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Clinical studies have shown compelling data of elevated biopotential signals recorded noninvasively from the
breasts of women with breast cancer. While these data are compelling and show a strong potential for use in the
noninvasive early detection of breast cancer, there remains significant knowledge gaps which must be addressed
before this technology can be routinely used for breast cancer detection. A diffusion-drift model is developed to
study the spatial and temporal characteristics of the biopotential signals of breast tumors taking into account the
morphology and cell division stages. The electric signals of the most common tumor types—papillary, compact,
and comedo—are also considered. The largest biopotential signal is observed from the compact tumor, while the
smallest signal is observed from the papillary type. The results also show an increase in the time duration of the
generated biopotential signals when cancer cells start their transitions at different time instants. The spatial and
temporal variations of the biopotential signals are correlated with the tumor pattern which can have important
implications for breast cancer detection.
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I. INTRODUCTION

Breast cancer is the most common cancer diagnosed and
the second leading cause of cancer-related mortality for
women in the US [1]. Early detection is a key in limiting
breast cancer metastasis and improving long-term survival.
Advances in detection technology have helped improve 5-
year survival rates from 76% in 1975 to 89% in 2010 [2].
Nevertheless, existing breast cancer screening methods suffer
from substantial limitations, as recently reported in Ref. [3].
When comparing existing detection techniques alone or in
combination, the highest reported sensitivity rate was 99.4%
when mammography, clinical examination, and magnetic
resonance imaging (MRI) were combined [3]. However, this
high sensitivity was achieved at the expense of a low specificity
of 7%. In sum, the combination of three techniques was able
to identify accurately nearly all malignancies but was not
effective in identifying healthy individuals. When combining
only mammography and clinical examination, the highest
overall accuracy, 75.6%, was achieved corresponding to a
sensitivity of 77.4% and a specificity of 72% [3]. This
level of accuracy means that one in four women may be
diagnosed incorrectly, either false positive or false negative.
The previous statistics show that novel and well understood
detection methods are needed to improve the accuracy of breast
cancer detection.

In this paper, the biopotential signals produced by breast
cancer cells are investigated due to their potential use as
noninvasive, passive, and low cost screening technology.
Biopotential signals arise during cell division in all cells due to
variations in membrane potential and ion channel activity [4].
Because cancer cells divide continuously, the measurement
of electrophysiological activities, specifically biopotential
signals, presents an opportunity to distinguish malignant from
normal cells. Recent experimental studies at the cellular scale
have measured the electrophysiological activities of breast
cancer cells, using the human breast cancer cell line MCF-7
[5–9]. These studies demonstrate a prominent role for ion
channels, especially potassium ion channels, in the regulation
of both cell division and membrane potential. Furthermore,
an increase in potassium channel expression was directly

linked with tumorigenesis [8]. Finally, ras-transformed MCF-7
cells, a more malignant phenotype, exhibited larger changes
in membrane potential due to hyperpolarization and larger
potassium currents than conventional MCF-7 cells. Together,
these observations indicate that biopotential signals provide an
opportunity not only to detect breast cancer, but also to predict
the degree of malignancy [9]. These cellular activities are taken
into account in the diffusion-drift model to explain the biopo-
tential signals recorded from breast cancer patients [10–20].

Several clinical studies have shown an elevation in biopo-
tential signals recorded from the breasts of women with
malignant tumors [10–20]. One preliminary study reported that
combining biopotential measurements with mammography or
ultrasound could potentially provide almost 100% sensitivity
and 96% specificity [19]. While these data are compelling,
there remain significant gaps in knowledge which must be
addressed before biopotential signaling is routinely used in
the detection of breast tumors. Examples of such knowledge
gaps are the unknown limits of detection in terms of the
smallest tumor size, the depth at which it can be detected,
and the optimum location and duration of sensor placement
for accurate. Furthermore, none of the preliminary clinical
studies had analyzed or explained the large standard deviations
observed in the recorded biopotential signals [10–20].

In order to address these knowledge gaps, we previously
developed a simplified two-dimensional (2D) model that
analyzed biopotential signals of a small number of MCF-
7 cancer cells surrounded by plasma [21–24]. Our model
was based on the diffusion and drift forces imported from
semiconductor devices [21]. The model was used to simulate
both the depolarization transition, where the cell membrane
potential becomes more positive, and the hyperpolarization
transition, where the cell membrane potential becomes more
negative [22–25]. In addition, the computer parallelization of
the diffusion-drift algorithm allowed the simulation of tumors
composed of up to 1089 cells, as reported in Ref. [23].
However, in all our previous works, the cancerous cells
were not realistically arranged to simulate a realistic tumor
pattern. In this work, the most common tumor types are
incorporated into the diffusion-drift model to study the effect
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of tumor morphology on the generated bioelectric signals. The
preliminary results of [25] show the variation of biopotential
signals with the tumor pattern. In addition, the study is
extended here to demonstrate a steady biopotential signal upon
integrating all signals of all cancerous cells where cells divide
independently.

Realistic tumor types were generated using a plethora of
tumor growth models reported in the literature [26–31]. These
models incorporated different factors such as the level of tumor
malignancy, the interactions among the cancerous cells, and
the interactions between the cancerous cells and their host
environment [26–31]. These interactions included competition
between cancerous and healthy cells [26,27], pressure effects
due to anatomical constraints [28], contact inhibition effects,
[29] and attack from the immune system [30]. These factors
led to tumors of highly fractal shapes as simulated in Refs. [26]
and [29]. More specifically, Ferreira et al. developed a reaction-
diffusion tumor growth model capable of simulating various
tumor morphologies such as compact, papillary, and comedo
[26]. Different morphologies were achieved by incorporating
different levels of competition for nutrients among the cancer-
ous cells and the healthy cells [26]. In this work, the tumor
growth model of Ferreira et al. [26] is utilized to generate
biologically accurate tumor patterns. The current diffusion-
drift model utilizes the Ferreira et al. model to arrange the
MCF-7 cancer cells and generate tumor patterns. All cancerous
cells are still immersed in plasma in this work [21–25].

