motion transform into a nonlinear diffusion
equation.

In this paper we generalize the linear-spring model derived
by Murray et al. [16] to the case of a general nonlinear force
law. Our key result is that if cells interact via an equation of

motion of the form given by Eq. (1) then the cell density at the
continuum scale obeys the nonlinear diffusion equation

∂q

∂τ
= ∂

∂r

(
D(q)

∂q

∂r

)
, (2)

where q is the cell number density, with the corresponding
nonlinear diffusion coefficient given by

D(q)=−|ri − rj |2
η

F ′(|ri − rj |)
∣∣∣∣
|ri−rj |=1/q

=− 1

ηq2
F ′

(
1

q

)
,

(3)

where the prime denotes differentiation with respect to
|ri − rj |.

The layout of our paper is as follows: In Sec. II we
demonstrate how a generalized force law gives rise to a
nonlinear diffusion coefficient in the continuum limit and
derive such coefficients for a range of well-known force
laws; in Sec. III we compare simulations of the continuum
and discrete models; in Sec. IV we consider applications of
the derived force law–diffusion coefficient relationship and
examine the implications of a negative diffusion coefficient
that arises from the Lennard-Jones model; and in Sec. V we
conclude with a discussion and summary of our main results.

II. MODEL DEVELOPMENT

In this study we consider a population of homogeneous cells
in one spatial dimension (see Fig. 1) in which the interaction
between nearest neighbors is a function of the distance between
their centers. In one spatial dimension a cell has two neighbors
and the equation of motion of the ith cell [Eq. (1)] can be
written in the form

ηṙi = F (ri − ri−1) − F (ri+1 − ri), i = 1, . . . ,N. (4)

In order to obtain a continuum description of the cell dynamics
described by Eq. (4), we introduce the variable �i, where
Eq. (4) can be thought of as the special case where �i = 1,
and seek to obtain a governing equation of the form

η̂ṙi = F̂ (ri − ri−�i) − F̂ (ri+�i − ri), i = 1, . . . ,N, (5)

which describes the interaction of a volume element containing
�i cells and centered at ri with neighboring elements centered
at ri−�i and ri+�i . Here, the careted variables η̂ and F̂ represent
the damping constant of the volume element and the force
between it and a neighboring element, respectively.

In order to progress we introduce the following physically
motivated scaling relationships for η̂ and F̂ : the damping
force on a volume element scales linearly with the number
of cells in that volume such that η̂ = η�i (i.e., the damping

......
r 2r 1
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a
r Nr N-2 r N-1

N-1 NN-21 2

FIG. 1. A schematic illustration of a one-dimensional cell-based
model. A one-dimensional chain of cells with cell positions ri(t) and
cell labeling indices i is depicted. In this schematic, the springs are in
equilibrium and the distance between cells is the equilibrium length
a. Note that cell labeling indices increase with distance from r1(t).
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constants of individual cells combine additively); and the
force between two volume elements scales inversely with �i

such that F̂ (x�i) = F (x)/�i (this is a generalization of the
calculation of the effective spring constant keff of two linear
springs connected in series with spring constants k1 and k2

such that 1/keff = 1/k1 + 1/k2). Assuming that the spatial
coordinates of the cell positions along the axis are a continuous
function of i, i.e.,

ri(t) = r(i,t), (6)

the positions of nearest neighbors can be approximated using
the Taylor expansions

ri+�i = ri + ∂r

∂i
�i + 1

2

∂2r

∂i2
�i2 + O(�i3),

(7)

ri−�i = ri − ∂r

∂i
�i + 1

2

∂2r

∂i2
�i2 + O(�i3),

where the differentiability of r is assumed. Substituting Eq. (7)
into Eq. (5) and Taylor expanding F̂ about ∂r/∂i�i, we obtain
that

η̂
∂r

∂t
= F̂

(
∂r

∂i
�i

)
+ F̂ ′

(
∂r

∂i
�i

) (
−1

2

∂2r

∂i2
�i2 + O(�i3)

)

+O(�i4) − F̂

(
∂r

∂i
�i

)

− F̂ ′
(

∂r

∂i
�i

) (
1

2

∂2r

∂i2
�i2 + O(�i3)

)
+ O(�i4).

