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Human heart rate variability, in the form of time series of intervals between heart beats, shows complex, fractal
properties. Recently, it was demonstrated many times that the fractal properties vary from point to point along
the series, leading to multifractality. In this paper, we concentrate not only on the fact that the human heart rate
has multifractal properties but also that these properties depend on the time scale in which the multifractality is
measured. This time scale is related to the frequency band of the signal. We find that human heart rate variability
appears to be far more complex than hitherto reported in the studies using a fixed time scale. We introduce a
method called multiscale multifractal analysis (MMA), which allows us to extend the description of heart rate
variability to include the dependence on the magnitude of the variability and time scale (or frequency band).
MMA is relatively immune to additive noise and nonstationarity, including the nonstationarity due to inclusions
into the time series of events of a different dynamics (e.g., arrhythmic events in sinus rhythm). The MMA method
may provide new ways of measuring the nonlinearity of a signal, and it may help to develop new methods of
medical diagnostics.
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I. INTRODUCTION

One way of determining the nonlinear properties of phe-
nomena such as human heart rate variability is to study its
fractal properties [1–7]. In practice, we look for characteristic
exponents that describe the scaling of the fluctuations of
the signal [8]. In the case of a monofractal time series, the
fluctuation scaling may be described by a single exponent H

(the Hurst exponent) [9,10]. But there is a class of signals that
are much more complex and whose fractal properties vary from
point to point along the time series [11]. Such signals require
not only one but a whole spectrum of local Hurst exponents
h and are called multifractal. In a simple description, a time
series is multifractal if its fluctuations of different magnitude
have different scaling exponents, and such a wide range of
scaling exponents is preserved for every reasonably long part
of the time series.

In the literature, one can find many examples of multi-
fractal scaling of fluctuations in time series of very different
phenomena: human gait [12], earthquake-related geoelectrical
data [13], or even in the structure of music tracks [14]. Due
to its universality and the not always clear reasons for the
occurrence of multifractality, this seems to be a very promising
area of research with great potential. For example, multifractal
analysis indicates the loss of variability of the heart rate of
subjects with congestive heart failure [5], and it allows to
assess the antagonistic behavior of the branches of the heart
rate controlling systems [4] and to demonstrate the differences
between the heart rate variability of healthy persons and that
of patients with hypertrophic cardiomyopathy [7]. In spite
of the successes noted in the literature, multifractal analysis
is in need of further study and refinement. This is because
the comparison of different implementations of such analysis
indicates serious limitations stemming from basic assumptions
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about, e.g., nonstationarity and the acceptable level of noise in
the signal.

For some time now, our group has been developing methods
to assess the properties of heart rate variability for medical
diagnostic purposes [15–21]. The main focus in such assess-
ments is, usually, the properties of the sinus rhythm of the heart,
i.e., heart rhythm that originates in the normal functioning
of the electrical conduction system of the heart [22]. It is
widely accepted that the properties of sinus rhythm are the
result of the state of the systems controlling the heart rate
variability—mainly the state of the autonomic nervous system,
which is one of the main targets for medical diagnostics. The
difficulty lies in the fact that clinical patients, who should
be the target, have a sinus rhythm with many inclusions
from heart beats originating outside the electrical conduction
system (different forms of arrhythmia) interspersed between
normal heart beats. In some cases, the variability of the sinus
rhythm may be unusually low and the apparent large heart
rate variability is mainly due to arrhythmia. Many linear and
nonlinear signal analysis methods are vulnerable to such kinds
of nonstationarities. Consequently, many studies—including
those using monofractal and multifractal analysis—focus on
heart rate variability that contains not more than 5% of
arrhythmia, or they use algorithms to filter arrythmic heartbeats
(compare the medical data description in Ref. [5]) ,rendering
their use in a clinical setting doubtful.

The starting point for our studies was curiosity: how
sensitive indeed is multifractal analysis to nonstationarities
in the heart rate time series, such as arrhythmia? We looked
for a way that could provide a reliable analysis of a signal with
a large number of occurrences of arrhythmia, without the need
to filter it out or any interpolation.

In Sec. II, we briefly discuss multifractal detrended fluctu-
ation analysis. In Sec. III, we discuss the medical data used
to develop our method and the artificial test series used in
the paper. In Sec. IV, we describe the analysis of the standard
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multifractal detrended fluctuation analysis (MF-DFA) method.
Section V describes the multiscale multifractal method in-
troduced here and its advantages. Section VI contains a de-
scription of the relation of the multiscale multifractal analysis
(MMA) to earlier methods, including the effects of destroying
correlations within the time series, the length of the analyzed
time series, noise in the data, and the effect of nonstationarity
in the form of inclusions of a dynamics different from the
rest of the series. This part of the paper is focused on the
analysis of natural (sinus) heart rhythm with many arrhythmic
events included. We show that the new method is able to
characterize monofractality or multifractality of time series
in a wide range of frequencies (scales) simultaneously and is
hence quite resistant to such nonstationarities.

II. MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

Multifractal detrended fluctuation analysis, which was
developed by Kantelhardt et al. [23], is an effective numerical
method to examine the scaling properties of fluctuations by
calculating a set of multifractal fluctuation functions Fq(s).
First, we have to divide the time series of length N into series
of contiguous windows of length s [the number of contiguous
windows is Ns ≡ int(N/s)]. Since s in usually not a divisor of
the length of the time series, there are parts at the end of the
time series that would be omitted. To avoid such a situation,
we prepare again a series of contiguous windows of length s,
but this time starting from the end of the time series (together
we obtain 2Ns windows). The fluctuations are measured as
sums of squares of local differences between the time series
integrated over the time and a detrending polynomial fit to the
data within the given window. For ν ∈ 〈1,Ns〉, we have

F 2(ν,s) ≡ 1

s

s∑
i=1

{Y [(ν − 1)s + i] − yν(i)}2 (1)

and for ν ∈ 〈Ns + 1,2Ns〉,

F 2(ν,s) ≡ 1

s

s∑
i=1

{Y [N − (ν − Ns)s + i] − yν(i)}2, (2)

where s denotes scale (window width), Y (j ) is the data profile
(the integrated series), ν is the current window number, and
yν is the polynomial fit within the current window ν. The
fluctuations F 2(ν,s) are used to determine the fluctuation
functions Fq(s),

Fq(s) ≡
{

1

2Ns

2Ns∑
ν=1

[F 2(ν,s)]
q

2

} 1
q

, (3)

where q is a parameter. The order of fluctuation parameter q

allows us to focus the analysis on different magnitudes of the
observed fluctuations, i.e., for q < 0, mainly small fluctuations
are analyzed, while for q > 0, mainly large fluctuations are
analyzed. The power-law scaling function in the form

Fq(s) ∼ sh(q) (4)

lets us easily determine the generalized Hurst exponent
h(q) as a function of the magnitude of the fluctuations.
Values of h are interpreted as follows [12,24]: h ∈ (0,0.5)

indicates antipersistency of the time series, h = 0.5 indicates
uncorrelated noise, h ∈ (0.5,1) indicates persistency of the
time series, h = 1.5 indicates Brownian motion (integrated
white noise), and h � 2 indicates black noise. In the next
step, applying the Legendre transform to h(q), the singularity
spectrum f (α) is usually obtained. The singularity spectrum
is a very compact and popular way of presenting the fractal
properties of a time series [5–7,13,14,25]. But because of
the problems described below, we are not going to use the
singularity spectrum f (α). It is important to remember that, as
noted in Ref. [23], one does not study here the fractality (or,
to be more precise, the self-similarity) of a two-dimensional
plot of a time series (at least because the vertical and horizontal
axis contents are not comparable) but rather a one-dimensional
structure of points each with a value assigned.