This paper is organized as follows. Sec. II outlines the
diffusion-drift model and Sec. III presents the numerical
biopotential results for different tumor morphologies and cell
division stages. Finally, the conclusions are summarized in
Sec. IV. Appendix A summarizes the Ferreira et al. model [26],
whereas Appendix B summarizes the systems of equations
composing the diffusion-drift model.

II. DIFFUSION-DRIFT MODEL

Electrophysiological activities of growing cancer cells can
disturb the balance of ions in the extracellular and intracellular
media creating diffusion and drift forces. The following
Poisson, Nernst-Plank, and continuity equations have been
used to model the diffusion and drift forces in the 2D model
[21–24]:

∇2φ = −F

ε

∑
m

ZmCm, (1a)

�Jm = −Dm∇Cm − μmZmCm∇φ + �Jam, (1b)
∂Cm

∂t
= −∇ · �Jm, (1c)

where φ is the biopotential, F is Faraday’s constant
(96 485 C/mol), ε is the permittivity of the material (80ε0 for

water under quasistatic conditions), and, for each ion m, Zm is
the signed valence, Cm is the concentration, �Jm is the electric
current density, Dm and μm are the diffusion and mobility
coefficients, respectively, and �Jam is the active electric current
density due to ion pumps in the cell membrane. There is no
known closed form solution to the above coupled equations.
Therefore, numerical methods were implemented to include
each term in Eq. (1), leading to a computationally expensive
algorithm. Even though there are hundreds of charged ions
involved in any cell, only a limited number of charged ions are
hypothesized to have a significant impact on the electrophys-
iological activities of breast cancer cells [32]. In this work,
the symbol m in Eq. (1) represents only four types of ions—
potassium (CK+), sodium (CNa+), chloride (CCl-), and neg-
atively charged protein (CA-)—because of their documented
impact on the membrane potential of all living cells [32].

The above equations are coupled, highly nonlinear partial
differential equations [21–24]. They involve spatial as well
as temporal variations that are discretized both spatially in
the x and y and temporally in the time domain (t). Implicit
discretization in time provided stability at the expense of high
computational demands due to solving four linear systems
of equations: one system for the time-dependent biopotential
and three systems for three ions. The implicit temporal
discretization of (1) for the biopotentialφcan be expressed
as [21–24]

∇2φt+1 = −F

ε

∑
m

Zm

(
Ct

m − �t �∇ · �J t,t+1
m

)
, (2a)

Ct+1
m − Ct

m

�t
= −�∇ · �J t+1

m

= �∇ · (
Dm

�∇Ct+1
m + μmCt+1

m Zm∇φt+1 − �Jam

)
,

(2b)

where the update in time is represented by (t + 1). Notice that
the last term in Eq. (2a) provides the stability to the temporal
discretization. The present model uses nonuniform spatial
discretization of both the 2D intracellular and extracellular
domains due to the contrast in size in the different spatial
scales in the model. For example, the gap between cells is
almost 10 times smaller than the cell size [22]. The spatial
discretization of the biopotential is expressed at pixel (i,j ) as

∇2φt+1(i,j ) = ∂2φt+1(i,j )/∂x2 + ∂2φt+1(i,j )/∂y2, (3)

where the derivative terms with respect to x and y are expressed
as functions of the neighboring pixels (i−1,i+1,j−1,j+1)
[21–24]. Nonuniform spatial discretization is evoked to effi-
ciently handle the contrast in size between the different features
in the model. For example, the average intercellular spacing
is more than an order of magnitude smaller than the cell
size [22–24]. Once spatially discretized (2) can be expressed
as

∇2φt+1(i,j ) = ∂2φt+1(i,j )/∂x2 + ∂2φt+1(i,j )/∂y2 = 2

hi,j + hi,j+1

[
φt+1(i,j + 1)

hi,j+1
+ φt+1(i,j − 1)

hi,j

− φt+1(i,j )
hi,j + hi,j+1

hi,jhi,j+1

]

+ 2

gi,j + gi+1,j

[
φt+1(i + 1,j )

gi+1,j

+ φt+1(i − 1,j )

gi,j

− φt+1(i,j )
gi,j + gi+1,j

gi,j gi+1,j

]
, (4a)
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and

�∇ · �J t,t+1
m = [Jxm(i,j + 0.5) − Jxm(i,j − 0.5)]/[(hi,j + hi,j+1)/2]

+ [Jym(i + 0.5,j ) − Jym(i − 0.5,j )]/[(gi,j + gi+1,j )/2], (4b)

Jxm(i,j + 0.5) = −Dm(i,j + 0.5)
[
Ct

m(i,j + 1) − Ct
m(i,j )

]
/hi,j+1

−Zmμm(i,j + 0.5)Ct
m(i,j + 0.5)[φt+1(i,j + 1) − φt+1(i,j )]/hi,j+1 + Jaxm

(i,j + 0.5), (4c)

Jxm(i,j − 0.5) = −Dm(i,j − 0.5)
[
Ct

m(i,j ) − Ct
m(i,j − 1)

]
/hi,j

−Zmμm(i,j − 0.5)Ct
m(i,j − 0.5)[φt+1(i,j ) − φt+1(i,j − 1)]/hi,j + Jaxm

(i,j − 0.5), (4d)

where hi,j+1 = xi,j+1 − xi,j , hi,j = xi,j − xi,j−1, and xi,j ,
xi,j +1, xi,j −1 represent the x coordinates of the grid points
(i,j ), (i,j + 1), and (i,j–1), respectively, and gi+1,j =
yi+1,j − yi,j , gi,j = yi,j − yi−1,j , and yi,j , yi+1,j , and yi−1,j

represent the y coordinates of the grid points (i,j ), (i + 1,j ),
and (i − 1, j ), respectively. Similar equations to (4c) and (4d)
are obtained for Jym. Upon regrouping all discretized terms in
time and space, four linear systems of equations are produced
for the biopotential φ, potassium CK+ , chloride CCl− , and
sodiumCNa+ concentrations as [23]