(8)

Using the postulated scaling relationships for η̂ and F̂ , we
obtain, upon cancellation and rearrangement, that

η
∂r

∂t
= −F ′

(
∂r

∂i

)
∂2r

∂i2
+ O(�i2), i = 1, . . . ,N. (9)

Note that when F is a linear function Eq. (9) takes a form
similar to the Rouse model [16,28]. Furthermore, the error
term is O(�i2) owing to cancellation of the odd O(�i) terms
and the assumed scalings of η and F .

In order to reformulate Eq. (9) such that cell number
density is the dependent variable, we make a coordinate
transformation from the old independent variables i and t to
the new independent variables r (the dependent variable in

the old coordinate system) and τ (time). The Jacobian of the
coordinate transformation is(

∂r
∂i |t

∂r
∂t |i

∂τ
∂i |t

∂τ
∂t |i

)
=

(
∂i
∂r |τ

∂i
∂τ |r

∂t
∂r |τ

∂t
∂τ |r

)−1

= 1
∂i
∂r |τ

∂t
∂τ |r − ∂i

∂τ |r
∂t
∂r |τ

(
∂t
∂τ |r − ∂i

∂τ |r
− ∂t

∂r |τ
∂i
∂r |τ

)
,

(10)

and upon letting t = τ we can read off the relationships

∂r

∂i |t
= 1

∂i
∂r |τ

(11)

and

∂r

∂t |i
= −

∂i
∂τ |r
∂i
∂r |τ

. (12)

Substituting Eqs. (11) and (12) into Eq. (9) and rearranging
yields

∂i

∂τ
=

−F ′
(

1
∂i
∂r

)
η
(

∂i
∂r

)2

∂2i

∂r2
, (13)

and after differentiating with respect to r and defining the cell
number density q(r,τ ) = ∂i

∂r
, we obtain that

∂q

∂τ
= ∂

∂r

(
D(q)

∂q

∂r

)
, (14)

with

D(q) = −
F ′

(
1
q

)
ηq2

. (15)

Thus the collective motion of cells in the one-dimensional
chain can be described via a nonlinear diffusion equation in
which the nonlinear diffusion coefficient scales linearly with
the gradient of the force. We note that the validity of the con-
tinuum approximation depends on the accuracy of the Taylor
expansions performed in Eqs. (7) and (8) with the underlying
assumption being that there exists some intermediate scale
1 � �i � N where the higher-order derivatives in r can be
neglected.

TABLE I. Force laws and corresponding nonlinear diffusion coefficients. In the Hertz model the parameter k = 4E

3
√

a(1−ν2)
, where E represents

the modulus of elasticity and ν the Poisson ratio. See Table II for parameter descriptions and scalings.

Model Force law (Fij ) Diffusion coefficient [D(q)] Reference

General F
ij

L = F (|ri − rj |) D(q) = − F ′( 1
q )

ηq2

Linear F
ij

L = kL(a − |ri − rj |) DL(q) = kL

ηq2 [16,29,30]

Cubic F
ij

C = kC(a − |ri − rj |)3 DC(q) = 3kC

ηq2 (a − 1
q

)2

Linear-exponential F
ij

LE =
{

k(a − |ri − rj |), |ri − rj | > d

k(a − d) exp[k1(d − |ri − rj |)], |ri − rj | < d
DLE(q) =

{ k

ηq2 , q < 1
d

kk1(a−d)

ηq2 exp
[
k1

(
d − 1

q

)]
, q > 1

d

[17]

Hertz F
ij

H =
{

kH (a − |ri − rj |)3/2, |ri − rj | < a

0, |ri − rj | > a
DH (q) =

{
3kH
2η

(a−1/q)
1
2

q2 , q > 1
a

0, q � 1
a

[11,14]

Lennard-Jones F
ij

LJ = kLJ

(
b σm

|ri−rj |m+1 − σn

|ri−rj |n+1

)
DLJ (q) = kLJ σnqn

η
[b(m + 1)σm−nqm−n − (n + 1)] [18,19]
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FIG. 2. (Color online) Comparison of force laws and corresponding diffusion coefficients. (a) The force between neighboring cells F (r)
plotted against their separation distance r . (b) The corresponding nonlinear diffusion coefficients D(q) plotted against cell number density q.
See Tables I and II for corresponding parameter values and units.

