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Modified permutation-entropy analysis of heartbeat dynamics
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Heart rate variability (HRV) contains important information about the modulation of the cardiovascular system.
Various methods of nonlinear dynamics (e.g., estimating Lyapunov exponents) and complexity measures (e.g.,
correlation dimension or entropies) have been applied to HRV analysis. Permutation entropy, which was proposed
recently, has been widely used in many fields due to its conceptual and computational simplicity. It maps a time
series onto a symbolic sequence of permutation ranks. The original permutation entropy assumes the time series
under study has a continuous distribution, thus equal values are rare and can be ignored by ranking them according
to their order of emergence, or broken by adding small random perturbations to ensure every symbol in a sequence
is different. However, when the observed time series is digitized with lower resolution leading to a greater number
of equal values, or the equalities represent certain characteristic sequential patterns of the system, it may not be
rational to simply ignore or break them. In the present paper, a modified permutation entropy is proposed that,
by mapping the equal value onto the same symbol (rank), allows for a more accurate characterization of system
states. The application of the modified permutation entropy to the analysis of HRV is investigated using clinically
collected data. Results show that modified permutation entropy can greatly improve the ability to distinguish
the HRV signals under different physiological and pathological conditions. It can characterize the complexity of
HRV more effectively than the original permutation entropy.
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I. INTRODUCTION

The beat rhythm of a healthy heart is not stable but rather
is constantly changing, and it is affected by many internal and
external factors. This results in heart rate variability (HRV),
which is defined as tiny time differences between successive
heartbeat periods. HRV contains important information about
the modulation of the cardiovascular system [1]. Many studies
show that two branches of the autonomic nervous system,
namely sympathetic and parasympathetic, have a significant
relationship with HRV. When the sympathetic branch is
enhanced or the function of the parasympathetic branch is
impaired, heart rate variability is reduced. This is likely to
cause heart diseases such as myocardial ischemia, cardiac
disorders, or even death [2–4]. HRV is affected by many
other factors, such as exercise, breathing, blood pressure, body
temperature, and mental stress. Circadian biological rhythms
and the renin-angiotensin system are also involved in the
modulation [5]. Because of these factors, the series of heart
rate variability exhibits properties of high nonstationarity and
complexity. Therefore, in addition to conventional linear anal-
ysis, many methods of nonlinear dynamics (e.g., estimating
Lyapunov exponents [6–10]) and complexity measures (e.g.,
correlation dimension [11–14], fractal dimension [15–18], and
entropies [19–21]) are also used for the analysis of HRV series.
These studies have greatly advanced the research to reveal the
underlying law and physical nature of heart rate variability and
cardiovascular regulation.

Entropy is an effective measure to characterize the com-
plexity of time series. To distinguish regular (e.g., periodic)
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signals, random signals, and chaotic signals and to quantify
their complexity, many entropy measures have been proposed
in recent years, such as Kolmogorov (or metric) [22,23]
entropy, approximate entropy (ApEn) [24,25], and entropy of
symbolic dynamics (SymDyn) [26]. The permutation entropy
(PE) recently proposed by Bandt et al. [27] is widely used
in many fields due to its conceptual and computational
simplicity.

The PE algorithm assumes that the time series under
study has a continuous distribution, thus equal values in the
sequence are rare and can be ignored. Bandt et al. proposed
to rank the equalities according to their order of emergence
or to eliminate them by adding random noise to the original
series [27]. Bandt’s method has been successfully used in
many studies [28–32]. In HRV series, the case of equal values
appears very frequently due to limited sampling frequency
of electrocardiogram (ECG) from which the HRV series (RR
intervals, i.e. the interval from the peak of one QRS complex
to the peak of next one as shown on an electrocardiogram) are
derived. RR intervals obtained are discrete, and the resolution
is limited to the sampling intervals of ECG, e.g., the resolution
of an RR interval is 4 ms when ECG is sampled at a
frequency of 250 Hz. Due to the high frequency of equal
values in HRV series, Bandt’s method of dealing with equal
values might miss some important information embedded in
HRV series. Therefore, we propose the modified permutation-
entropy (mPE) method to deal with this situation. In the mPE
algorithm, we utilize another method to process the equal
values, i.e., by mapping the equal RR interval with the same
symbol (rank) during the symbolizing procedure. Experiments
show that the modification proposed in this paper can greatly
improve the efficiency of permutation-entropy analysis of the
complexity of heartbeat dynamics.
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II. METHOD