Aφvφ = bφ, (5a)

AK+vK+ = bK+ , (5b)

ACl−vCl− = bCl− , (5c)

ANa+vNa+ = bNa+ , (5d)

where vφ,vK+ ,vNa+ ,vCl− are the biopotential, concentration
of potassium ions, concentration of sodium ions, and con-
centration of chloride ions, respectively, at each grid point
in the computational domain. The entries of the systems of
equations in Eq. (5) are expressed explicitly in Appendix B.
Since proteins cannot penetrate the cell membrane, in this
work their concentration is assumed fixed at 135 mM [21,22].
Therefore, there is no relation for the motion of proteins CA-
via the diffusion or the drift forces. However, the effect of
the negatively charged proteins CA- is incorporated in all

FIG. 1. (a) First papillary tumor pattern, (b) first comedo tumor pattern, (c) first compact tumor pattern, (d) second papillary tumor pattern,
(e) second comedo tumor pattern, (f) second compact tumor pattern, (d) third papillary tumor pattern, (e) third comedo tumor pattern, (f) third
compact tumor pattern.
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FIG. 2. The computational domain showing the locations of the biopotentials V1 and V2.

calculations as indicated in Eq. (1), where m represents all
four ions considered in this work, including the negatively
charged proteins.

Each cancer cell’s semipermeable membrane contains
active ion pumps and ion channels whose activities vary
with the cell division stage. Upon opening and closing the
membrane channels, its permeability varies with the division
stage. During the cell division cycle, membrane potentials
exhibit either depolarization or hyperpolarization [5]. The
depolarization of the membrane of MCF-7 cell typically
occurs at the beginning of the G1 stage of the cell division
cycle, whereas the hyperpolarization occurs at the G1/S
transition of the cycle [5]. The 2D model accounted for
both depolarization and hyperpolarization when calculating
the biopotential signals. The variations in the membrane
potential can be attributed to changes in the permeability of
the cell membrane to certain ions in addition to variations
in the active currents due to ion pumps at the membrane.
For example, the permeability of the MCF-7 cell membrane
to potassium ions was found to increase by a factor of 10
during the hyperpolarization stage which occurs in the G1/S
transition [6]. The active current due to the ion pumps at the cell
membrane was found to increase during the G1/S transition of
neuroblastoma cancer cells [33,34]. The previously described
changes in the permeability of the cell membrane to potassium

ions and the level of the active current densities are used
together with Eqs. (1)–(4) to simulate the depolarization and
hyperpolarization.

III. NUMERICAL RESULTS

In order to reduce the computational time, the solution of the
four systems of equations (4) is parallelized using the Portable,
Extensible Toolkit for Scientific Computation (PETSc) library,
as discussed in Ref. [23]. All of the results in this paper are
generated using the parallelized code developed in Ref. [23]
and executed using 56 processors on the Star of Arkansas
supercomputer. The Star of Arkansas consists of 157 nodes
each with dual quad-core Xeon E5430 processors, 2 × 6 MB
cache, 2.66 GHz, 1333FSB. The Star of Arkansas has 1256
available cores and each core has 2 GB of memory. Three
tumor types—papillary, compact, and comedo, which is a
tumor with a central necrotic core—are generated using the
Ferreira et al. model and adapted for the diffusion-drift model
as detailed in Appendix A [26].

Nine tumor patterns are simulated here, where each of
the three patterns belong to one tumor type (i.e., papillary,
compact, or comedo). For each of the nine tumor pat-
terns, six different distributions of cell division stages are
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FIG. 3. (Color) The spatial distribution of the intracellular biopotentials for Set 1 and Case 1 for the (a) first papillary pattern, (b) first
comedo pattern, and (c) first compact pattern and the spatial distribution of the intracellular and extracellular biopotentials for Set 1 and Case
1 for the (d) first papillary pattern, (e) first comedo pattern, and (f) first compact pattern. All 444 cells are depolarizing.

considered. A total of 54 cases, are simulated in this work.
Due to computational resource limitations, only 444 cancerous
MCF-7 cells are considered in each tumor pattern. Set 1 is
shown in Figs. 1(a)–1(c), Set 2 is shown in Figs. 1(d)–1(f),

and Set 3 is shown in Figs. 1(g)–1(i). The spatiotemporal
characteristics of the biopotential signals generated from these
three sets of tumor patterns are discussed in the following
sections.
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FIG. 4. (Color) The spatial distribution of the intracellular biopotentials for Set 2 and Case 1 for the (a) second papillary pattern, (b) second
comedo pattern, and (c) second compact pattern and the spatial distribution of the intracellular and extracellular biopotentials for Set 2 and
Case 1 for the (d) second papillary pattern, (e) second comedo pattern, and (f) second compact pattern. All 444 cells are depolarizing.

A. Spatial biopotential patterns

The computational domain shown in Fig. 2 is utilized in
simulating the biopotential signals generated by the tumor

patterns in Fig. 1. The computational domain consists of
450 × 450 pixels and all the patterns in Fig. 1 are centered at
the center of the computational domain in Fig. 2. The regions
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FIG. 5. (Color) The spatial distribution of the intracellular biopotentials for Set 3 and Case 1 for the (a) third papillary pattern, (b) third
comedo pattern, and (c) third compact pattern and the spatial distribution of the intracellular and extracellular biopotentials for Set 3 and Case
1 for the (d) third papillary pattern, (e) third comedo pattern, and (f) third compact pattern. All 444 cells are depolarizing.

of the computational domain where no cancerous cells exist
are filled with plasma including the intercellular spacing. In
the comedo type, where dead cells exist in the center, the
center is also filled with plasma. In reality, the necrotic core is

filled with dead cancerous cells and enzymes secreted to break
down the dead cancerous cells [31]. This mixture is modeled
as plasma as a first order approximation to the mixture in the
necrotic core.
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FIG. 6. (Color) The spatial distribution of the intracellular and extracellular biopotentials for the first papillary pattern for the six cases: (a)
where all the cells are depolarizing, (b) where the majority of the cells are depolarizing, (c) where the majority of the cells are quiescent, (d)
where the cells are equally distributed between the depolarization, hyperpolarization, and quiescent stages, (e) where the majority of the cells
are hyperpolarizing, and (f) where all the cells are hyperpolarizing. Total number of cells is 444 in each figure.