In Table I and Fig. 2 we present a range of particular force
laws (linear, linear-exponential, Hertz, and Lennard-Jones)
that have been used to simulate cell-cell interactions (the cubic
force law has been included, as described below, in order
to demonstrate that deviation from linearity in the discrete
model yields markedly different behavior at the continuum
scale). The parameters a and k represent the equilibrium
separation distance between individual, neighboring cells and
a mechanical rate constant, respectively, and we define the
equilibrium separation and mechanical rate constant of a given
volume element to be â and k̂, respectively. We then assume
the scaling relationship â = a�i such that the equilibrium

separation between two volume elements scales proportionally
with the number of cells in a volume element. For the force
laws presented in Table I, the scaling assumption made with
regard to F , η, and a are sufficient to determine the scaling of
the k’s (see Table II).

III. MODEL ANALYSIS

Before proceeding to a numerical comparison of the
discrete force laws and their continuum counterparts, we make
the following general observations. From a comparison of the
diffusion coefficients corresponding to the linear and cubic

TABLE II. Parameter values used in the calculation of numerical solutions. Unit length is taken to be one cell diameter (c.d.) ∼ 10 μm,
unit mass is taken to be the mass of a single cell (c.m.), and unit time is 1 h. Parameter scalings with �i are indicated in parentheses.

Parameter Description Value Dimension

a (�i) Equilibrium length 1 c.d.
η (�i) Cell damping constant 1 h−1 c.m.
kL (1/�i) Linear spring constant 15 h−2 c.m.
kC (1/�i3) Cubic spring constant 15 h−2 c.d.−2 c.m.
d (�i) Linear-exponential cutoff 0.9 c.d.
k1 (1/�i) Rate of exponential force increase 6 c.d.−1

kH (1/�i3/2) Hertz spring constant 15 h−2 c.d.−1/2 c.m.
kLJ (1/�in+1) Lennard-Jones spring constant 1e−8 h−2 c.d.2 c.m.
σ (�i) Lennard-Jones separation constant ab1/(n−m) c.d.
m Lennard-Jones parameter 12 Nondimensional
n Lennard-Jones parameter 6 Nondimensional
b Lennard-Jones parameter 2 Nondimensional
L Domain length 100 c.d.
N Number of cells 150 Nondimensional
Nnod Number of nodes 100 Nondimensional
ρ Steepness of initial data 0.1 c.d.−1

rm Initial data parametrization L/4 c.d.
rM Initial data parametrization 3L/4 c.d.
β Initial data parametrization 1 c.d.−1

021921-4



CLASSIFYING GENERAL NONLINEAR FORCE LAWS IN . . . PHYSICAL REVIEW E 85, 021921 (2012)

0 40 80
2

3

4

r

q

(a)

0 40 80
2

3

4

r

q

(b)

0 40 80
2

3

4

r

q

(c)

0 40 80
2

3

4

r

q

(d)

0 40 80
2

3

4

r

q

(e)

0 40 80
2

3

4

r
q

(f)

FIG. 3. (Color online) A comparison of discrete (marker) and continuum models with the linear force law at t = {0,48,96,144,192,240}.
Cell number density q(r,t) is plotted against r . Boundary and initial conditions given by Eqs. (16) and (17), respectively. qmin = 2.
Unit definitions and other parameter values as in Table II. See Table I for force law and diffusion coefficient.

force laws (see Table I), we expect markedly different behavior
as the density tends to the equilibrium value 1/a. In the cubic
model, as q → 1/a, D → 0 and we expect to observe the
formation of sharp fronts in the density profiles. Moreover,
analysis of the derived diffusion coefficient for a given model
can be instructive. For example, the Hertz model captures
the elastic repulsion of neighboring cells. At low densities,
cells do not exert forces upon one another, hence the diffusion
coefficient is zero.

