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Minimalistic behavioral rule derived from bacterial chemotaxis in a stochastic resonance setup
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Animals are able to cope with the noise, uncertainties, and complexity of the real world. Often even elementary
living beings, equipped with very limited sensory organs, are able to reach regions favorable to their existence,
using simple stochastic policies. In this paper we discuss a minimalistic stochastic behavioral rule, inspired from
bacteria chemotaxis, which is able to increase the value of a specified evaluation function in a similar manner.
In particular, we prove that, under opportune assumptions, the direction that is taken with maximum probability
by an agent that follows this rule corresponds to the optimal direction. The rule does not require a specific agent
dynamics, needs no memory for storing observed states, and works in generic n-dimensional spaces. It thus
reveals itself interesting for the control of simple sensing robots as well.
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I. INTRODUCTION

Living organisms must face the complexity of natural
environments while searching for nutrients, often with very
scarce available information. Different strategies, of different
complexity, are adopted by different living beings. A first
classification that can be made is between taxis and kinesis
[1,2]. Taxis is used to denote the responses to stimuli
(chemicals, light, temperature, etc.) that lead to a change in
the agent’s trajectory that is biased by the stimulus gradient
direction.

Taxis can be further subdivided in klinotaxis, tropotaxis,
and telotaxis. In klinotaxis [3,4], the organism directs its
movement by comparing the intensity of the stimulus acquired
while moving laterally (transverse klinotaxis) or along its own
path (longitudinal klinotaxis). In principle a single sensory
organ is required, although often multiple sense organs are
present. In tropotaxis [5], paired sensory organs are used to
align the movement direction: the animal turns until the two
sensory organs are stimulated equally, and then moves forward.
In telotaxis, the animal moves directly toward the goal [6].

Kinesis denotes responses to stimuli that correspond to an
undirected alteration of the characteristic of the movement,
e.g., a variation of the frequency of random turns, the speed
or the length of straight runs, etc. Two types of kinesis can be
identified: orthokinesis [7], when the speed (linear velocity)
of the movement depends on the intensity of the stimulus,
and klinokinesis, when the angular velocity, or, better, the
sinuosity [8], is changed in response to the stimuli. Among
the organisms that reach nutrients by exploiting klinokinesis,
we find the well-studied Escherichia Coli [9]. This bacterium
proceeds by alternating straight runs to tumbles that change
its direction randomly. In the case of a positive gradient of
nutrients, E. Coli reduces its tumbling frequency. This simple

stochastic strategy, usually modeled by a biased random walk,
is able to drive bacteria to high concentrations of nutrients
despite the difficulties in precisely sensing the gradient.

In Ref. [10] we proposed a simplified, generic model for
the movement of animals in similar settings that we termed
the minimalistic behavioral rule (MBR). We showed that
making the behavior stochastic to a certain degree improves
the performances. In particular, the relationship between the
magnitude of the aleatory component of the behavior and
the chemotactic performance follows the classic stochastic
resonance curve.

In brief, stochastic resonance (SR) [11] is a phenomenon
by which the addition of random noise enhances weak signal
detection, and its existence has been confirmed in a wide
variety of nonlinear systems [12,13]. In Ref. [14], Fauve and
Heslot reported a stochastic resonance effects in a discrete
two-state electronic Schmitt trigger. Successively, McNamara
et al. [15,16] measured a SR in an optical bistable system,
a bidirectional ring laser. Several studies reported SR effects
in semiconductors [17,18], as well as in chemical reactions
[19–21]. SR is not limited to explain weak signal detection,
but, more in general, the improvement, due to noise, of signal
processing or agents’ behaviors, as for the paddle fish case
studied in Ref. [22].

The work in Ref. [10] showed experimentally that a SR
effect occurs also considering the stochasticity of the behavior
and the chemotactic performance of an agent driven by MBR.
We must note that the proposed model actually captures only
the following elements of E. Coli chemotaxis:

(i) The information available to the agent is limited to the
sign of the temporal gradient of the evaluation function. The
evaluation function represents the concentration of nutrients
or repellents in the E. Coli case.
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(ii) The agent cannot choose directly the actions to take, but
can just change the level of randomness in its behavior. This
corresponds to changing the run length in the E. Coli case.