There are three main membrane potential transitions incor-
porated in this work: (i) depolarization (D), (ii) hyperpolariza-
tion (H), and (iii) quiescence (Q). The first case considered,
Case 1, considers all cells as depolarizing. The results in
Figs. 3, 4, and 5 are obtained upon running the diffusion-drift
algorithm for 49 s from the start of the depolarization transition
for tumor Set 1 [Figs. 1(a)–1(c)], Set 2 [Figs. 1(d)–1(f)], and
Set 3 [Figs. 1(g)–1(i)], respectively. Figures 3(a)–3(c) show the
intracellular biopotential, which is the biopotential inside the
cancerous cells. Figures 3(d)–3(f) show both the intracellular
and the extracellular biopotentials where the intracellular
biopotential is shown in shades of gray, while the extracellular
biopotential is shown in color. Due to the large contrast in the
magnitude of the biopotentials inside and outside the cells,
two color scales are used in Figs. 3(d)–3(f). The color bars

show that the magnitudes of the intracellular biopotentials are
significantly larger than the magnitudes of the extracellular
biopotentials. The reference zero biopotential for all plots is
the blood vessel at the right hand side of the computational
domain in Fig. 2. Similar plots are shown in Figs. 4 and 5 but
for the tumor Sets 2 and 3, respectively.

In the depolarization transition, the intracellular biopoten-
tial becomes more positive, changing from −42.3 to −15 mV
[21]. Figures 3(a)–3(c) demonstrated that the cancerous cells at
the outer rim of the tumor are more positive than the cancerous
cells in the interior of the tumor. Therefore, the transition is
slightly faster in the cells on the outer rim of the tumor than
in the cells in the interior of the tumor, which is also observed
in Figs. 3(b) and 3(c). This faster transition can be explained
by the fact that the cells at the outer rim of the tumor have

TABLE I. Description of Cases 1–6.

Case Description

Case 1 All cells are depolarizing
Case 2 66.6% of the cells are depolarizing, 16.6% of the cells are hyperpolarizing, 16.6% of the cells are quiescent
Case 3 66.6% of the cells are quiescent, 16.6% of the cells are depolarizing, 16.6% of the cells are hyperpolarizing
Case 4 33% of the cells are depolarizing, 33% of the cells are hyperpolarizing, 33% of the cells are quiescent
Case 5 66.6% of the cells are hyperpolarizing, 16.6% of the cells are depolarizing, 16.6% of the cells are quiescent
Case 6 All cells are hyperpolarizing
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FIG. 7. (Color) The spatial distribution
of the intracellular and extracellular biopo-
tentials for the (a) first comedo pattern for the
case where all the cells are depolarizing and
(b) first comedo pattern for the case where
the majority of the cells are depolarizing. The
point of maximum biopotential at the tissue
boundary (x = 0) is marked with a black
arrow. Total number of cells is 444 in each
figure.

more access to the extracellular plasma and, therefore, any
ions released by these cells disperse faster clearing the way for
more ions to be dispersed by the cells.

In Fig. 3(d), the magnitude of the biopotential in the gaps
between the fingerlike protrusions of the tumor pattern is
significantly high (negative in sign). This is because any
ions released in those gaps have their motion restricted
by the surrounding cell boundaries and, therefore, the ions
accumulate causing the magnitude of the biopotentials to
increase. The same explanation can be used to explain why the
biopotential is large in the necrotic core in Fig. 3(e) since the
ions released in the necrotic core have their motion restricted
by the cells in the outer rim of the tumor. As for the compact
pattern in Fig. 3(f), the maximum extracellular biopotential
is in the intracellular spacing surrounding the MCF-7 cells
in the center of the tumor and it decreases gradually in the
intercellular spacing toward the boundary of the tumor. Upon
comparing the magnitudes of the extracellular biopotentials in
the color bars in Figs. 3(d)–3(f), it can be seen that the compact
tumor shape generates the largest extracellular biopotential.
This can be explained by the fact that most of the cells in the
compact pattern have only access to the extracellular plasma
in the small intercellular spacing and, therefore, the ions
released by the cells have their motion significantly reduced.
The papillary pattern has substantial access to plasma caused
by the increase in the surface area to volume ratio resulting
from its fractal shape. For the comedo pattern, most of the cells
have access to the plasma in the necrotic core, which causes
the generated extracellular biopotential to be lower than those
generated from the compact pattern.

The same trend between the generated biopotentials and
the tumor morphology can be seen in the different patterns
in Fig. 4 for Set 2 and in Fig. 5 for Set 3. Upon comparing
all results in Figs. 3–5, it can be seen that different tumor
patterns generate different spatial variations in biopotential
signals. The differences are especially clear in the vicinity of
the tumor. Comparing the results in Fig. 3(e) with those in
Fig. 4(e), it can be seen that the extracellular biopotential in
the necrotic core in Fig. 4(e) is larger in magnitude than that
in the necrotic core in Fig. 3(e). This can be explained by the
fact that the necrotic core in Fig. 4(e) is smaller than the one
in Fig. 3(e) and, therefore, the motion of the ions dissipated
by the cells is more restricted in this case.