A further interesting feature of the general form of the
diffusion coefficients is that they are not necessarily positive.
In fact, for the Lennard-Jones model the diffusion coefficient
is positive for large q but negative for small q (see Table I).
Clearly, when the diffusion coefficient becomes negative the
continuum description of the model becomes invalid as the
continuum approximation made in Eq. (6) will not hold. We
will return to this observation in the following section. We
now compare numerical solutions of discrete and continuum
models for different initial densities.

In order to validate the relationship between force laws and
diffusion coefficients proposed in Eq. (15), we numerically
simulated both discrete and continuum models for each force
law listed in Table I using the parameter values listed in
Table II. Here the discrete model is a one-dimensional chain
of N cells each moving with the velocity given by Eq. (1). The
resulting set of ordinary differential equations (ODEs) was

solved using the Runge-Kutta fourth- and fifth-order method
solver ODE45 in MATLAB (The Mathworks Inc., Natwick,
MA, USA). For the equivalent continuum model, Eq. (14)
was solved for each of the corresponding nonlinear diffusion
coefficients stated in Table I on the interval r ∈ [0,L]. No-flux
boundary conditions

∂q

∂r

∣∣∣∣
r=0

= ∂q

∂r

∣∣∣∣
r=L

= 0 (16)

were applied at r = 0 and r = L, respectively, and (arbitrarily)
chosen initial conditions

q(r,0) = qmin + β{tanh[ρ(r − rm)] − tanh[ρ(r − rM )]},
(17)

where qmin, ρ, rm, rM , and β are parameters characterizing
the initial distribution, were imposed. In order to calculate a
numerical solution, the interval [0,L] was discretized using a
regular mesh with Nnod nodes, where the spatial derivatives in
Eq. (14) were approximated using finite differences, and we
employed the method of lines to solve the resultant equations.
The governing method-of-lines ODEs were solved in MATLAB

using the ODE15s solver.
As an example of the temporal dynamics of solution

behavior, in Fig. 3 we present simulation results from discrete
and continuum models in the case of a linear force law

021921-5



MURRAY, EDWARDS, TINDALL, AND MAINI PHYSICAL REVIEW E 85, 021921 (2012)

0 40 80
2

3

4

r

q

(a)

0 40 80
2

3

4

r

q
(b)

0 40 80
2

3

4

r

q

(c)

0 40 80
2

3

4

r

q

(d)

0 40 80
2

3

4

r

q

(e)

0 40 80
2

3

4

r

q
(f)

FIG. 4. (Color online) Simulations of discrete (markers) and continuum (solid lines) models with high initial densities (N = 600); all cells
are initially compressed (q > 1). Cell number density q(r,t) is plotted against r at t = 100. (a) Initial conditions; (b) linear force law, k = 30;
(c) cubic force law; (d) linear-exponential force law; (e) Hertz force law; (f) Lennard-Jones force law. Boundary and initial conditions given by
Eqs. (16) and (17), respectively. qmin = 2. Unit definitions and other parameter values as in Table II. See Table I for respective force laws and
diffusion coefficients.

as the initial data relax to an equilibrium configuration.
Similar agreement is observed for the other force laws (results
not shown). In order to highlight the significance of the
nonlinearities in the diffusion coefficients presented in Table I,
in Figs. 4–6 we compare discrete and continuum models when
the maximum initial densities are high (qmin = 2), intermediate
(qmin = 1), and low (qmin = 1/2), respectively. In each of the
figures cell densities are plotted against spatial coordinate r;
the initial data are plotted in the top left figure, and the other
figures are snapshots of the different models at (the arbitrarily
chosen time point) t = 240.