On the other hand, many features of the E. Coli movement
cannot find direct correspondence in our simplified model.
In detail, all the sources of randomness when the evaluation
function value increases are summarized by a single parameter
η. In the E. Coli case, this aleatory component is given by a
variety of sources, e.g., rotational diffusion, periodic tumbling,
and perturbation arising from self-propulsion. Similarly, all the
details concerning E. Coli chemotaxis pathway, adaptation,
and memory are ignored by the model.

The role of the model is showing that, even in a setup
where the agent is equipped only with these limited sensing
capabilities and limited choice on its own action, the agent
can maximize the evaluation function. In this paper, we
will provide a formal analysis that allows us to predict
the actual behavior of an agent controlled by the MBR.
In particular, in Sec. III we show that, under opportune
simplifying assumptions, an agent driven by MBR takes, with
the highest probability, a trajectory that corresponds to an
approximation of the movement over the steepest gradient of
an evaluation function, corresponding to the concentration of
nutrients for the E. Coli case.

In Sec. IV we then provide simulation experiments that
show the meaning of the proof result in more abstract settings.
In particular, we analyze the case of an agent with a nonlinear
dynamics and the behavior in highly dimensional spaces.
These results appear highly interesting from the engineering
point of view, as they show that the proposed rule, derived
from bacteria chemotaxis, can be used in general for the
control of complex, high dimensional systems. Finally, Sec. V
summarizes the results and briefly discusses their importance
in the engineering field.

II. MINIMALISTIC BEHAVIORAL RULE

Mathematically, animal movements are usually modeled by
random walks. A recent review can be found in Ref. [23]. In
detail, Brownian and Lévy walks are often taken as models
for animal behavior [24]. Since most animals have a tendency
to continue moving in the same direction, correlated random
walks are frequently used to model animal paths as well [25].
In Ref. [10] a model of animal movement was proposed. The
model can be considered as the direct, mathematical translation
of the intuitive definition given for klinokinesis in Ref. [26]:
“...if conditions are improving, keep on in the same direction,
otherwise try a new direction.”

The motion process, actually a biased correlated random
walk, is described using a state space model [27]. In detail, let
us indicate the agent’s state by a vector x ∈ Rn. Let us denote
by u ∈ Rm a control input provided by the agent that changes
its state according to the dynamics equation

xt+1 = f (xt ,ut ). (1)

The state for each instant of time is evaluated through
an evaluation function (potential field) g(xt ). This intuitively
expresses the quality of the state. For instance, it represents
the concentration of nutrients in the E. Coli case.

The MBR takes as input only the sign of the variation
of this evaluation function, i.e., it considers whether �Et � 0,
with Et = g(xt ) and �Et = g(xt ) − g(xt−1). The only actions
taken are the application of a small perturbation to the control
input or a random selection of a new control input. Formally,
the MBR can be defined as

u
(i)
t+1 =

{
u

(i)
t + ηR if �Et � 0,

random selection otherwise,
(2)

where R ∼ N(0,1) is a random variable, and u
(i)
t is the ith

entry of a control input vector u ∈ Rm.
In Ref. [10], it was experimentally confirmed that with

simple potential fields g(x) MBR is able to generate a sequence
of ut which makes the state xt follow trajectories that, on
average, approximate the steepest positive gradient of the
evaluation function. Additionally, it was shown that the prob-
ability of taking the steepest direction depends on the noise
magnitude η.

Additionally, it was shown that the probability of taking
the steepest direction depends on the noise magnitude η. More
precisely, in Ref. [10] the mutual information between the
direction taken by the agent and the real gradient direction
as η varies was analyzed. Mutual information between two
random variables X and Y is formally defined as I (X,Y ) =∫
Y

∫
X

p(x,y) log2( p(x,y)
p(x)p(y) )dxdy, and provides a measure of

the amount of information that one random variable contains
about another random variable. Numerical simulation showed
that the curve that relates η to the mutual information is the
classic curve seen in SR phenomena [28]. This indicates that
adding noise of appropriate intensity maximizes the statistical
dependence between the direction taken by the agent and the
optimal one, unknown to the agent.

We note that this noise is not to be intended as purely noise
in sensing, which leads to a performance decrease [29], but as
a source of randomness in the whole agent’s behavior.