The cell division cycle can be divided into G0, G1, S,
G2, and M stages. The G0 stage is a dormant stage that
the cell enters before or after the division is completed. In
the G1 stage, the cell grows and the proteins and RNA
are synthesized, whereas in the S stage, the chromosome
replication occurs. The cell growth continues in the G2 stage,
which also acts as the final checkpoint before the cell divides
in the mitosis or the M stage. In this work, all cells were
assumed to be simultaneously depolarizing; therefore, they
are in the same cell division stage. However, in a growing
tumor, it is more likely that cells divide independently [35].
Moreover, at different stages of tumor growth, the cancerous
cells favor a certain cell division stage more than the other [35].
Typically, tumors exhibit an initial exponential growing phase
followed by a plateau growing phase. In the in vitro study in
Ref. [35], MCF-7 cells composing a tumor in an exponential
growing phase were found to be divided among the cell
division stages as follows: 48.9 ± 0.6% of cells were in G0-G1,
39.4 ± 0.6% were in S, and 11.6 ± 0.3% were in G2+M phase.
However, in the plateau growing phase the distribution of the
MCF-7 cells changed as follows: 74.8 ± 0.7% of cells were
in G0-G1, 15.3 ± 0.4% were in S, and 9.8 ± 0.6% were in
G2+M phase. In addition, as the size of the tumor increases,
the majority of the cells are in the quiescent state, and only a
small fraction of the cells are dividing. These reports imply
that only a minority of the cells will be depolarizing or
hyperpolarizing.

To investigate the effect of different cell division stages,
five additional cases are simulated as illustrated in Figs. 6(a)–
6(f) for the first papillary pattern shown in Fig. 1(a). For
convenience, the cases are summarized in Table I. Figure 6(a)
shows the previously described Case 1, where all cells are
depolarizing. Figure 6(b) shows Case 2, where the majority
of cells are set to depolarize by setting the probability of cells
depolarizing to 66.6%, the probability of cells hyperpolarizing
to 16.6%, and the probability of cells quiescent to 16.6%.
Figure 6(c) shows Case 3 where the majority of cells are set
to be quiescent by setting the probability of cells quiescent
to 66.6%, the probability of cells depolarizing to 16.6%, and
the probability of cells hyperpolarizing to 16.6%. Figure 6(d)
shows Case 4, where cells are equally distributed among
the different transitions such that the probability of a cell
depolarizing, hyperpolarizing or quiescent is set equal to
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FIG. 8. (Color online) The biopotential differences V1 generated by the (a) first papillary pattern, (b) first comedo pattern, and (c) first
compact pattern and the biopotential differences V2 generated by the (d) first papillary pattern, (e) first comedo pattern, and (f) first compact
pattern. Total of 444 cells is used in each curve.

33%. Figure 6(e) shows Case 5, where the majority of cells
are set to hyperpolarize by setting the probability of cells
hyperpolarizing to 66.6%, the probability of cells depolarizing
to 16.6%, and the probability of cells quiescent to 16.6%.
Figure 6(f) shows Case 6, where all cells are hyperpolarizing.
The different percentages of the cells in each transition were
chosen empirically to study a variety of cases where the cells
are equally distributed among the transitions, 33% of the cells
in each transition, and the cases where the majority of the
cells, 66%, are in a certain transition. In Figs. 6(b)–6(e), the
black squares represent the quiescent cells, the dark gray

squares represent the hyperpolarizing cells, and the white
squares represent the depolarizing cells. Quiescent cells are
neither depolarizing nor hyperpolarizing and, therefore, do
not generate any extracellular biopotentials.

By comparing Fig. 6(a), all cells are depolarizing, with
Fig. 6(f), all cells are hyperpolarizing, it can be seen
that the hyperpolarization transition generates extracellular
biopotentials larger in magnitude than the depolarization
transition. In addition, in Fig. 6(d), the probability of a cell
depolarizing is equal to the probability of a cell hyperpo-
larizing; however, the extracellular biopotentials are mostly
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FIG. 9. (Color online) The biopotential differences V1 generated by the (a) second papillary pattern, (b) second comedo pattern, and
(c) second compact pattern the biopotential differences V2 generated by the (d) second papillary pattern, (e) second comedo pattern, and (f)
second compact pattern. A total of 444 cells is used in each curve.

positive, which indicates that the hyperpolarization dominates
the depolarization transitions as discussed in our previous
work [22–25].

In Fig. 6(b), where the majority of the cells are depolarizing,
lower extracellular biopotentials are generated in comparison
to the case where all the cells are depolarizing in Fig. 6(a).
Also, in Fig. 6(e), where the majority of the cells are hyperpo-
larizing, lower extracellular biopotentials were generated than
the case when all the cells are hyperpolarizing in Fig. 6(f). In
Fig. 6(c), where the majority of the cells are quiescent, the

extracellular biopotentials drop significantly compared to all
the other cases, as anticipated.

More importantly, randomly distributing the cells at dif-
ferent cell division stages causes the spatial distribution of the
extracellular biopotential to shift its peak, as shown in Fig. 6(c),
where the biopotential distribution is shifted downward. This
shift is further exemplified in Fig. 7 for the first comedo
pattern which shows that the peak biopotential at the tissue
boundary (x = 0) is different in the case when all the cells are
depolarizing in comparison to the case when only the majority
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FIG. 10. (Color online) The biopotential differences V1 generated by the (a) third papillary pattern, (b) third comedo pattern, and (c) third
compact pattern and the biopotential differences V2 generated by the (d) third papillary pattern, (e) third comedo pattern, and (f) third compact
pattern. A total of 444 cells is used in each curve.

of the cells are depolarizing. This observation is important
because in the reported biopotential detection clinical trials
[11–20], a single sensor was placed on top of the center
of the tumor and four other sensors were placed 2 cm to
the left, right, top, and bottom of the center of the tumor
[11–20]. Biopotential differences were then measured in these
clinics and the presence of significant biopotential differences
between the center electrode and the four other electrodes was
used as an indicator to the presence of a tumor [11].