There seem to be two main sources of multifractality of a
time series [23,26]: the occurrence of nonlinear correlations
and fat-tailed probability distributions of the data (or incre-
ments of the data) in the series. The two reasons may have a
different share in generating the multifractality of a signal.

There are many factors that may artificially increase the
change of the calculated h as a function of q indicating
an apparent multifractality, e.g., observational noise, strong
trends, and the precision of the calculations. Consequently,
we consider every time series for which �h � 0.2 to be
monofractal and only the time series with �h > 0.2 as
multifractal.

III. DATA

Heart rate variability data were extracted from 24-hour
Holter ECG recordings using the 563 Strata Scan Del Mar
Avionics system. The Holter recordings are all part of an
anonymous Holter ECG database of the Institute of Cardiology
(Warsaw, Poland) and were collected for medical purposes.
They are currently used for the training of doctors and medical
technicians at the Institute of Cardiology. In addition to the
heart rate variability recording, the data include age, sex, and
the medical state of the patient only. All data were checked by
a qualified cardiologist: normal beats were detected, artifacts
were deleted, and arrhythmias were recognized. No arrhythmia
filtering was conducted.

We analyzed 51 RR interval series, i.e., time series of
intervals between consecutive heartbeats (an example of such
a series is shown in Fig. 1). The RR interval time series were
sampled at 128 Hz, i.e., with a resolution of 8 ms. Thus,
observational errors are more than two orders of magnitude
smaller than the measured signal. There were 42 time series
recorded in healthy subjects and 9 obtained for subjects at risk
of cardiac arrest, therein 5 had no organic heart disease, so
that, in spite of previous cardiac arrest, no pathology could
be recognized. The main effort in this paper is focused on the
properties of the heart rate variability of healthy subjects. In
addition, we were interested in checking what the multiscale
multifractal properties are of cardiac arrest patients without
organic heart disease (the recordings are difficult to obtain,
hence the small number analyzed here). Such patients are
particularly easy to miss using standard diagnostic methods
in a clinical setting. The other four cardiac arrest cases (with
organic heart disease) were included here because of the
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FIG. 1. Nighttime RR interval series of a healthy, 25-year-old
man (subject code: CHM).

characteristic properties of their heart rate variability, which
are useful for demonstration purposes. We analyzed only
the nighttime parts of the recordings when the subject was
asleep to avoid the effect of daytime activities on heart rate
variability. Because each subject had a different time of going
to sleep, in each case the period of observation was defined
based on the average RR interval value (it increases markedly
during sleep). Only time series longer than 9000 intervals
were analyzed. In several recordings, it was necessary to
remove from the time series (without replacement) abnormally
long intervals (>3 s) due to artifacts or technical problems
with the recognition of the R peak. The number of such
removals never exceeded three in a single recording. No
data filtration or averaging was applied to the RR interval
series.

We generated also several artificial series: a uniformly
distributed series of random numbers (range 〈0,2000〉) and a
random number Cauchy distributed series (location 0, scale 1).
We generated also a deterministic and a nondeterministic
binomial cascade. To do this, we divided a line segment of
length 1 into two parts of equal length. We multiplied both
parts by the weights m1 and m2 (where m1 + m2 = 1). We
repeated the procedure for every line segment created in the
previous step. In the case of the nondeterministic cascade, the
segments were multiplied by weights in random order. In this
paper, we used also a deterministic cascade formed in 14 steps,
thus of length 214, with weights m1 = 0.25 and m2 = 0.75.
We used also a modified nondeterministic cascade. Because
the initial cascade distribution is asymmetric, we added to it
its reversed (multiplied by −1) version, obtaining a symmetric
distribution. We created also a few more artificial time series
by merging the series mentioned above as described later in
the text.

IV. PROPERTIES OF MF-DFA

The final results of MF-DFA depend strongly on several
decisions of the user. The first problem to be considered is
the subtraction of the mean 〈x〉 while calculating the data
profile. Because of the detrending procedure, this step is
unnecessary [23].

The second decision to be made is the choice of the order of
the detrending polynomial applied within each data window
to obtain Fq(s). We found only slight differences in the results
while using the order 1 (DFA1) and the order 2 (DFA2)
polynomials to analyze the RR interval time series. Below
we show results only for the order 2.

The third decision seems to be the appropriate choice of the
range of scales s, for which the family of curves Fq(s) should
be calculated. A too large s results in the division of the time
series into a too small number of windows. We found that
a division into fewer than 50 data windows often causes the
Fq(s) curves to converge at the scale of saturation. In turn, too
small scales s cause the detrending procedure to be executed
on a set of only a few points. For very small scales s < 10,
after the detrending procedure, the calculated variance often
is of the order of the accuracy of the C++ data type double,
which may result in an arithmetic underflow. In our tests using
the RR interval series, the calculations were impossible for
almost all cases for s < 10 because the maximal software
precision was exceeded. Therefore, the often obtained drastic
decrease of the values of Fq(s) for s < 10 is a result of an
arithmetic underflow (if not for all, at least for the majority
of the calculation windows). That is why we set the usable
range of scales to be s ∈ 〈10, N

50 〉, where N denotes the length
of the time series. In the case of the nighttime RR interval
series analyzed by us, N was usually about 30 000. Thus, all
of our calculations were made and are presented for scales
s ∈ 〈10,600〉.

The slopes of the log-log fits to the family of Fq(s) curves
determine the local Hurst exponents and hence the h(q)
dependence. The details of the fitting procedure are crucial
to the final results. Even small differences in realizations
of this step may cause drastic changes in the outcome. The
plots of Fq(s) often show substantial fluctuations. As a result,
the choice of even a slightly wider fitting window can give
a completely different local Hurst exponent, changing the
h(q) curve importantly (animation 1 in Ref. [27]). We found
that the effect occurs even when small changes in the fitting
window size or positioning on the scale axis are made, in spite
of the fact that the coefficient of determination R2 remains
large—approximately 0,98–0,99. We found this to be one of
the most important effects that we considered while suggesting
our new solutions.

Multifractal analysis of time series is conducted in a few
steps, every one of which yields ever more highly processed
results, requiring additional computations involving some
subjective decisions. First of all, the plot of the fluctuation
functions Fq(s) is constructed. Next, derived from the Fq(s)
dependence, the dependence h(q) of the generalized Hurst
exponents on the order of fluctuation q is found. And finally,
the singularity spectrum f (α) is calculated from the Legendre
transform.

The only result in the MF-DFA method, which is only very
slightly dependent on the individual decisions of the user, is the
initial step, namely the computation of the family of the Fq(s)
curves. Because of the rather subjective decisions of the user
about the details of the fitting procedures and their effect on
the resultant h(q) dependence, one should be careful about the
way the quantitative analysis of the h(q) dependence is carried
out. However, the general shape of the h(q) dependence is
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GIERAŁTOWSKI, ŻEBROWSKI, AND BARANOWSKI PHYSICAL REVIEW E 85, 021915 (2012)

FIG. 2. (Color online) (a) Plot of the fluctuation functions Fq (s)
(black points) calculated for the series presented in Fig. 1. The curves
correspond to q between −5 and 5 in steps of 1. Vertical (blue) lines
mark two examples of the fitting windows for the small s ∈ 〈10,50〉
range and for the large s ∈ 〈120,600〉 range. Fits made within these
two windows are shown by solid lines (red or dark gray in the left
window and green or light gray in the right window). (b), (c) Two
examples of the h(q) curves, obtained in the fitting windows of (a),
for the small and the large scales s, respectively.

qualitatively stable and remains the clearest way of detecting
the monofractality or multifractality of the time series.