A. Permutation-entropy algorithm

For a given time series {x(i)}Ni=1, we can embed the time
series in the m-dimensional space and get reconstruction
vectors X(i),

X(i) = [x(i),x(i + l), . . . ,x[i + (m − 1)l]], (1)

where m is the embedding dimension and l is the delay time.
Then each X(i) can be arranged in increasing order,

x[i + (j1 − 1)l] � x[i + (j2 − 1)l] � · · · � x[i + (jm − 1)l],

(2)

where j∗ is the (time) index of the element in the reconstruc-
tion vector. If x[i + (jk1 − 1)l] = x[i + (jk2 − 1)l], arrange
it according to the index j∗. That is, x[i + (jk1 − 1)l] �
x[i + (jk2 − 1)l] when jk1 < jk2.

Therefore, we can get a symbol series A(i) for each X(i),

A(i) = [j1,j2, . . . ,jm]. (3)

There are m different symbols in [j1,j2, . . . ,jm] and thus
there are m! different permutations, or m! different symbol
sequences. One can estimate the probability distribution for
each symbol sequence and denote them as P1,P2, . . . ,Pk ,
where k � m!. Then the permutation entropy of k different
symbol sequences for the time series {x(i)} is defined as the
Shannon entropy,

Hp(m) = −
k∑

v=1

PvlnPv. (4)

Note that the maximum value of Hp(m) is reached for
a uniform distribution on all permutations, i.e., Hp(m) =
ln(m!) when Pv = 1/m! and k = m!. Hence Hp(m) is often
normalized as

hp = Hp(m)/ln(m!), (5)

where 0 � hp � 1. Note that, for regular (periodic, quasiperi-
odic) and chaotic signals, they would get limm→∞hp = 0. The
value of hp quantifies the randomness of time series {x(i)}. The
smaller hp is, the more regular is the time series; otherwise,
the series is more random.

B. Modified permutation-entropy algorithm

As is described above, the original permutation-entropy
algorithm maps the equal values in the sequence to different
symbols according to their sequential orders in the original
series. Bandt et al. [27] also proposed to break equalities by
adding small random perturbations. These two methods are
valid when the values in the time series are continuous or
discrete but with a high resolution, since the possibility of
having equal values is very small when the resolution is high.
However, the possibility of equal values may be very high
when the resolution is much lower, or the equal values may
represent a feature state of the system, such as the heart rate
variability sequence in this study. If we ignore or eliminate
the equivalent states, it is probable that we cannot accurately
describe the complexity of the system. Therefore, we propose

TABLE I. Upper bound of k for different m.

m 3 4 5 6 7

km 13 73 501 4051 37633

to map the equal values onto the same symbols in a modified
permutation-entropy algorithm.

First, like the original permutation-entropy algorithm, one
can sort the reconstruction components of X(i) in increasing
order:

x[i + (j1 − 1)l] < x[i + (j2 − 1)l] < · · · < x[i + (jk1 − 1)l]

= x[i + (jk2 − 1)l]< · · · < x[i + (jm − 1)l].