Most of the results in Figs. 6 and 7 indicate that the
center sensor records the highest biopotential signal, which
is in agreement with the clinical trials in Ref. [19]. However,
few cases in Figs. 6 and 7, specifically Figs. 6(c) and 7(b),
indicate that the point of maximum biopotential might be
slightly shifted away from the center. Therefore, we propose
to add more sensors in the array to capture possible higher
peaks. More types of tumors; other than papillary, compact
and comedo; and more cell division stage distributions need to
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FIG. 11. (Color online) The biopotential
V1 generated by tumors in Case 1, all the cells
depolarizing, for the (a) papillary pattern in
Sets 1–3, (b) comedo pattern in Sets 1–3, and
(c) compact pattern in Sets 1–3.

be investigated in the future to accurately determine the ideal
sensor placement.

B. Temporal biopotential patterns

The results in the previous subsection show the spatial
distribution of the biopotentials for different tumor patterns
and at different cell division stages. This section is concerned
with investigating the temporal patterns of the generated
biopotentials. Two biopotential differences V1 and V2 are
considered, as indicated in Fig. 2. The biopotential difference
V1 is calculated at the tissue boundary and it resembles the
measurements performed on the surface of the breast in clinical
trials [11–20]. The two points defining V1 are positioned on the
tissue boundary such that one point is placed approximately
near the center of the tumor and the other point is placed away
from the center of the tumors. The biopotential V2 is defined
such that one point is placed directly inside the center of the
tumor and the other point is placed at the tissue boundary (see
Fig. 2). Studying V2 helps explain the motion of charges from
the tumor vicinity to the tissue boundaries or the breast surface.

For Set 1 of tumor patterns shown in Figs. 1(a)–1(c), the
biopotential differences V1 and V2 in all cases are plotted in
Fig. 8. For Set 2 of tumor patterns shown in Figs. 1(d)–1(f), V1

and V2 are plotted in Fig. 9. For Set 3 of tumor patterns shown in
Figs. 1(g)–1(i), V1 and V2 are plotted in Fig. 10. By considering
the positive peaks of the papillary pattern in Fig. 8(a), it
can be seen that the highest peak is achieved when all cells
are hyperpolarizing (Case 6), followed by the case when the
majority of the biopotentials are hyperpolarizing (Case 5),
followed by the case when it is equally probable for the cells
to be hyperpolarizing, depolarizing, or quiescent (Case 4),
and then, finally, the case when the majority of the cells are
quiescent (Case 3). As for the negative peaks of the papillary
patterns, the case when all of the cells are depolarizing (Case 1)
generated the largest magnitude followed by the case when the

majority of the cells are depolarizing (Case 3). This trend is
also observed in the comedo and compact patterns in Figs. 8(b)
and 8(c). In most of the results of V1, the trend was a rapid
increase, either positive or negative, followed by a slow decay
to zero. However, in some cases, such as in Case 2 of the first
comedo pattern in Fig. 8(b) when the majority of the cells
are depolarizing, the biopotential V1 exhibits an unusual trend
involving two maxima followed by a gradual decay to zero.
These double maxima can be attributed to the heterogeneity in
the division stages of the cancerous cells composing the tumor
and to the distribution of the cancerous cells over a relatively
large area. The biopotential contributions of cells at different
locations will then arrive at different times at the points where
V1 is calculated causing the unusual trend shown in Fig. 8(b).

For V2 in Figs. 8–10, it can be seen that V2 is significantly
larger, at least 10 times, than the biopotential V1 since it is
directly calculated at the center of the tumor. However, V1

is calculated at the tissue boundary and the ion imbalance,
caused by the ions discharged by the cancerous cells, dissipates
significantly before the ions reach the boundary. Moreover, the
peaks of V2 occur at earlier times than the peaks of V1 since
the ions discharged by the cancerous cells require time to
propagate to the tissue boundary (x = 0). Figures 8–10 show
that the compact patterns generate the largest V2 followed
by the papillary patterns and then the comedo patterns. The
reason behind this trend is that in defining V2, the point inside
the interior of the tumors is basically inside the necrotic core
of the comedo pattern where the motion of the ions is least
constricted.

To isolate the effect of the tumor shape from the effect
of the different cell division stages, Fig. 11 shows V1 for
only the cases where all cells depolarizing. Figure 11(a) shows
the biopotential V1 for the three papillary patterns, Fig. 11(b)
shows the biopotential V1 for the three comedo patterns, and
Fig. 11(c) shows the biopotential V1 for the three compact
patterns. By focusing on the peak of each curve in Fig. 11, it
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FIG. 12. (Color online) The biopotential differences (a) V1 and (b) V2 versus time for the 54 simulated cases from Sets 1–3 and Cases 1–6.
The averages and the standard deviations are outlined in thick black lines.

can be seen that the minimum peak is generated by the papillary
1 pattern, at a value of −14.4 μV, and the maximum peak is
generated by the compact 1 pattern, at a value of −24.1 μV.
Overall, the tumors in the papillary category generated lower
V1 in comparison to the comedo and compact patterns which
generated comparable values.

The biopotential differences V1 and V2 are plotted in
Figs. 12(a) and 12(b), respectively, for all 54 considered cases
simulated in this work. The average and the biopotentials
at plus or minus one standard deviation are also plotted in
Fig. 12. The results show that different tumor morphology
and different cell division stages affect the biopotential
signals at the tissue boundary represented by V1 and the
biopotential signals near the vicinity of the tumor represented
by V2. Therefore, tumor morphology and cell division stages
can be one of the main factors contributing to the large
variations observed in the recorded data from breast cancer
patients [11].

Each of the curves (thin green lines) in Fig. 12(a) can
also represent the recordings from a patient at different times.
In Fig. 12(a), the curves with large positive amplitudes are
generated at a time instant where the majority or all the cells

are hyperpolarizing, the curves with large negative amplitude
are generated at a time instant where the majority or all
the cells are depolarizing, and the curves with the lowest
amplitude, whether positive or negative, are generated at the
time instant where a significant portion of the cancer cells
are quiescent. If the biopotential recording is performed at
the time instant when the majority of the cells are quiescent
the malignant tumor might be missed since the signal will
be too low. If the recording is repeated at a later time
instant where the cancer cells have progressed to the stage
where they are hyperpolarizing a much larger signal will be
detected. Therefore, repeating the measurement or increasing
the duration of the recording over time is anticipated to increase
the accuracy of detection in future clinical trials.