The singularity spectrum f (α), on the other hand, is
calculated from the h(q) dependence (vulnerable to all the
procedure details described above) with the use of the
Legendre transform, which amplifies some types of errors
[mainly because of the presence in it of the derivative h′(q)].
Consequently, the singularity spectrum f (α) may be an
unstable result, often affected by very serious artifacts that may
cause difficulties and ambiguities in interpretation [7]. There
seems to be no effective way of removing such artifacts. This
led us to the conclusion that a reliable singularity spectrum
f (α) is very difficult to obtain and that it should be treated
only as an additional, indicatory result.

A problem that seems even more serious but also far more
interesting is the presence of the crossover, i.e., the change of
the average slope of the Fq(s) at some scale s, in the results
obtained from the RR interval series (Fig. 2).

A constant h(q) indicates monofractality, while multifrac-
tality is associated with a wide range of values of h(q) [23].
In the case of RR interval series studied here (Fig. 2, other
examples shown below), the results of the procedure are
complex, i.e., there is a different shape of the h(q) curve for
small and large scales s, indicating different fractal properties
for small and large scales s. It is thus possible to observe,
e.g., monofractal properties in small scales and multifractal
properties in large scales for the same time series.

The crossover effect is sometimes interpreted as the result
of the use in the analysis of a too narrow window of data

FIG. 3. (Color online) (a) Family of curves Fq (s) calculated for
the first test signal (multifractality visible for the small scales and
monofractality for the larger scales). Vertical (blue) lines mark two
examples of the fitting windows for the small s ∈ 〈10,50〉 range
and for the large s ∈ 〈120,600〉 range. Fits made within these two
windows are shown by solid lines (red or dark gray in the left window
and green or light gray in the right window). (b) The h(q) dependence
calculated for the small (red or dark gray points, upper curve) and for
the large (green or light gray points, lower curve) scales s.

(finite scale size effect) [28,29]. But it is also interpreted
as a result of different correlation properties for small and
large scales in the signal [30–32] (in the case of heart rate
variability data, the latter phenomenon may be interpreted as
an effect of respiration on the heart rate [33]). We agree with
both interpretations: for the lowest possible scales s < 10,
arithmetic underflow often occurs; for scales from the range
s ∈ 〈10,50〉, the scaling properties are due to short-range
correlations; and for scales s > 50, the scaling properties
are due to long-range correlations (ranges approximate). These
two concepts, together with the notion that multifractality is
caused by long-range correlations, could be the reason for
the rejection of the results obtained for low scales s by some
authors [7,29]. The position of the crossover may depend on q

[31,32], which also causes additional interpretation problems.
We attempted to find out whether indeed the calculation

of the multifractal properties at the lower end of scales
(s ∈ 〈10,50〉) does not yield usable results. To illustrate where
our doubts in this matter come from, we prepared two test
series (Figs. 3 and 4). To generate the time series for both
examples, we need to merge together two time series: a
monofractal series of random numbers and the multifractal
binomial cascade (Sec. III). In the first example (Fig. 3), we
generated the binomial cascade. Then we removed from the
series all values <0.000 01 (because the values in the binomial
cascade series form characteristic discrete levels, this means
we left only a few of the largest elements of the series). In their
place, we substituted uniformly distributed random numbers
from the range 〈0,0.006〉 (similar to the largest values in
the binomial cascade). As a result, we obtained a binomial
cascade embedded in noise. Analysis of such a signal shows
its multifractal nature for small scales, but for larger scales
the effect of noise becomes clearly visible and monofractality
prevails. In the second example (Fig. 4), we used once more
the binomial cascade replacing every point xi by 100 points
generated using the formula xir , where r denotes a random
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FIG. 4. (Color online) (a) Family of curves Fq (s) calculated for
the second test signal (monofractality visible in the small scales and
multifractality in the large scales). (b) The h(q) dependence calculated
for the small (red or dark gray points, lower curve) and for the large
(green or light gray points, upper curve) scales s.

number (uniform distribution) from the range 〈0,2〉. Such a
series has inverted properties with respect to the previous one,
i.e., monofractality in the small scales and multifractality in
the large scales.

We summarize the results obtained for the test signals as
follows:

(i) We generated time series that have monofractal or
multifractal properties depending on the scale of analysis s.
We were able to easily detect this effect.

(ii) We reconstructed the crossover phenomena and con-
firmed that essential changes of fractal properties are possible
within one time series, depending on the scale of analysis s

(compare also [30–32]).
(iii) We were able to recognize monofractality or multifrac-

tality for small scales s ∈ 〈10,50〉 (contrary to the conclusions
about the ranges of interest in Refs. [7,29]).

Although the method does have lower accuracy for scales
s < 50 [28], it is still able to easily distinguish monofractal
from multifractal properties of the signal judging by the
shape of h(q) (Figs. 3 and 4). We see no reason to reject
results obtained for scales s ∈ 〈10,50〉. Consequently, we
decided to analyze the multifractal properties of time series
in the possibly widest range of scales, including s ∈ 〈10,50〉.
Moreover, crossovers often occur for small scales s and are
very interesting for our research, so that the proper analysis
requires an effective way of studying all available scales
simultaneously and assessing the properties of the signal
within the crossover region.

V. MULTISCALE MULTIFRACTAL ANALYSIS

A. Description

Castiglioni et al. [34] studied the effect of high altitude
hypoxia on heart rate variability. The authors applied the well-
known monofractal DFA method but, instead of defining fixed
scale ranges, they varied continuously the scale for which they
calculated the DFA exponent αDFA(s). Inspired by their work
and encouraged by the results, we decided to go further and
calculate a multifractal spectrum with a variable scale range.

FIG. 5. (Color online) h(q,s) dependence (Hurst surface) calcu-
lated for a multifractal nondeterministic binomial cascade of length
32 768. The two red (dark gray) points correspond to α1 and α2

calculated using the standard, monofractal DFA method. The green
(light gray) line at the back of the plot corresponds to h(q) calculated
with the standard MF-DFA method.

We used a moving fitting window, sweeping through all the
range of the scales s along the Fq(s) plot. This allows us to
study quasicontinuous changes of the h(q) dependence versus
the range of the scale s and as a result to obtain the generalized
dependence h(q,s) (a Hurst surface, Fig. 5). Because the fluc-
tuation functions Fq(s) are presented in log-log coordinates,
the moving fitting window expands logarithmically, so that it
seems to be of constant width (Animation 2 in Ref. [27]).

The fit is made only for points currently inside the moving
fitting window. The starting width of the window includes
the scales s ∈ 〈10,50〉 [cf. Figs. 2(a) and 2(b)], and then
the window is moved and expanded to reach the final width
s ∈ 〈120,600〉 [cf. Figs. 2(a) and 2(c)]. If possible, at least
the first and the last fitting window should not contain the
crossover, otherwise the Hurst surface will not show all
possible scalings (of course, in the case of extremely short
time series or wide crossovers, that is impossible). The scale
axis of the h(q,s) plot is calibrated so as to show the center
of the fitting window—it starts from s = 30 (i.e., the center of
the initial scale range 〈10,50〉) and ends at s = 360 (the center
of the range 〈120,600〉). For clarity, the points of the h(q,s)
graph are connected to form a colored surface. The fluctuation
functions Fq(s) are plotted using a logarithmic axis for the
scale s, but the Hurst surface is presented using a linear axis.
This should be kept in mind while interpreting the results.