Additionally, we would like to stress that the model does not
correspond directly to a biased random walk with a variable
length of the straight runs, taken as the usual mathematical
model of E. Coli’s chemotaxis. The two models may be bridged
by providing an opportune dynamics function f (x,u). This
paper aims at showing that the dynamics function f (x,u) does
not need to be known by the agent for increasing the evaluation
function value Et . The definition of a dynamics specific for
the E. Coli case is, however, of strong interest and is left as a
future work.

In the previous works, no theoretical proof on the behavior
of an agent that moves according to the MBR was given. The
following section introduces an easily tractable Markov chain
model for explaining the reasons underlying this experimen-
tally observed behavior.

III. PROOF OF THE MAXIMUM PROBABILITY
BEHAVIOR OF MBR

In order to investigate the features of MBR theoretically, we
need to adopt several simplifications. At first, we assume that
the system can be locally linearized at every point of the state
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space. In the following the linear approximation of the system
Eq. (1) and of the evaluation function E will be indicated as

xt+1 = Axt + But , (3)

Et = Cxt . (4)

Assuming that B is square (n = m) and invertible, and defining
x′ = B−1x, the equations can be rewritten as follows:

x′
t+1 = B−1ABx′

t + ut , (5)

Et = CBx′
t . (6)

In this expression, ut isotropically influences the change of
x′

t . If the norm of u is fixed at small constant �u, the
location of x′

t+1 is constrained on a hypersphere centered
at (I + B−1AB)x′

t with radius �u. In order to study this
simplified case, we introduce a restricted form of the MBR
which enforces this constraint on the norm of u:

u
(i)
t+1 = �u

v(i)

|v(i)| ,
(7)

v(i) =
{

u
(i)
t + ηR if �Et � 0,

random selection otherwise,

where v(i) is a variable that follows the dynamics of u(i) in the
original MBR [Eq. (2)]. Comparing Eq. (7) with Eq. (2), it is
clear that the restricted MBR here presented simply introduces
a normalization of the input vector for ensuring the above norm
restriction. In the following, we focus on the restricted MBR
in order to investigate analytically the features of the MBR.

Computing the stationary probability density function p(u)
of generating the input u would require us to solve the
following multidimensional Fredholm integral equation of the
second type:

p(u) =
∫

· · ·
∫

�

K(u,μ)p(μ)dμ +
1 − ∫ · · · ∫

�

p(μ)dμ

S

= 1

S
+

∫
· · ·

∫
�

(
K(u,μ) − 1

S

)
p(μ)dμ, (8)

where K(u,μ) is the probability of taking the direction μ when
the current direction is u due to the random perturbation R, S =
2πm/2

�(m/2)�um−1 is the surface area of the m-dimensional sphere
of radius u and � is the surface that corresponds to directions
that lead to an increase of �Et . Only in very particular cases,
the analysis can be conducted without resorting to numerical
simulations.

To study the behavior of the MBR we thus introduce a
simpler approach. In detail, let us map the values that u can
take into a Markov chain with 4n states. Let us define the set
of inputs u mapped to the ith state as ℘i . Let us define the
mapping such that

(i) ∀ui ∈ ℘i,∀u j ∈ ℘j , 0 � i < j � n, C(Axt + Bui) <

C(Axt + Buj ),
(ii) ∀ui ∈ ℘i,∀u j ∈ ℘j ,n � i < j � 3n, C(Axt + Bui) >

C(Axt + Buj ),
(iii) ∀ui ∈ ℘i,∀u j ∈ ℘j , 3n � i < j < 4n, C(Axt +

Bui) < C(Axt + Buj ),

FIG. 1. The Markov model used in the proof. For the two-
dimensional case, the states can be given a physical meaning,
corresponding to the angular direction taken by the agent, as shown
in this figure. The transition between the states are not indicated, as
the states are, in general, fully connected.

(iv) ∀ui ∈ ℘4n−1∀u j ∈ ℘0, C(Axt + Bui) < C(Axt +
Buj ),
and such that the transition probability from state i to j is the
same as from state j to i when the sole random perturbation
ηR is applied.