C. Steady biopotential signals

In all previous examples, we assumed that all cancer cells
start the depolarization or the hyperpolarization transitions at
the same time; that is, all cells are synchronized. Realistically,
cancer cells of a tumor do not divide synchronously [35]. In
this section, the 444 cells of the first papillary pattern shown

FIG. 13. (Color online) (a) The first papillary tumor pattern divided into (b) Group 1 (151 cells), (c) Group 2 (146 cells), and (d) Group 3
(147 cells). In (b)–(d) the cells composing each group are shown as black squares.
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FIG. 14. (Color online) The biopotential V1 generated by the first
papillary tumor pattern where all cells are hyperpolarizing. Three
cases are shown: (i) The case where all cells are hyperpolarizing
simultaneously (solid blue curve). (b) The case where the cells are
divided into three equal groups of cells (red dotted curve). The
first group of cells starts the hyperpolarization transitions at 0 min
followed by the second group, which starts the transition after 1.84
min, and, the third group starts the transition after 3.68 min. (c) The
case where the cells are divided into three equal groups (black dashed)
with a delay of 3.68 min versus 1.84 min in (b).

in Fig. 1(a) [repeated in Fig. 13(a)] are divided into three
randomly spatially arranged groups as shown in Figs. 13(b)–
13(d). The idea is to investigate the effect of cells dividing
at different time instants on the biopotential signals. For each
cell, a random number, x, is generated between 0 and 1. If
the random number is in the range between 0 and 1/3, the
cell is assigned to Group 1; between 1/3 and 2/3, the cell is
assigned to Group 2; and between 2/3 and 1, the cell is assigned
to Group 3. The random generator was executed only once,
leading to slightly different number of cells in each group.

Therefore, Group 1 in Fig. 13(b) includes 151 cells,
Group 2 in Fig. 13(c) includes 146 cells, and Group 3 in
Fig. 13(d) includes 147 cells. The cells in these three groups
are incorporated in the diffusion-drift algorithm to compute
the biopotential signals. The results of Fig. 14 are associated
with the case where all cells are hyperpolarizing. The solid
blue curve represents the case where all the 444 cells start
hyperpolarizing at the same instant (i.e., synchronized). The
dotted red curve and the dashed black curve represent the
cases where the 444 cells are randomly spatially divided into
the three groups shown in Fig. 13. The time delay between the
three groups is 1.84 and 3.68 min for the dotted red and dashed
black curves, respectively. As shown in Fig. 14, a reference
threshold is selected to represent 10% of the maximum value
of the solid blue curve.

The results demonstrate that the duration of the biopotential
signal V1 increases when cancer cells are nonsynchronized, as
shown in Fig. 14. Specifically, the 1.84 min delay case (dotted
red curve) and the 3.68 min delay case (dashed black curve)
dropped below the reference value after 9.13 and 12.31 min,
respectively, compared with the 6.19 min in the case where
all the cells are synchronized (solid blue curve). When cancer

FIG. 15. (Color online) The biopotential V1 generated by the first
papillary tumor pattern when (a) all cells are hyperpolarizing (solid
blue curve) (b) all cells are depolarizing (red dotted curve). For both
cases, the cancer cells are divided into six randomly arranged groups
with the first group starts the transition at 0 min, the second groups
start after 1.84 min, the third group after 3.68 min, etc. Groups 1, 2,
3, 4, 5, and 6 consist of 69, 71, 82, 78, 74, and 70 cells, respectively.

cells are divided into more groups, the time duration of signal
is expected to increase as shown in Fig. 15. In this case, cancer
cells are divided into six randomly spatially arranged groups.
These groups consist of 69, 71, 82, 78, 74, and 70 cancer cells,
respectively. Assigning the cells to each group is conducted
using the same mechanism of Fig. 13, where only three groups
were used. In this case, the ranges of the random number in
each of the six groups are 0 to 1/6, 1/6 to 2/6, etc.

The solid blue curve in Fig. 15 represents the case where
all cells are hyperpolarizing with a time delay between each
group of 1.84 min. The dotted red curve represents the case
where all cells are depolarizing with the same delay between
the groups. As expected, the results of Fig. 15 show a longer
duration in the biopotential signals V1 for both transitions.

The results in this section demonstrate that steady or
dc biopotential signals can be generated when cancer cells
are dividing at different time instants. These results are in
agreement with the recorded data from breast cancer patients
[10–20]. Realistically, a cancer tumor can include a random
mix of depolarizing and hyperpolarizing cells; therefore, it is
anticipated that the amplitudes of the generated biopotential
signals can have values between the two limits shown in
Fig. 15.

IV. CONCLUSIONS

The diffusion-drift model was used to simulate the spatial
and temporal evolution of biopotential signals generated by
MCF-7 breast cancer cells. The algorithm was developed
and parallelized in our previous work [21–24], where few
numbers of cells were incorporated in the model. In this
work, the cancer cells were spatially arranged to simulate
well known breast cancer tumor patterns such as papillary,
comedo, and compact tumors. The obtained results show
that different tumor morphologies have significant impacts on
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the spatiotemporal properties of the generated biopotentials.
Specifically, the biopotentials signals exhibit elevated values
in the regions where the motion of the ions is restricted,
leading to increased accumulation of charges and, therefore,
elevated biopotentials. This restriction of the motion of ions
can explain the elevated biopotentials in the necrotic cores
of the comedo patterns. In another example, because the
compact pattern has the highest cell density, it generates
the largest amplitudes of the biopotential signals. In addition,
the biopotential amplitudes inside the tumor are observed to
be at least one order of magnitude larger than those outside the
tumor.