As for the standard h(q) dependence obtained for fixed
scale ranges, the h(q,s) plot for q < 0 corresponds to those
fragments of the signal that have a low variance (small
fluctuations), while for q > 0 the plot characterizes the signal
fragments with a large variance (large fluctuations). Also, as
for the standard h(q), the results for q > 0 are much more
stable and encumbered by smaller errors. That is why the
results for q < 0 should always be used with caution.

During the calculation of h(q,s), the center of the window
(the average scale) and the window itself (the scale range) are
changed, so for many signals the scale range s (the window
size) may be related to the frequency band of the signal.
As the calculation progresses, lower and lower frequency
components of the signal are analyzed. Thus, the dependence
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FIG. 6. (Color online) (a)–(c) The f (α,s) dependence for the RR
interval series of the healthy subject CHM seen from three different
viewing angles. Numerous artifacts make the plot difficult to read
and interpret. Light gray points mark the artifacts recognized by the
artifact removing procedure. (d) An example cross section of f (α,s)
in (a)–(c) obtained for s = 360.

h(q,s) yields information about the level of fluctuations at
different frequency bands.

Just as for all other calculations of a Hurst exponent, the
results can be categorized into groups [12,24]: h ∈ (0,0.5)
denotes antipersistency of the time series, h = 0.5 denotes
uncorrelated noise, h ∈ (0.5,1) denotes persistency of the time
series, h = 1.5 denotes Brownian motion (integrated white
noise), and h � 2 denotes black noise. In other words, h(q,s)
values correspond to types of correlations within the time
series.

The natural next step after creating the generalized h(q,s)
dependence was to prepare also a corresponding f (α,s) depen-
dence (Fig. 6). Every cross section of the h(q,s) dependence,
made for a particular scale s, was transformed using the
Legendre transform into a cross section of the f (α,s) plot.
As mentioned in the Introduction, calculating f (α) involves
often the interpretation of problems due to additional artifacts
specific to this calculation [7].

Although the construction of the relation f (α,s) is feasible
in principle, we decided to analyze the properties of h(q,s)
first, considering such analysis less ambiguous.

B. Advantages of MMA

The generalized h(q,s) dependence allows us to perform
multifractal analysis without any initial assumptions about the
time scale of the problem investigated, as we obtain results for
many frequency bands simultaneously. The Hurst surface is
also a far better way of analyzing time series with a crossover,
as we do not have to avoid datasets with it or narrow the range
of investigated scales only to large or only to small scales. The
common practice of fixing a priori the scaling ranges in such

methods as DFA and MF-DFA may lead to artifacts in some
cases, i.e., if by mistake a crossover falls within the scaling
range, the results will be biased. In the new approach described
above, we obtain results for all scales present in the signal,
including those for the small and large scales as well as the
crossover properties. We thus avoid mistakes due to improperly
predefined scaling ranges. Or, if the scaling range includes only
large scales, then we miss all the information about the fractal
properties in the small scales, while such properties may be
dramatically different and very interesting (cf. Figs. 2–4). Even
if we would try to use the standard MF-DFA method separately
for the small and for the large scales, we would miss all the
analysis of the properties within the crossover range, and these
properties can also be very different from case to case.

In Secs. VI E and VI F, we will also show that MMA is
quite resistant to observational noise and nonstationarities. The
detrending inherent in MF-DFA to a large extent takes care
of the nonstationarity due to relatively slow processes (i.e.,
trends). Another kind of nonstationarity is due to inclusions
into the time series of a different dynamics (such as arrhythmic
events). Because this particular kind of nonstationarity will
usually affect the results only in a narrow region of the Hurst
surface, leaving the other parts unaffected, the method allows
us to study time series with such inclusions. This seems to be
very good news for those who need to analyze RR interval
series with a large number of arrhythmia episodes.

VI. RESULTS AND DISCUSSION

A. Correspondence with earlier multifractal analysis methods

We tested the multiscale multifractal analysis method in
several ways. First of all, we tested it on a time series of
monofractal random numbers, obtaining satisfying results.
For a uniformly distributed random number series, h(q) = 0.5
[Fig. 7(a), [23]]. As expected, for every scale s, we obtained
a flat Hurst surface [Fig. 7(b)], also situated at 0.5. For a
multifractal time series of Cauchy distributed random numbers
[Fig. 7(c)], also as expected, we obtained the standard shape
of the multifractal h(q) dependence for all available scales
[Fig. 7(d)]. These two basic results show that the MMA method
reproduces well the results obtained from earlier multifractal
analysis methods.

B. Effect of randomization of the time series

It seems that multifractality can have two sources: nonlinear
correlations and a fat-tailed probability distribution [31,32].
In the case of RR interval series, it was shown that the first
source of multifractality applies and that the second one has
no effect [11] as the distribution is approximately Gaussian.
Thus, the characteristic shape of the Hurst surface calculated
for RR interval series of a healthy man is due to correlations.
In this sense, the Hurst surface is a generalized description of
the correlation properties obtained from the MF-DFA method
and, in general, different from that obtained by such methods
as the autocorrelation function or mutual information.

To demonstrate the effect of removing the autocorrelations
from the signal on MMA results, we calculated h(q,s) for the
nighttime RR interval series of subject CHM [Fig. 8(a)] and
next for the shuffled version of this time series. In Fig. 8(b),
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FIG. 7. (Color online) (a) The standard h(q) dependence calcu-
lated using MF-DFA for a monofractal series of random numbers
(uniform distribution, range 〈0,2000〉, length of series 16 384).
(b) The h(q,s) dependence calculated for the monofractal series in (a).
(c) h(q) for a multifractal series of random numbers (Cauchy
distribution, location 0, scale 1, length of series 65 536). (d) The
h(q,s) dependence calculated for the series in (c).

we can see that, in fact, the randomization destroyed the
correlations—the results closely resemble those for white
noise. Thus, we conclude that, in fact, multifractality of RR
interval series is due to correlations.

C. A measure of the generalized distance
between two Hurst surfaces

To reliably describe the differences between two MMA
results in the next examples, we need to assess numerically a
generalized, mean distance between the two h(q,s) surfaces.
First, we calculate the mean 〈h(q,s)〉 for each surface. Next,
we adjust the values of one of the h(q,s) surfaces so that the
means of both surfaces are the same (by shifting the surface
up or down). In this way, we were able to focus only on
the differences in the shape of the surfaces independently
of the change in the average Hurst exponent. We next
subtracted the two surfaces from each other point by point,
squared the differences, and calculated the mean. Then, we
normalized the square root of the mean by dividing it by the
average Hurst exponent of the first, the reference surface. This
procedure may be written as follows:

h2S(q,s) = h2(q,s) + [〈h1(q,s)〉 − 〈h2(q,s)〉], (5)

d = {〈[h1(q,s) − h2S(q,s)]2〉} 1
2 [〈h1(q,s)〉]−1, (6)

where d is a measure of the mean distance between two Hurst
surfaces, h1(q,s) is the reference surface, h2(q,s) is the result
for the test series, and 〈· · ·〉 denotes the mean.