(6)

Normally, when there is no equality, x[i + (j∗ − 1)l] is
represented by j∗. However, when equality happens, we
map the equal values onto the same symbol, which is the
smallest indice j∗ of these equal values, e.g., if x[i + (jk1 −
1)l] = x[i + (jk2 − 1)l] and jk1 < jk2, both x[i + (jk1 − 1)l]
and x[i + (jk2 − 1)l] are represented by jk1 in the symbol
sequence. Thus, the corresponding permutation sequence of
X(i) is defined as

A′(i) = [j1,j2, . . . ,jk1,jk1, . . . ,jm]. (7)

For example, considering two vectors X(1) =
[0.2,0.5,0.1,0.2,0.7] and X(2) = [0.2,0.5,0.1,0.4,0.7],
the original PE method ranks the equalities with their
sequential orders and attains the same symbol vectors
A(1) = A(2) = [3,1,4,2,5] for X(1) and X(2). Our modified
PE method maps the equalities to the same symbols and
attains different symbol vectors A′(1) = [3,1,1,2,5] and
A′(2) = [3,1,4,2,5] instead. When there is no equality in the
embedded vectors, the original and modified PE methods are
equivalent. However, when a lot of equalities occur, the mPE
method is expected to perform better since it characterizes
more system states than the original PE method. Then one can
compute the probability distribution for each symbol sequence
obtained using mPE and denote them as P ′

1,P
′
2, . . . P

′
k , where

k � km(m). The upper bound of k [km(m)] can be calculated
with a recursive method, which is demonstrated in the
Appendix, and the upper bound of k for m = 3–7 is listed in
Table I. The modified PE is defined in the same way as the
original PE:

H ′
p(m) = −

k∑

v=1

P ′
vlnP ′

v. (8)

H ′
p(m) can also be normalized with maximum entropy as

h′
p = H ′

p(m)

ln[km(m)]
. (9)

C. Experimental data

We test the mPE algorithm using the publicly available
PhysioNet database. The heart rate variability signals are
obtained from the MIT-BIH Fantasia database and the BIDMC
congestive heart failure (CHF) database [33–35].
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FIG. 1. (Color online) Permutation-entropy analysis of heart rate variability data from healthy young subjects, healthy elderly subjects, and
congestive heart failure (CHF) patients using (a) PE1 and (b) PE2 methods with embedding dimension m = 3 and delay time l = 1 (see text
for details). N indicates the length of data under analysis. The symbols and error bars indicate the average values and the standard deviations,
respectively. We note that the normalized entropies should vary in [0, 1]; while some of the error bars go slightly beyond 1, which is caused by
algebraic calculation, this does not mean the normalized entropies could actually have values larger than 1.

The Fantasia database includes long-term ECG recordings
from 40 healthy subjects (20 healthy young subjects, aged
21 to 34, and 20 healthy elderly subjects, aged 68 to 85).
All subjects remained in a resting state in sinus rhythm while
watching the movie Fantasia (Disney, 1940) to help maintain
wakefulness. The ECG signals were sampled at 250 Hz (the
corresponding resolution of heart rate variability is 4 ms)
for 120 min. The time marks of R-wave peaks automatically
detected from continuous ECG signals after manual inspection
and correction are given in the database, from which we can
obtain the time sequence of heartbeat intervals.

The BIDMC CHF database includes long-term ECG
recordings from 15 subjects with severe congestive heart
failure (NYHA class 3-4). The individual recordings are
each about 20 h in duration, sampled at 250 Hz. It also
provides automatically detected R-wave markers after manual
inspection and correction [35].

D. Statistical analysis

We use one-way analysis of variance (ANOVA) to test
for differences among two or more independent groups. Its
null hypothesis H0 is that all samples have the same mean
and variance, which means all samples come from the same

TABLE II. One-way analysis of variance of PE1, PE2, and mPE
analysis results.