The algorithm is used to compute the biopotential signals
from a mix of variety of cancer cell divisions. The total number
of cells was randomly divided into several transition stages,
that is, hyperpolarization, depolarization, and quiescent. In
this work, six cases were simulated: all cells hyperpolarizing;
all cells depolarizing; 66% of the cells hyperpolarizing, 16%
depolarizing, and 16% quiescent; 66% of the cells depolar-
izing, 16% hyperpolarizing, and 16% quiescent; 66% of the
cells quiescent, 16% depolarizing, and 16% hyperpolarizing;
33% of the cells hyperpolarizing, 33% depolarizing, and 33%
are quiescent. The statistical average and standard deviation
of the biopotential signal obtained using the results of all
six cases for all nine tumor patterns is calculated. The
obtained results show that, on average, a positive value of
the biopotential signal is produced, which indicates that the
hyperpolarization transition is dominating the mechanism.
The computed standard deviation of the biopotential signal
is observed to be large, which agrees with the reported
values from clinical trials [11]. Finally, the results show
large temporal variations in the biopotential signals, which
suggest that increasing the duration of recording these signals
may lead to an increase in the sensitivity of the detection
technique.

The cancer cells are finally divided randomly (from the
distribution point of view) into several groups. These groups
exhibit time delays in the division transition of the included
cancer cells. Almost steady biopotential signals (at least over a
longer period of time) were observed. These results can justify
the use of dc optimized electrodes for recording the signals in
clinical trials [10–20].

In this work, nine tumor patterns were considered using
the same number of cells. All tumors were located at
the same position in the computational domain. Advanced
parallelization techniques, such as the graphics processing
units, will be explored in order to simulate larger tumor
sizes, larger computational domains, and a variety of tumor
depths. The signal to noise ratio will be investigated by
corrupting the biopotential signals with random and additive
noise, to mimic possible clutter from nearby organs. In
addition, animal models implanted with MCF-7 cells will
be used to validate the biopotential results obtained in this
work.
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APPENDIX A: MULTIPLE NUTRIENTS TUMOR GROWTH
MODEL

The Ferreira et al. model includes two nutrients, one
necessary for the metabolism of cancerous cells M and one
necessary for cancerous cell division N . These nutrients are
consumed by both cancerous and healthy cells at different
rates. Specifically, healthy cells consume α normalized values
per unit time from both nutrients N and M , whereas cancerous
cells consume λNα and λMα normalized values per unit time
from nutrients N and M, respectively.

At each time step, the values of the nutrients N and M

are updated and two cell dynamics are implemented: (i) cell
division and (ii) cell death. The probability of a cell dividing
is expressed as a function of the nutrient N , whereas the
probability of a cell dying is expressed as a function of the
nutrient M as in Ref. [26].

Three tumor shape types were generated using the model
of Ferreira et al. [26] as (i) papillary, (ii) compact, and
(iii) comedo, which is a tumor with a central necrotic core.
Mainly, three parameters control the shape of the generated
tumor pattern as α, λN, and λM. Due to the increased
computational demands to compute the biopotential signals
from the generated tumor patterns, a square lattice size of
60 × 60 is used here, while in Ref. [26] the square lattice size
was 501 × 501. The parameter α, defined as a function of the
square lattice size, was varied from 1/500 to 4/500 in Ref. [26],
while in this work, α was modified to range from 1/59 to 4/59
depending on the desired tumor pattern to be generated. As
for λN and λM, they were varied from 25 to 200 and from 10
to 25, respectively, in Ref. [26], while they are varied from
200 to 250 and from 10 to 220, respectively, in this work. The
elevated range for λM, up to 220, was only employed in the
comedo tumor pattern as the smaller size of the square lattice
used here necessitated the use of a higher value of λM in order
to generate a necrotic core in the tumor pattern. It is important
to emphasize that the work in Ref. [26] was to generate various
tumor patterns while the work here is to solve the nonlinear
equations of (1) to compute the biopotential signals and the
electric current densities produced from the generated tumor
patterns.

In this work, the parameters used to generate the papillary,
comedo, and compact tumor patterns are (α = 0.05, λN = 250,
λM = 20), (α = 0.032, λN = 220, λM = 220), and (α = 0.016,
λN = 200, λM = 10), respectively. A uniform intercellular
spacing of 0.25 μm is inserted between the cells as estimated in
Ref. [22]. Moreover, each pixel in the tumor pattern generated
by the Ferreira et al. model could hold more than one cancerous
cell. However, the 2D diffusion-drift model can only have a
single cell at any position. Therefore, the pixels with more than
one cancerous cell are identified and the number of cancerous
cells at these pixels is modified to one. This will modify the
number of cancerous cells generated by the Ferreira et al. but
not the tumor morphology.
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In order to have a fair comparison between the biopotential
signals generated by the different tumor patterns, each pattern
has to have the same number of cancerous cells and the
same center position. Due to the randomness of the cellular
activities incorporated in the Ferreira et al. tumor growth
model, it is impossible to enforce the number of cells in
each tumor pattern generated. However, the Ferreira et al.
model parameters can be specified such that the papillary,

compact, and comedo patterns have approximately the same
number of cells. A certain number of cells, less than 5% of
the total number of cells in any tumor pattern, is then added
or removed to equalize the number of cells in all patterns.
Finally, the positions of the cancerous cells are then shifted
such that all the tumor patterns have the same center which
is the center of the domain employed in the diffusion-drift
model.

APPENDIX B: DIFFUSION-DRIFT MODEL SYSTEMS OF EQUATIONS

The matrix of the biopotential system of equations in Eq. (5a) is highly sparse, with the majority of rows containing only five
nonzero entries as follows [22–24]:

Aφ(k,(i − 1) × LLx + j ) = − 2
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− 2
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where k = (i − 1) × LLx + j . The elements of the vector bφ are given by
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(B6)

The entries of the other three systems of equations in Eqs. (5b)–(5d) can be defined similar to Eqs. (B1)–(B6). The parallel
solution of the previous equations is detailed in Ref. [23].
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