At high initial densities (see Fig. 4) the linear, cubic, and
Hertz models exhibit qualitatively similar relaxation profiles
while the linear-exponential model rapidly equilibrates as
the initial high densities move the diffusion coefficient to
the exponential regime. The Lennard-Jones model exhibits a
mushroom-shaped profile as the diffusion coefficient is much
larger in the center, where the density is high, than near the
boundary. Discrete and continuum models are in excellent
agreement.

At intermediate initial densities (see Fig. 5) we expect
to observe qualitatively different behavior for each of the
force laws. The linear model equilibrates at a faster rate than
in the high-density case (D ∝ 1/q2) but the cubic model
displays markedly different behavior (compare linear and

cubic profiles) as a result of the density at the boundary
tending to the equilibrium density and, hence, the diffusion
coefficient tending to zero. The Hertz model behaves qualita-
tively similarly compared with the high-density case while the
mushroom-shaped profile in the Lennard-Jones models is less
pronounced, owing to the smaller initial densities.

At low initial densities (see Fig. 6) the linear model relaxes
on a faster time scale than in the high- and intermediate-density
cases. However, with the cubic force law D → 0 as q → 1/a,
and the assumption [made in Eq. (7)] of the existence of
the derivative ∂2r/∂i2 breaks down. Correspondingly, the
derivative ∂q/∂r is not continuous as q → 1/a. In the
calculation of the numerical solution in this case, conservation
of cell number is enforced across an internal boundary defined
at the spatial position where q = 1/a. Behavior in the Hertz
model is qualitatively similarly to that of the cubic model at
low densities, as again D = 0 at interior points of the spatial
domain. The simulations have been performed over a range of
parameter space and similar results have been observed.

IV. APPLICATIONS

We now examine how the derived relationship between
force laws and their corresponding diffusion coefficients can
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FIG. 5. (Color online) Simulations of discrete (markers) and continuum (solid lines) models with intermediate initial densities (N = 400);
boundary cells are initially at equilibrium (q = 1) but interior cells are compressed (q > 1). Cell number density q(r,t) is plotted against r

at t = 100. (a) Initial conditions; (b) linear force law, k = 30; (c) cubic force law; (d) linear-exponential force law; (e) Hertz force law; (f)
Lennard-Jones force law, k = 1e−7. Boundary and initial conditions given by Eqs. (16) and (17), respectively. qmin = 1. Unit definitions and
other parameter values as in Table II. See Table I for respective force laws and diffusion coefficients.

be used in a number of different contexts to relate models
defined at different scales.

A. Relating cellular Potts and off-lattice models

Although Eq. (14) was derived by coarse-graining an
underlying discrete model in order to determine a corre-
sponding diffusion coefficient, this process can be inverted
such that, given a diffusion coefficient, we can determine
a corresponding force law at the cellular scale. In order to
demonstrate the applicability of such an approach, we consider
a coarse-grained description of the cellular Potts model in
which Lushnikov et al. [22] have demonstrated that a nonlinear
diffusion coefficient of the form

DA(q) = C
1 +

(
q

q0

)2

(
1 − q

q0

)2 , (18)

where q0 = 1/a, describes the evolution of cell densities in
the underlying discrete simulations. Equating their diffusion
coefficient Eq. (18) with the general form derived in Eq. (3)
and integrating, we identify that a corresponding force law in

the off-lattice framework is

F
ij

A (r) = ηC

[
2

a
ln

( |ri − rj |
|ri − rj | − a

)

− 3|ri − rj | − a

(|ri − rj | − a)(|ri − rj |)
]
, (19)

where the integration constant has been set to zero such that
the force between neighboring cells tends to zero as |ri − rj |
→ ∞. In Fig. 7(a) we plot the force law described by
Eq. (19) against the separation distance between cells while
the corresponding diffusion coefficient is plotted against cell
number density in Fig. 7(b). The agreement between numerical
solutions of the discrete and continuum models is similar to
the cases presented in Figs. 4–6 (results not shown).