PE1 PE2 mPE

N F p F p F p

500 0.64 0.53 7.39 0.0017 64.41 6.23 × 10−14

1000 0.81 0.45 7.76 0.0013 69.28 1.83 × 10−14

2000 0.92 0.41 8.63 0.0007 86.14 4.11 × 10−16

4000 0.76 0.47 10.36 0.0002 99.48 3.04 × 10−17

8000 0.38 0.68 10.52 0.0002 102.65 1.71 × 10−17

population and there is no difference between groups. The
statistic used is

F = σ 2
B

σ 2
W

, (10)

where σ 2
B and σ 2

W denote the variances between and within
groups, respectively. If variance between groups is far greater
than variance within groups, i.e., F is far greater than 1, the null
hypothesis H0 is rejected, and it demonstrates that the samples
are from different populations or significant differences exist
between groups. Otherwise, the null hypothesis is accepted,
which means no significant difference exists between groups.
The larger F is, the higher the probability that there is variation
between groups.

The t test is used to test whether the means of two groups
are statistically different from each other. The formula for the
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FIG. 2. (Color online) Modified permutation-entropy analysis of
heart rate variability data in three groups with embedding dimension
m = 3 and delay time l = 1 (the same symbols are used for groups
as in Fig. 1).
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FIG. 3. (Color online) Results of (a) permutation-entropy and (b) modified permutation-entropy analysis with various embedding dimensions
m. Here, delay time l = 1 and length of time series N = 8000 (the same symbols are used for groups as in Fig. 1).

one-sample t-test statistic is

t = x̄ − μ0

s/
√

n
, (11)

where x̄ is the sample mean, μ0 is the population mean,
s is the sample standard deviation, and n is the sample size.
The smaller t is, the more significant is the variation between
two groups. Actually, the two-group ANOVA and t test are
equivalent when F = t2.

In hypothesis testing, p-value stands for the probability that
we will make a mistake when we reject the null hypothesis.
In the t test here, the smaller p is, the more likely it is that a
statistical difference exists between the two groups. Generally,
if p > 0.05, it is believed that the difference has no statistical
meaning and just results from sampling error; if p < 0.05, it
is believed that a substantial difference exists between groups.

III. RESULTS

First, we analyzed the data using the PE algorithm. As
mentioned in Sec. II B, one method to deal with equalities in the
series is to map the equal values to different symbols according
to their sequential orders in the original series. We denote this
method as PE1 and the entropy value as hp1. From the results
[see Fig. 1(a)], we can intuitively see that this method does not
distinguish between different pathophysiology states. Another
method (denoted as PE2, hp2) is to add random Gaussian
white noise (with μ = 0 and σ 2 = 0.1) in order to break the

TABLE III. One-way analysis of variance of various embedding
dimensions.

PE2 mPE

m F p F p

3 10.68 0.0002 102.65 1.17 × 10−17

4 13.35 2.80 × 10−5 68.25 2.36 × 10−14

5 16.65 3.87 × 10−6 50.05 3.63 × 10−12

6 22.39 1.78 × 10−7 35.32 5.98 × 10−10

7 25.47 4.01 × 10−8 23.76 9.07 × 10−8

equalities. The results [see Fig. 1(b)] show that PE2 performs
better than PE1 in distinguishing different states, but it is still
not sensitive enough.

The results of these two methods are analyzed using
one-way ANOVA (see Table II). As expected, PE1 has no dis-
crimination power for all three groups, while the ANOVA test
for PE2 shows p < 0.01, indicating a certain discrimination
between three groups. We further perform a t test between
each group, and we find that PE2 has discrimination power
between elderly and CHF groups (p < 0.01), but not between
young and elderly groups (p > 0.05).