This mapping is trivial for the two-dimensional (2D) case,
as Fig. 1 shows. The possible values for the normalized input
u are mapped to the states depending on the direction they take
with respect to the optimal direction (the horizontal direction
in Fig. 1). In particular, it is possible to partition the circle of
radius �u in arcs of π/(2n) radians, and map consecutively
each arc to a state of the Markov chain. More in particular,
let us assume to map the circle such that the arcs where (the
linear approximation of) �Et is 0, maximum and minimum
correspond to the states i = 0, i = n and i = 3n, respectively.

In order to investigate the characteristic of the MBR, we
assume that the input has enough influence of the system
dynamics, i.e., B−1ABx′

t � �u and that �u is small enough
to be able to assume the linear approximation of g(x)
valid for a sufficiently high number of steps. Clearly if
‖B−1ABx′

t‖2 > �u then u cannot influence the sign of the
evaluation �Et and the gradient following behavior cannot
emerge. When ‖B−1ABx′

t‖2 < �u, but B−1ABx′
t cannot be

ignored, essentially the dynamics of the system introduces a
bias on the trajectory taken by the agent that will proceed on a
trajectory that does not approximate the gradient at every point
x′

t . Explicit formulations of the effect of this bias need to be
identified case by case. In the following therefore we ignore
the term B−1ABx′

t .
We note that under the assumptions of having the linear

approximation of g(x) valid for a sufficiently high number
of steps, the same Markov model (as the one presented in
Fig. 1) can be used for successive time instants t while
updating the state x′

t . The states of the Markov chain come
to assume the meaning of the direction taken by the agent
while transitioning from x′

t to x′
t+1. We assume non-null

transition probabilities at least between neighboring states.
This ensures that the chain has a stationary distribution, which
we analyze in detail in this paper. Practically, this stationary
distribution indicates the direction taken by an agent that
moves according to the restricted MBR with a step size �u that
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is sufficiently small to be able to assume that the same linear
approximation of the evaluation function remains valid during
the mixing time of the Markov chain. Let us analyze the limit
distribution ρ,

ρ = Pρ
(9)

4n−1∑
i=0

ρi = 1.

where ρ ∈ R4n and P indicate the probability of the ith state
of the Markov chain (indexes as in Fig. 1) and the 4n × 4n

transition matrix, respectively. The transition matrix P consists
of four submatrices corresponding to four combinations of the
signs of �Et,�Et+1, that derive from the states (directions)
taken by the Markov chain at time t and t + 1:

P =
(

P (+,+) P (−,+)

P (+,−) P (−,−)

)
,

P (+,+) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · a2n

a1 a0 · · · a2n−1

a2 a1 · · · a2n−2

...
...

. . .
...

a2n a2n−1 · · · a0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R2n+1×2n+1,

P (+,−) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a2n−1 a2n · · · a1

a2n−2 a2n−1 · · · a2

a2n−3 a2n−2 · · · a3

...
...

. . .
...

a1 a2 · · · a2n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R2n−1×2n+1,

P (−,+) =

⎛
⎜⎜⎜⎜⎝

1
4n

1
4n

· · · 1
4n

1
4n

1
4n

· · · 1
4n

...
...

. . .
...

1
4n

1
4n

· · · 1
4n

⎞
⎟⎟⎟⎟⎠ ∈ R2n+1×2n−1,

(10)

P (−,−) =

⎛
⎜⎜⎜⎜⎝

1
4n

1
4n

· · · 1
4n

1
4n

1
4n

· · · 1
4n

...
...

. . .
...

1
4n

1
4n

· · · 1
4n

⎞
⎟⎟⎟⎟⎠ ∈ R2n−1×2n−1,

where we assume that the random selection of Eq. (7)
corresponds to uniform selection of the new state (hence the
1

4n
in P (−,+) and P (−,−)) and we assume the probability of

transitioning from a state i to a state j to be a decreasing
function of the distance between i and j in 4n modular
arithmetic. Formally, the entry P(i,j ), 1 � i � 4n, 1 � j �
2n + 1, is P(i,j ) = amin(|i−j |,4n−|i−j |), with

a0 + 2
2n−1∑
i=0

ai + a2n = 1, (11)

ai > aj (i < j, 0 � i,j � 2n). (12)

As a concrete example, if in the 2D case R ∈ R2 in Eq. (7)
is defined as R ∼ N (0,1), then indicating by z(θ |μ,κ) the von
Mises distribution probability density function, we have

ai =
∫ (i+0.5)/2n

(i−0.5)/2n

z(θ |0,κ)dθ

with κ = 1/η2. We note, that, however, the results reported
in the following are valid for R belonging to any symmetric
distribution, for which the condition ai > aj∀i,j : i < j, 0 �
i,j � 2n holds.