The key benefit of the force law derived in Eq. (19) is
that, via the consideration of continuum limits, we have
coarse-grained from a higher spatial resolution of a cell in the
cellular Potts model (each cell is represented by multiple lattice
sites) to a lower resolution in the off-lattice, cell-based model
(each cell is represented by a single point) while still retaining
the correct cellular Potts behavior in the continuum limit. The
force law describes how individual cells interact with each
other and important features of individual cell behavior in the
cellular Potts framework can be extracted from it. For example,
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FIG. 6. (Color online) Simulations of discrete (markers) and continuum (solid lines) models with low initial densities (N = 300); boundary
cells are initially stretched beyond equilibrium (q < 1) while interior cells are compressed (q > 1). Cell number density q(r,t) is plotted against
r at t = 100. (a) Initial conditions; (b) linear force law, k = 30; (c) cubic force law; (d) linear-exponential force law; (e) Hertz force law;
(f) Lennard-Jones force law, k = 1e−6. Boundary and initial conditions given by Eqs. (16) and (17), respectively. qmin = 1/2. Unit definitions
and other parameter values as in Table II. See Table I for respective force laws and diffusion coefficients.
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FIG. 7. (Color online) The nonlinear force law and diffusion coefficients corresponding to the cellular Potts model. (a) The force F (r)
[Eq. (19)] is plotted against cell separation r . (b) The nonlinear diffusion coefficient D(q) [Eq. (18)] previously derived by Lushnikov et al. [22]
plotted against cell number density q. C = 1. Unit definitions and other parameter values as in Table II.
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FIG. 8. (Color online) Aggregation in the Lennard-Jones model. Simulations of discrete model (markers) with uniform initial
density (N = 80, L = 100). Cell number density q(r,t) is plotted against r with increasing t . k = 0.1. Boundary conditions given by
Eq. (16). Unit definitions and other parameter values as in Table II. See Table I for force law and diffusion coefficient.

as a result of volume exclusion cells cannot come within a
distance of a from each other. In fact, as their separation
distance approaches a, the repulsive force between them
tends to infinity, whereas when the cells are widely separated
they can move independently of one another and the diffusion
coefficient is then constant.

B. Relating nonlinear diffusion coefficients to force laws

Equation (3) can be used to relate diffusion coefficients
defined in a phenomenological manner at the population
scale to discrete force laws. For example, in order to model
population-scale random movement in ecology, Murray [31]
considered diffusion equations with nonlinear coefficients of
the form

D(q) = kqm, (20)

with m > 0. Using Eq. (3) we can determine a class of
individual-level models that can give rise to such population-
scale behaviors and find that the corresponding force law takes
the form

Fij = − k

(m + 1)|ri − rj |m+1
. (21)

Thus a constant diffusion coefficient arises from considering
cells which interact via an inverse force law (m = 0) while
a diffusion coefficient that varies linearly with density (often
described as a porous medium equation) arises from an inverse
square repulsion. The agreement between numerical solutions
of the discrete and continuum models is similar to the cases
presented in Figs. 4–6 (results not shown). We note that the
constant diffusion coefficient arises from an inverse force law;
hence a constant diffusion need not, as is often assumed,
represent random collisions between interacting bodies but
rather can also arise from a local repulsion between nearest
neighbors that decays inversely with distance.

C. Aggregation in the Lennard-Jones model

In Sec. III we examined the behavior of the Lennard-
Jones model when k � 1 such that the negative component
of the diffusion coefficient at low densities was negligibly
small. We now relax this assumption and investigate model
behavior when k = O(1). In this regime the negative diffusion
coefficient plays a dominant role in cell dynamics and we
expect the validity of the continuum model to break down.
In Fig. 8 we present simulation results from the discrete
model which demonstrate aggregation. As cell densities are
initially less than 1, the diffusion coefficient is negative and
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cells move up gradients in their density. Thus an initially
continuous cell distribution becomes discontinuous as the
cell population splits into aggregates. Cells continue to move
up density gradients until the density reaches 1, at which
point the diffusion coefficient becomes positive and the
continuum model becomes valid for each of the separate
aggregates. Hence, force laws of Lennard-Jones type can
provide a mechanism for cell aggregation that is dependent
on local interactions alone. We note that a qualitatively similar
diffusion coefficient to the one derived in this study has been
proposed by Mertens et al. [32] in a model that describes the
one-dimensional directed self-assembly of nanoparticles.