Then, we analyzed the data using the mPE algorithm
(Fig. 2). The results show that mPE can effectively distinguish
between young, elderly, and CHF groups and the discrimi-
nation power increases with the increase of data length. The
result of mPE is also analyzed using ANOVA (see Table II).
Comparing PE1 and PE2, the difference between three groups
is statistically significant when using mPE (also confirmed by
a t test between each group).
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FIG. 4. (Color online) Results of modified permutation-entropy
analysis with various delay times l. Here, the embedding dimension
m = 3 and the length of the time series N = 8000 (the same symbols
are used for groups as in Fig. 1).
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TABLE IV. Probability (%) of tied ranks of the three databases
(young, elderly, and CHF).

m 3 4 5 6 7

Young 8.6 15.8 23.9 32.1 33.8
Elderly 17.0 30.0 42.5 53.2 61.7
CHF 43.3 67.3 83.5 92.1 96.2

To investigate the influence of embedding dimensions,
we calculated permutation entropy and modified permutation
entropy with different embedding dimensions (m = 3–7) (see
Fig. 3). The PE2 algorithm cannot effectively distinguish three
groups regardless of the tested embedding dimensions. The
discrimination power of the mPE algorithm decreases with
the increase of embedding dimension, but it still shows a
significant difference between groups for all the embedding
dimensions tested. The result of the ANOVA test is shown in
Table III.

The influence of delay time (l) is also analyzed and the result
of mPE with different l (l = 1 ∼ 4) is displayed in Fig. 4. It
can be seen that l has only a small influence on the mean value
and standard deviation of mPE results.

Finally, we test the probability of tied ranks for different
embedding dimensions and delay times. The probability
of tied ranks in the three databases (young, elderly, and
CHF) is calculated and the statistical result is displayed in
Table IV. One can see that the probability of tied ranks
increases proportionally with the increase of m. This is easy
to understand because the probability of equalities in a word
with a length of 6 letters (m = 6) is certainly far greater than
that of 3 letters (m = 3).

On the other hand, the probability of tied ranks only has a
slight decline trend with the increase of delay time l. When
l = 1, the values in one word are selected successively from the
sequence, while when l = 3, they are selected every other two
values from the sequence, which reduces the original relevance
between successive values. This is also one reason why we set
l = 1 instead of other longer delay times.

IV. DISCUSSION

Heart rate variability (HRV) contains important information
about the modulation of the cardiovascular system. Various
nonlinear dynamics methods and complexity measures have
been used for HRV analysis. The complexity of HRV reflects
the influence of physiological and pathological conditions
on cardiovascular systems, and entropy measures are one of
the most useful tools for complexity analysis. Manually and
subjectively set parameters are required in the process of sym-
bolization in most entropy measures, and the parameters have
to be adjusted for different samples. This creates difficulties
for practical applications. For example, Steuer et al. studied
how the partition methods may lead to spurious results for
the estimated entropy, and they proposed an optimal partition
method [36]. However, their method introduced an extra
parameter that complicated the process when determining the
parameter.

In contrast, the recently proposed permutation entropy, a
new complexity measure with the advantages of conceptual

and computational simplicity, symbolizes time series accord-
ing to their amplitude without any need to set parameters.
Therefore, it is more robust and has been widely used in many
fields.

In the studies and applications of permutation entropy, the
probability of equal values is often assumed to be very small
and its influence on the analysis results is assumed to be
negligible. Equal values are often processed using two methods
proposed by Bandt et al. [27]: (i) ranking the equal values
according to their order of emergence in the sequence, or
(ii) eliminating equal values by adding random noise. In
practical applications, the probability of equal values is
sometimes very high due to the limited sampling rate. Bandt’s
methods may lead to a non-negligible deviation between the
analysis result and the actual state of the system.

We tested three groups of HRV data from an interna-
tional public database representing different physiological and
pathological states, and we confirmed the problem described
above. The aforementioned two approaches to process equal
values cannot effectively distinguish the three groups (young,
elderly, and congestive heart failure), indicating that they
cannot accurately characterize the effects of physiological and
pathological conditions on the complexity of cardiovascular
modulation.