We set d = 0.065 as the threshold so that if d � 0.065, we
consider two surfaces to be similar (i.e., indistinguishable),
and if d > 0.065, we consider them to be different. In all

FIG. 8. (Color online) (a) The h(q,s) surface calculated for the
nighttime heart rate variability of a healthy 25-year-old man (CHM,
length of series 29 700, cf. Fig. 1). (b) h(q,s) calculated for the
shuffled version of the same series.

the following examples, two reference surfaces will be used
having the following mean Hurst exponents: for the healthy
man, CHM 〈h(q,s)〉 = 0.867, and for the Cauchy distributed
random series used in all the examples, 〈h(q,s)〉 = 0.747.

D. Effect of the length of the time series

Nighttime RR interval series, which are our main interest,
can have very different lengths. Thus, it was important for us
to find out what effect the length of the time series has on the
results of MMA.

We prepared the first group of test series by selecting
fragments from the RR interval series of the healthy man
CHM (length of series 29 700, cf. Fig. 1) recorded during
the night. Initially, we calculated h(q,s) for the complete
time series [Fig. 8(a)]. We prepared test time series obtained
extracting 20 000, 15 000, 10 000, 7500, 5000, and 2000
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FIG. 9. (Color online) h(q,s) for the RR interval series of the
healthy subject CHM, shortened to different lengths: (a) 20 000,
(b) 15 000, (c) 10 000, (d) 7500, (e) 5000, and (f) 2000. Presented
are results averaged over 1000 realizations of the test series.

consecutive intervals from this series. The starting point for the
shortened subseries was chosen randomly and all the distances
d presented below are averaged over 1000 realizations of the
extraction procedure and presented together with the standard
deviation of the results.

The results (Fig. 9) for the series of length 20 000 are very
similar to these for the whole available series [length 29 700,
Fig. 8(a)]. The results for 15 000 and 10 000 are still very
similar, but the results for the series length 7500 are different.
For even shorter time series, the changes were even more
pronounced. In Table I, we can see the generalized distances
between the h(q,s) surface for the full length time series and
that for the short fragments (cf. Sec. VI C). The mean distances
between the results (taking into account the standard deviation)
for the original series and the series of lengths 20 000 and
15 000 are less than 0.065, which is thus below the threshold we
have assumed. The mean distance for the 10 000-interval-long
series is also below the threshold, but the standard deviation
σ for this case shows that some of the test series yielded
h(q,s), exceeding the threshold criterion of 0.065. This is then
a borderline case, and nighttime RR interval series shorter than
15 000 should not, in general, be used.

As mentioned above, multifractality can have two sources:
long-range correlations and a fat-tailed probability distribution

TABLE I. Mean values 〈h2(q,s)〉 and intersurface distances d

(defined in Sec. VI C) between the results for the original time series
(healthy subject CHM or Cauchy distribution) and their successive
modifications (shortened series, see Sec. VI D for details). In every
case, the mean value μ and the standard deviation σ of the results for
the 1000 realizations of each test series are given.

20 k 15 k 10 k 7.5 k 5 k 2 k

CHM d μ 0.038 0.046 0.057 0.068 0.084 0.156
σ 0.010 0.011 0.016 0.014 0.025 0.058

〈h2(q,s)〉 μ 0.832 0.821 0.829 0.840 0.841 0.869
σ 0.014 0.031 0.057 0.069 0.079 0.123

Cauchy d μ 0.056 0.070 0.089 0.106 0.137 0.259
σ 0.016 0.026 0.034 0.030 0.042 0.202

〈h2(q,s)〉 μ 0.755 0.755 0.757 0.760 0.766 0.791
σ 0.015 0.018 0.030 0.039 0.058 0.114

[31,32]. In the case of non-Gaussian distributed time series,
it is difficult to tell how much of the multifractal properties
is due to correlations and how much is due to the properties
of the distribution of the signal. In such a case, the analysis
of the exact values of the Hurst surface [e.g., assessment of
persistence or antipersistence by comparison of h(q,s) with
0.5] does not seem to make sense. For the RR interval series,
the distribution is approximately Gaussian. However, noise,
seasonal trends, and other nonstationarities may affect h(q,s).
Below, we thus discuss the shape and the span of the Hurst
surface rather than keep track of its values.

In the case of RR interval series, nonlinear correlations are
the main source of multifractality. As a result, we wanted to
check what impact the shortening of the series length has on
our results in the case of a time series for which multifractal
properties are only due to its fat-tailed distribution.

We took 20 000, 15 000, 10 000, 7500, 5000, and 2000
intervals, respectively, of the series of the Cauchy distributed
random numbers used above [full length 65 536 data points,
cf. Figs. 7(c) and 7(d)]. Once more the starting point of the
shortened subseries was chosen randomly, and the results
shown are averaged over 1000 realizations of the subseries
preparation and presented together with the standard deviation
of the results. Looking at the results for the series of length
20 000 [Fig. 10(a)], they appear to be almost identical to those
for the reference series [cf. Fig. 7(d)]. The results for series
length 15 000 and 10 000 are visibly different and for 7500 they
are very different. For the two shortest series of lengths 5000
and 2000, the correct result is clearly destroyed. In Table I,
only the mean distance d for the series of length 20 000 is
lower than 0.065, which is thus lower than the threshold, but
when combined with the standard deviation it become higher
than the threshold. Therefore, for multifractality resulting from
the properties of the probability distribution, series longer than
20 000 should be used.

Note that the standard deviations for both the distance d

and the mean h2(q,s) are very high in the two examples.
Each of the 1000 test series in these examples may have
different correlation properties (the fragments of the RR series)
or an insufficient statistical representation of the Cauchy
distribution. This results in the large standard deviations in
Table I. This is another point showing that series analyzed by
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FIG. 10. (Color online) h(q,s) calculated for the multifractal se-
ries of random numbers [compare with Fig. 7(d), Cauchy distribution,
location 0, scale 1] of different lengths: (a) 20 000, (b) 15 000, (c)
10 000, (d) 7500, (e) 5000, (f) 2000. The presented results have been
averaged over 1000 realizations of the test series.

MMA (but also by any other multifractal method) should be
sufficiently long.

For both examples (Figs. 9 and 10), for the smallest time
series lengths, the Hurst surface becomes exceptionally steep
and ragged. This is because the calculations of Fq(s) are made
using a small number of windows. Consequently, all results
become much less smooth.

E. Effect of noise

Another practical matter, very important for heart rate
variability analysis, is the effect of observational errors on
the results of MMA. Above, we presented an example of
a test series with monofractal properties at small scales and
multifractal properties at large scales (Fig. 4). We suspected
that it is possible to find a similar behavior, i.e., monofractality
at small scales and multifractality at large scales in multifractal
test signals with a high level of noise (a monofractal signal)
added.

We prepared time series with different levels of noise using
the equation

si = xi(1 + np), (7)

FIG. 11. (Color online) h(q,s) for the RR interval series of the
healthy subject CHM, with different levels of noise added: (a) 10%,
(b) 20%, (c) 30%, (d) 40%, (e) 50%, and (f) 60%. The presented
results have been averaged over 1000 realizations of the test series.

where si is the time series with noise added, xi is the original
time series, n is the level of noise (given below in percent),
and p is a random number from the range [−1,1]. We added
the simulated observation error noise at levels from 10% to
60% in steps of 10% to two test series: the RR interval series
of a healthy man (CHM) and the multifractal series of Cauchy
distributed random numbers. Thus, once more, we have series
representing two separate sources of multifractal properties:
nonlinear correlations (the RR interval series) and a fat-tailed
distribution series. All results presented are averaged over 1000
realizations of series with the given level of noise and shown
together with the standard deviation of the results.