V. SUMMARY AND DISCUSSION

In a previous work [16], we described how a one-
dimensional chain of overdamped cells interacting via a linear
force law can be described by a nonlinear diffusion equation
for cell number density in the continuum limit. The nonlinear
diffusion coefficient allowed behavior in the underlying sim-
ulations to be categorized as well as a qualitative comparison
of that particular model with the cellular Potts model via
comparison of their respective diffusion coefficients.

In this study we have extended our approach to describe
how a nonlinear diffusion coefficient can be derived for a more
general force law. The result from the previous study then falls
out as a particular case of the new result (a linear force law),
but we also derive specific diffusion coefficients for a range of
commonly used nonlinear force laws. We demonstrate how a
comparison of the functional forms of the different diffusion
coefficients can lend insight into the behavior of simulations
with the different force laws.

In order to demonstrate the accuracy of the continuum
approach, we compared numerical results from discrete and
corresponding continuum models and observed excellent
agreement. The relaxation profiles of the cell populations
depended strongly on the magnitude of the initial cell density
and the type of force law being considered. For example, the
cubic force law model behaved qualitatively similarly to the
linear model at high initial densities but at low densities showed
markedly different qualitative behavior. Both qualitative and
quantitative features of the different simulations were captured
using the continuum model.

We have claimed that one of the benefits of deriving coarse-
grained models is that it allows one to systematically classify
discrete simulations. In previous work we used the coarse-
grained nonlinear diffusion coefficients to make a qualitative
comparison between the off-lattice, linear spring model and the
cellular Potts model. Using the general form of the nonlinear
diffusion coefficient derived in this paper, we have determined
a nonlinear force law which gives the same coarse-grained
behavior. This procedure allows us to transform from a cellular

Potts description of a cell population, where a single cell is
represented by many lattice sites, to an off-lattice, cell-based
description, where a single cell is represented by a single point.

Using a similar approach we can define force laws that yield
particular classes of phenomenologically derived diffusion
coefficients. As an example, we consider a particular form
of diffusion coefficient proposed by Murray [31] that is used
to describe the movement of populations in ecology. Using
the derived force law–diffusion coefficient relationship in this
study, we then demonstrate that Murray’s diffusion coefficients
have a direct correspondence with inverse force laws. This
result provides a justification for the use of linear diffusion
even if individuals are not performing unbiased random walks.

Diffusion coefficients derived using a bottom-up approach
can lead to interesting, and perhaps unexpected, strongly
nonlinear behavior at the population scale. This is exemplified
by the diffusion coefficient corresponding to the Lennard-
Jones force law which becomes negative at low densities,
resulting in the breakdown of the continuum model when k is
sufficiently large. In this limit, cells move up density gradients,
and an initially homogeneous low-density distribution of cells
forms a series of microaggregates of higher densities; in
each of the separate microaggregates density distributions are
continuous. We note that Bodnar and Velazquez [25] have
described similar model behaviors for the case of general
attractive potentials.

Fozard et al. [24] have considered the continuum limit
of a cell vertex model in one spatial dimension. We note
that, upon omission of the cell-cell friction included in the
discrete vertex model, their continuum equation governing cell
number density can be posed as a nonlinear diffusion problem
similar to that described by Murray et al. [16]. We expect
that their analysis extends to the case of the nonlinear force
laws presented in this study via an appropriate choice for the
relationship between pressure and cell density.

The hypothesis that diffusion coefficients can be used to
characterize and classify different discrete, cell-based simula-
tions has gained traction in recent years, primarily owing to
the derivation of different types of diffusion coefficients across
a range of disparate systems [16,21,22,25–27]. In this study
we add further weight to this hypothesis by describing how
off-lattice cell-based models can give rise to a particular class
of nonlinear diffusion coefficient. It remains to be discovered
how these results generalize to higher spatial dimensions.
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