We improved the method of equality processing used in the
original permutation-entropy algorithm. The proposed modi-
fied permutation entropy, by using the same symbols to repre-
sent equal values, allows for a more accurate characterization
of system states. Experimental results on clinically collected
data show that the improved entropy can effectively distinguish
the three groups. The modified algorithm is more efficient in
characterizing the complexity of heart rate variability signals
than the original permutation-entropy algorithm.
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APPENDIX: NORMALIZATION OF MODIFIED
PERMUTATION ENTROPY

According to Eqs. (6) and (7), the same symbols (tied
ranks) must occupy consecutive positions in the symbol
sequence, thus one can treat them as one part when considering
the arrangement of symbols. In this way, all the possible
permutation patterns can be classified into groups according to
what kinds of parts they have, i.e., how many “1” ’s, how many
“2” ’s, etc. Provided there are p (p � m) parts (i.e., p different
symbols) in a group, the number of patterns belonging to this
group is equivalent to the arrangement number of a set of
p elements, which is given by p!. For example, considering
m = 4, the group with two “1” ’s, one “3,” and one “4” (denoted
as group {11, 3, 4}) contains 3! patterns, i.e., [1 1 3 4], [1 1 4 3],
[3 1 1 4], [4 1 1 3], [3 4 1 1], and [4 3 1 1].
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TABLE V. Permutation patterns with m = 4.

Symbol: “1” Symbol: “2” Symbol: “3” Symbol: “4” Group Number of patterns in the group

3 4 {1, 2, 3, 4} 4!
2

33 – {1, 2, 33} 3!

1 – 4 {1, 22, 4} 3!
22

3 – {1, 22, 3} 3!

222 – – {1, 222} 2!

3 4 {11, 3, 4} 3!
–

33 – {11, 33} 2!

11 – 4 {11, 2, 4} 3!
2

3 – {11, 2, 3} 3!

22 – – {11, 22} 2!

– 4 {111, 4} 2!
–

111 3 – {111, 3} 2!

2 – – {111, 2} 2!

1111 – – – {1111} 1!

Then the upper bound of k can be calculated as km(4) = 4! + 6 ∗ 3! + 6 ∗ 2! + 1! = 73

Thus, to calculate the total number of permutation patterns
(i.e., the upper bound of k), one can list all the possible
groups by combining symbols from “1” to “m” into parts,
and then sum the arrangement number of each group (see
Table V). When determining whether the symbol “i” will
occur and how many times it will occur in the group, one
needs to consider how many positions have been occupied
by previously determined symbols and how many positions
are left. If the previously determined symbols occupied more
positions than i − 1, then the number of positions left is less
than the number of symbols left, thus the symbol “i” can be
omitted. If the occupied positions are equal to i − 1 (it cannot
be less than i − 1), the number of positions left is equal to the
number of symbols left. If no tied rank occurs for the remaining
symbols, then each symbol occupied one position. If a tied rank
occurs, one or more symbols have to be replaced by the smaller
symbols according to Eqs. (6) and (7). The symbol “i” cannot
be omitted regardless of whether a tied rank occurs or not,
since “i” is the smallest symbol left. Taking the same group
{11, 3, 4} as an example, the symbol “2” is omitted because

it is replaced by “1.” If there is only one “1” in the group, then
“2” must appear at least once because it is the smallest symbol
other than “1,” and “2” cannot be replaced by other larger
symbols, i.e., groups {1, 33, 4} or {1, 3, 44} are not eligible.

Based on the principles given above, a recursive algorithm
is designed to traverse all the possible groups and calculate
the number of all the possible permutation patterns with
different m. A function is defined with five arguments: the
embedding dimension m, the pattern count k, the symbol under
consideration i, the number of used symbols c, and the number
of occupied positions j , i.e., k = f (m,k,i,c,j ). The recursive
algorithm of function f can be simply defined as follows:

S1: if j = m, let k = k + c! and exit;
S2: if j > i, let k = f (m,k,i,c,j + 1);
S3: let l = 1;
S4: let k = f (m,k,i + 1,c + 1,j + l);
S5: if l < m − j , let l = l + 1 and go to S4, otherwise exit.
To get the number of all the possible permutation pat-

terns for embedding dimension m, one can invoke k =
f (m,0,0,0,0).
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