For the RR interval series, 10% of noise did not change
the results considerably [Fig. 11(a)]; the distance is below
threshold d = 0.059 for this case (Table II). However, 20%
of noise changes the results visibly [Fig. 11(b)]. Clearly, the
general properties of the results remain the same but the range
of h is smaller and therefore the measure of the intersurface
distance is larger than the threshold: d = 0.092 (Table II). Still
higher levels of noise (30%–60%) make the results resemble
those for the random number series [cf. Fig. 7(b)]. Thus, for
those series for which nonlinear correlations are the main
source of the multifractal properties, observational errors have
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TABLE II. Table showing mean values 〈h2(q,s)〉 and intersurface
distance d (defined in Sec. VI C) between the results for the original
series (healthy subject CHM or Cauchy distribution) and these series
with noise added, (cf. Sec. VI E for details). In every case, the
mean value μ and the standard deviation σ of the results for 1000
realizations of each test series are given.

10% 20% 30% 40% 50% 60%

CHM d μ 0.059 0.092 0.108 0.119 0.125 0.130
σ 0.005 0.006 0.007 0.008 0.009 0.009

〈h2(q,s)〉 μ 0.807 0.742 0.694 0.656 0.627 0.605
σ 0.007 0.009 0.009 0.010 0.010 0.011

Cauchy d μ 0.030
σ 0.008

〈h2(q,s)〉 μ 0.754
σ 0.008

a moderate impact on the results of MMA. We found also
that observational noise, instead of changing the results in
the smallest scales and generating a crossover effect, simply
makes the results resemble those obtained for white noise at
all scales.

We found the multifractality of the Cauchy distributed
random numbers series to be extremely resilient to additive
noise (Fig. 12, Table II): even 100% of noise added leaves
the results completely intact (d = 0.030). In this case then,
observational errors have almost no impact on the results of
MMA and did not cause a crossover in the fluctuation functions
Fq(s) (cf. also [31]). We conclude from both examples that
observational errors cannot be a source of crossover.

Adding high levels of white noise to a time series with
nonlinear correlations and a normal distribution acts like
randomization. As the level of noise increases, the mean
〈h2(q,s)〉 is considerably decreased and gradually approaches
0.5, which is the result for white noise. Adding high levels
of white noise to a multifractal Cauchy distributed random
numbers series has no effect on the results. In both examples,
the standard deviations of the intersurface distances d and the
means h2(q,s) are small.

F. Effect of arrhythmia

To illustrate the effect of nonstationarity in the form of
inclusions of a different dynamical behavior on MMA, we

FIG. 12. (Color online) h(q,s) calculated for the multifractal se-
ries of random numbers [compare with Fig. 7(d), Cauchy distribution,
location 0, scale 1] with noise added: (a) 0% and (b) 100%. The results
presented have been averaged over 1000 realizations of the test series.

FIG. 13. (a) Nighttime RR interval series of the subject DWD,
with many ectopic beats (arrhythmia). (b) The RR interval series
of the subject CHM with 10% of the short arrhythmic segments
incorporated. (c) Enlargement with three short, arrhythmic segments
included randomly.

prepared two special examples in which we incorporated
different numbers of arrhythmic events into a RR interval series
measured in a healthy man.

To generate data with an adjustable number of arrhythmias,
we took the RR interval time series of a 25-year-old healthy
man (CHM, nighttime part 29 700 heartbeats long, cf. Fig. 1)
and calculated h(q,s) [cf. Fig. 8(a)]. Next, we chose the
RR interval time series of a person with a relatively large
number of arrhythmias [DWD, Fig. 13(a)] and extracted from
it a five-heartbeats-long sample containing a typical pair of
ectopic beats including the compensatory pauses. We then
duplicated and incorporated the arrhythmic segment into the
time series of the healthy man, putting it at random locations
within the series, replacing existing intervals, obtaining 10% of
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FIG. 14. (Color online) h(q,s) for the RR interval series of the
healthy subject CHM, with five-interval-long arrhythmic segments
included: (a) 10% of arrhythmic intervals, (b) 20%, (c) 30%,

(d) 40%, (e) 50%, and (f) 60%. The presented results have been
averaged over 1000 realizations of the test series.

arrhythmic segments within the series [Figs. 13(b) and 13(c)].
Because the average RR interval was different in the two cases,
we rescaled the implanted segments using

{x̃1, . . . ,x̃n} = {x1, . . . ,xn} 〈RRH 〉
〈RRD〉 , (8)

where {x̃1, . . . ,x̃n} is the rescaled arrhythmic segment,
{x1, . . . ,xn} is the arrhythmic segment, RRH is the RR interval
of a healthy subject averaged over the length of the replaced
segment, and RRD is the RR interval of DWD averaged over
the length of the incorporated arrhythmic segment. Finally, we
increased the share of arrhythmic segments from 10% up to
60% (Fig. 14). For each number of incorporated arrhythmic
events we generated 1000 test series, and all the results
presented below are based on this data set.

We found the following:
(i) In the example using short, duplicated arrhythmic

segments, 10% of arrhythmic segments incorporated into
the series [Fig. 14(a)] do not change the results of MMA
considerably [cf. Fig. 8(a)]; the mean distance between Hurst
surfaces is equal to the threshold d = 0.065.

(ii) A higher incidence of arrhythmia [20% and 30%,
Figs. 14(b) and 14(c)] changes the results visibly by expanding

the range of h(q,s) for small scales s ∈ 〈30,90〉, but what is
important is that at other scales, the Hurst surface is much less
changed.

(iii) For 40%, 50%, and 60% [Figs. 14(d)–14(f)] of
arrhythmic segments included, not only are the results for the
smallest scales changed, but also all of the h(q,s) dependence
changes for q < 0.

We also prepared a second type of nonstationary data con-
taining longer sequences of arrhythmia. Again, we extracted
segments containing arrhythmia from the RR interval time
series of a person with a relatively large number of arrhythmias
[DWD, cf. Fig. 13(a)], but this time there were 60 independent
segments, each 300 heartbeats long and thus much longer than
in the first example. Such sequences containing many ectopic
beats in sequences often occur in some patients [20]. The use
of such longer arrhythmic segments may allow us to take into
account the possibility that repeated ectopic beats have their
characteristic, strong correlation properties [20]. The segments
contain not only ectopic beats but also normal RR intervals.
An example of such segments can be seen in Fig. 15(a). We

FIG. 15. (a) Example of a 300-interval-long arrhythmic segment
extracted from the RR interval time series of the patient DWD,
ending approximately 1 h before cardiac arrest. The arrhythmic
segments were rescaled (see text) and incorporated into the RR
interval series of a healthy man (CHM) at random locations.
(b) RR interval series recorded for CHM with 10% of 300-interval-
long arrhythmic segments incorporated (arrows).
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FIG. 16. (Color online) The h(q,s) surface for the RR interval
series of the healthy subject CHM, with 300-intervals-long arrhyth-
mic segments added at random locations: (a) 10% of arrhythmic
intervals added, (b) 20%, (c) 30%, (d) 40%, (e) 50%, and (f) 60%.
The presented results have been averaged over 1000 realizations of
the test series.

then incorporated 10 such arrhythmic segments into the heart
rate variability time series for the healthy man CHM, obtaining
approximately 10% [Fig. 15(b)] of beats within the arrhythmic
segments. The segments were implanted at random times of the
night into the time series. Because the average RR interval was
different in the two medical cases, we rescaled the implanted
segments, as described in the previous example Eq. (8). Finally,
we increased the share of arrhythmic segments from 10% to
60% (Fig. 16). For each assumed number of incorporated
arrhythmic segments we generated 1000 test series, and all
the results presented are based on this data set. We found the
following:

(i) 10% and 20% of long arrhythmic segments incorporated
[Figs. 16(a) and 16(b)] does not change the results of MMA
considerably [cf. Fig. 8(a)]: the mean distance between Hurst
surfaces for these cases is under threshold: d = 0.033 and
0.061, respectively.

(ii) A large percentage of the arrhythmic segments [30%
and higher, Figs. 16(c)–16(f)] causes two main changes in the
shape of the Hurst surface: at small scales the surface moves
downward, while it moves up for large scales and negative q.

TABLE III. Mean values 〈h2(q,s)〉 and the intersurface distances
d (see Sec. VI C for definition) between the results for the original
time series (CHM) and its successive modifications (short and long
arrhythmic segments included, cf. Sec. VI F). In every case, mean
value μ and standard deviation σ are based on results for a group of
1000 realizations of each test series.

10% 20% 30% 40% 50% 60%

Short d μ 0.065 0.109 0.142 0.169 0.194 0.216
σ 0.004 0.003 0.003 0.002 0.002 0.002

〈h2(q,s)〉 μ 0.810 0.764 0.725 0.692 0.665 0.644
σ 0.003 0.003 0.003 0.002 0.002 0.001

Long d μ 0.033 0.061 0.076 0.095 0.110 0.125
σ 0.006 0.009 0.012 0.013 0.013 0.012

〈h2(q,s)〉 μ 0.856 0.847 0.852 0.842 0.834 0.825
σ 0.009 0.013 0.015 0.016 0.018 0.018

We summarize both examples regarding the effect of
arrhythmia as follows:

(i) A large part of the Hurst surface remains relatively
unaffected by the inclusions of arrhythmia events in both
examples, even for a very large incidence of arrhythmia:
s ∈ 〈90,300〉 for all values of q and s ∈ 〈300,360〉 for positive
values of q. If, during the calculation of the intersurface
distance, the unstable parts of the Hurst surface (outside the
ranges defined above) are excluded, then for the case with 30%
of long arrhythmic segments incorporated into the series, the
mean distance to the reference h(q,s) decreases from 0.076
(cf. Table III) to 0.054, and therefore it is below the threshold.

(ii) There is a visible difference between the results obtained
for the short arrhythmic inclusions and for the long ones at
small scales for all values of q and for large scales and negative
values of q (cf. Figs. 14 and 16). This indicates differences in
correlation properties between the two examples.

(iii) Short arrhythmic segments affect much more strongly
the correlation properties of the series. This is so because
the long segments introduce their own correlation properties
into the series [20]. The number of inclusions is also much
less compared to the other test series, and so the number of
transitions from the original time series to an inclusion is also
smaller. The mean 〈h2(q,s)〉 decreases significantly with the
increase of the number of short segments incorporated. This
effect is similar to that caused by noise or randomization.

(iv) The threshold 0.065, which we assumed for the mean
distance between cases to be non-negligible, leads to the
conclusions described above. Note that this is a very simple
criterion and that the human eye seems to be able to discern
better a part of the Hurst surface that remains invariant to
nonstationarity (as well as to noise) for a larger number of
arrhythmia inclusions. Perhaps a more sophisticated criterion,
e.g., using an artificial neural network, would perform better.
Here, we provide the simple criterion based on the intersurface
distance just to show the basic properties of our method and
indicate its feasibility.

G. Results for unaltered cardiological data

In this paper, we present the main properties of a new
multifractal analysis method, with the ultimate goal being

021915-12



MULTISCALE MULTIFRACTAL ANALYSIS OF HEART . . . PHYSICAL REVIEW E 85, 021915 (2012)

to develop a universal heart rate variability analysis tool.
We believe that one of the first steps on the way to clinical
applications of our method should be to determine the image
for healthy individuals as a reference, i.e., to determine which
multifractal, multiscale properties that we can find with MMA
in healthy subjects are the most characteristic for them. We
carefully examined the Hurst surfaces obtained for the group
of healthy subjects studied here, and we found that there are
several common, typical traits (a “template”). For the healthy
subjects, it appears that there is a characteristic distribution of
fluctuation scaling (i.e., distribution of properties of correla-
tions, cf. Sec. II) versus fluctuation magnitude and frequency
band. The typical distribution of h(q,s) values for a healthy
subject (i.e., the most typical shape of the surface for such a
case) can be seen in Fig. 8(a). The characteristic features are
as follows:

(i) h(q,s) in Fig. 8(a) varies from 0.56 to 1.16 (subject
CHM, for all healthy subjects, from a minimum of 0.40–0.75
to a maximum of 1.05–1.90).

(ii) For q > 0 and s ∈ 〈30,90〉, there is a visible hill [for
CHM, h(q,s) ≈ 1.16, and for all the group, 1.04–1.36].

(iii) Around q = 0 and s ∈ 〈180,360〉 there is a ridge
[h(q,s) ≈ 0.90; 0.76–1.07 for all the group].

(iv) First characteristic depression for q < 0 and s ∈
〈60,120〉 [h(q,s) ≈ 0.81; 0.52–0.92 for all the group].

(v) Second characteristic depression for q > 0 and s ∈
〈150,360〉 [h(q,s) ≈ 0.90; 0.73–1.04 for all the group].

Any deviations from this template indicate abnormalities
in the properties of heart rate variability of the recording
analyzed. In particular, arrhythmic events result first of all
in changes in the regions: s ∈ 〈30,90〉 for all values of q and
s ∈ 〈300,360〉 for negative values of q.

The above-described characteristic criteria allow us to
distinguish patients from healthy persons and were first applied
by hand in a blind test. Note that these criteria are related to the
properties and the frequency of occurrence of arrhythmia in the
recordings studied (i.e., arrhythmias cause certain, abnormal
changes in the Hurst surface). We also converted the above-
described quantitative criteria into a numerical algorithm,
which allowed us to analyze the given h(q,s) automatically,
and we obtained very promising statistical results. The nine
cardiac arrest cases were recognized among the 49 healthy
individuals with a sensitivity 78%, specificity 81%, positive
predictive value 50%, and negative predictive value 94%. In
particular, three of the five cardiac arrest cases without organic
heart disease were properly recognized. Note that these five
cases were unrecognizable by any linear method [21]. At this
stage, no attempt was made to create a full-fledged assessment
of the applicability for medical diagnostics with properly
designed, balanced medical groups. The cardiac arrest cases
were included here solely to demonstrate the properties of
MMA. Thus, the sensitivity and specificity quoted here should
be taken only as an indication of the potential use of our
method. The method needs to be verified on a larger group
of patients. In defining our “template” for healthy heart rate
variability, we encountered some exceptions, usually related
to the age of the subjects, especially for persons younger than
16 (see, e.g., Fig. 17) and for those older than 60.

When cross sections of the h(q,s) plot for the healthy
25-year-old man CHM [Fig. 8(a)] for several constants

FIG. 17. (Color online) (a) “Reversed” multifractality: h(q,s)
calculated for the nighttime RR interval series shown below.
(b) Nighttime RR interval series of a healthy 14-year-old girl (MKL).

s were analyzed, three clearly visible scaling areas
(〈30,50〉; 〈50,100〉; 〈100,360〉) were found. The cross sections
for the midpoints of these scaling ranges are shown in Fig. 18.
This means that the fluctuation function family Fq(s) for heart
rate variability may exhibit a double crossover (in Fig. 18,
we can see monofractality, multifractality, and “reversed”
multifractality, respectively). Note that the case CHM is a
typical example of heart rate variability of a healthy male in
his mid-twenties.

The cross sections of h(q,s) at constant s sometimes show
a “reversed” multifractality, i.e., the cross section hs(q) is a
monotonically increasing function [Fig. 18(b)]. This may be
caused by seasonal trends in the time series or by significant
changes of the fractal properties along the time series [31,32].
It is even possible to observe such “reversed” multifractality
for all available scales s (nighttime RR interval series of a
14-year-old healthy girl; see Fig. 17).

Comparing Figs. 8(a) and 19(a), we can see that substantial
differences are clearly visible between the results obtained for
a healthy subject (CHM) and a subject without an organic
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FIG. 18. (a) Cross section of the h(q,s) dependence for healthy
subject CHM, taken for scale s = 30. (b) The cross section for s = 75
and (c) for s = 360.

heart disease at risk of cardiac arrest (BHD) who, before the
recording analyzed here was made, had suffered two cardiac
arrests and now wears an implantable cardioverter device.
CHM is the sex, age, and disease matched control pair for
BHD used in our earlier study [21].

We also show that h(q,s) for the heart rate variability
obtained after a successful, nine months pharmacological
treatment after cardiac arrest of the post-myocardial infarct
patient DWD [Fig. 20(b)], except for the small scale range,
resembles that for the healthy subject CHM [cf. Fig. 8(a)].
The difference visible in Fig. 20(b) between DWD and CHM at
small scales is due to a certain number of arrhythmias that still
occur [Fig. 20(c)] in spite of the pharmacological treatment
and do not occur in the CHM case. Compare with the raw
data in Fig. 13(a) recorded in DWD just before his cardiac
arrest and subsequent resuscitation. Note that DWD is 64 years
old. In spite of this—except for the well-localized effect of
arrhythmia on the h(q,s) surface—the results obtained after
pharmacological treatment [Fig. 20(b)] compare well with
those for the 25-year-old healthy subject in Fig. 8(a). This
indicates that the template that we have attempted to define in
this paper is a useful concept.

VII. CONCLUSIONS

We present a generalization of the MF-DFA method called
multiscale multifractal analysis (MMA). The method allows
us to extend the description of the properties of the fluctuations
of a signal depending on their magnitude and the time scale
(frequency band) at which they occur, using the generalized
dependence of the local Hurst exponent on the scale: the
surface h(q,s). On this surface, the results of the standard
DFA method are represented by one (or two) single points
corresponding to the exponent α. The results of standard
MF-DFA are represented by a single line: a cross section of
h(q,s) at a constant s.

FIG. 19. (Color online) (a) h(q,s) dependence for a 25-year-old
man at risk of cardiac arrest (BHD) but without an organic heart
disease [cf. Fig. 8(a)]. (b) RR interval series for BHD.

MMA eliminates the need for initial assumptions about
the presumed time scale of the investigated problem. The new
method is able to characterize monofractality or multifractality
of the time series in a wide range of frequencies (scales)
simultaneously and may be easily applied to data with strong
crossover properties. It may be used with data set lengths
down to 15 000 data points in the case of multifractality
stemming from correlations. In the case of multifractality due
to the properties of the distribution of the series, this number
rises to 20 000 data points, because rare events in fat tails of
distribution do not have a sufficient representation, and, in
fact, the distribution is different from the complete Cauchy
distribution. In general, when analyzing data with unknown
distribution properties, we have to use a time series of at least
20 000 points. We found that the method is relatively resistant
to observational noise and nonstationarities, including those
in the form of inclusions into the time series of a different
dynamics such as arrhythmic events. For heart rate variability
analysis of clinical data, the latter feature of MMA allows us to
analyze data with at least up to 15% of arrhythmia events—an
improvement compared with the less than 5% usually assumed.
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FIG. 20. (Color online) (a) h(q,s) for a subject at risk of
cardiac arrest (DWD); cardiac arrest occurred about 1 h after the
time series analyzed. (b) h(q,s) for the same subject but after
a very successful, nine-month pharmacological treatment. (c) The
nighttime RR interval series of the subject DWD after successful
pharmacological treatment, the fragment analyzed in (b).

We show that MMA can correctly recognize fractal properties
of time series even for relatively small scales, and that it is
capable of properly recognizing different fractal properties in
small and large scales simultaneously.

To calculate the h(q,s) surface, we use the scale range s ∈
〈30,360〉 while, usually, the mean RR interval in a nighttime
series is approximately 1 s. Thus, the approximate range
of the frequencies we are analyzing is 0.003–0.03 Hz. As
defined in the standard guidelines for heart rate variability
diagnostics [35], this frequency range corresponds to the
very low frequencies band (VLF defined as 0.003–0.04 Hz).
This clinically accepted guidelines document—based on linear

signal analysis methods—stated in 1996 that, “although the
ULF and VLF components account for the remaining 95% of
total power, their physiological correlates are still unknown”
and that their interpretation needs further development. In the
literature, there is a wide discussion about the interpretation
of this frequency range. There are some interpretations
suggesting that in the VLF band, one can find the effect
of thermoregulation [36], the renin-angiotensin-aldosterone
system [37], baroreflex, chemoreflex, and abnormalities such
as sleep apnea and Cheyne-Stokes respiration [38,39], or
that parasympathetic mechanisms play the main role in this
frequency range [37,40]. It is likely that all these interpretations
are correct, and information about all these phenomena may
be found within the VLF range. Up to now, a direct medical
interpretation of any kind of results obtained in the VLF range
(and also in the ULF band) was difficult as the only method
used to assess properties of this band was a power spectrum,
and in the power spectrum ULF and VLF merge into a single
peak. In spite of this difficulty, VLF power is used in medical
diagnostics. MMA is therefore a method that allows us to
assess the correlation properties (cf. Sec. VI B) of heart rate
variability as a function of the scale (frequency range) and of
the magnitude of the fluctuations. We believe that this approach
can be very useful in ascertaining the meaning of the VLF
component of heart rate variability.

We show that human heart rate variability not only has
multifractal properties but also that these properties depend
on the time scale, which is related to the frequency band of
the signal. This dependence may be far more complex than
it is usually assumed and, in general, differs very much from
subject to subject. Since the method is relatively insensitive
to nonstationarities in the signal, MMA does not require
arrhythmia filtering to analyze RR interval series: the effects
of arrhythmia are readily recognizable in the properties of the
h(q,s) surface. This is, in our opinion, an important issue that is
also of promising medical value—a lot of cases are eliminated
from HRV analysis because of arrhythmias. Preliminary tests
showed that the method may allow us to detect the risk of
cardiac arrest also for subjects without any organic heart
disease.
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GIERAŁTOWSKI, ŻEBROWSKI, AND BARANOWSKI PHYSICAL REVIEW E 85, 021915 (2012)

[13] L. Telesca, G. Colangelo, V. Lapenna, and M. Macchiato, Chaos
Solitons Fractals 18, 385 (2003).

[14] Z.-Y. Su and T. Wu, Physica D 221, 188 (2006).
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[16] M. Petelczyc, J. J. Żebrowski, and R. Baranowski, Phys. Rev. E

80, 031127 (2009).
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