In this paper, we prove the following two points on the
stationary distribution ρ:

(1) The stationary distribution ρ has ρi = ρ2n−i for 0 � i �
2n and ρi = ρ6n−i for 2n + 1 � i � 4n − 1, i.e., intuitively it
is symmetric with respect to the line connecting the state n

with the state 3n shown in Fig. 1.
(2) The peak of the distribution is located at the state n, i.e.,

ρn.
If these points are proven, it is possible to conclude that

the restricted MBR is able to make the state x′ evolve toward
the steepest direction of the evaluation function g(x′

t ) because
the state n, in the linear approximation we adopt, is always
along the direction of the gradient at x′

t . Note that in this
paper we do not discuss the effect of noise intensity ηi on the
stationary distribution ρ or on its mixing time, that, in turn,
determines the mutual information between the gradient of the
evaluation function and the direction actually taken by a MBR-
controlled agent. In Sec. IV, however, we provide numerical
simulations showing that the SR effect can be observed in
settings that strongly differ from the simple case reported in
Ref. [10].

A. Distribution symmetry

In order to prove point 1, we first premultiply both sides of
Eq. (9) by T s , a (2n − 1) × 4n matrix having the entry of the
ith row and j -column set as

Ts,(i,j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if j = n − i + 1 ∧ i � n,

1 if j = 4n + (n − i + 1) ∧ i > n,

−1 if j = n + i + 1,

0 otherwise.

(13)

The premultiplication consists of subtracting the (n + i + 1)th
equation from the (n − i + 1)th [or the 4n + (n − i + 1)th
equation] in the system of equations reported in Eq. (9). In
other words, this means calculating the differences between
couples of equations that correspond to states of the Markov
model symmetrically located with respect to the gradient
direction in Fig. 1. The transformed equation can be written as
a homogeneous system of linear equations:

(I − P s)ρs = 0, (14)

where I is an identity matrix of dimension 2n − 1 and ρs ∈
R2n−1 is a new set of variables defined as ρs = T sρ. The
matrix P s is a (2n − 1) × (2n − 1) matrix with the entry in
the ith row and j column equal to

Ps(i,j ) =
{

0 if j > n,

a|n−i−j+1| − a2n−|n−i+j−1| otherwise.
(15)
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From Eqs. (11) and (15) it follows that the matrix of
the homogeneous system (I − P s) is a diagonally dominant
matrix. Therefore the matrix has full rank, and Eq. (15) has
only the zero solution. As a result, we can conclude that
the stationary distribution ρ is symmetric with respect to the
straight line connecting the state n and the state 3n in Fig. 1,
i.e.,

ρi = ρ2n−i if 0 � i � 2n, (16)

ρi = ρ6n−i if 2n + 1 � i � 4n − 1. (17)

B. Distribution monomodality

In order to prove the second point, it is necessary to inves-
tigate the signs of the differences between the probabilities of
neighboring states of the Markov chain. In detail, Eq. (9) can
be premultiplied by T d , a 4n × 4n matrix with entries defined
as

Td (i,j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if j = i,

−1 if j = i + 1 ∧ j � 4n,

−1 if i = 4n ∧ j = 1,

0 otherwise.

(18)

The premultiplication consists of subtracting equations that
correspond to neighboring states, i.e., subtracting the (i + 1)th
equation of Eq. (9) from the (i)th equation for 1 � i � 4n − 1,
and the first equation from the last.

The transformed equation can be written as the linear
system:

(I − Pd )ρd = b, (19)

where I is a 4n × 4n identity matrix, and ρd ∈ R4n is a new set
of variables defined as ρd = T dρ. The entries of the 4n × 4n

matrix Pd are

Pd,(i,j ) =

⎧⎪⎨
⎪⎩

0 if j > 2n,

a|i−j | if j � 2n ∧ i � 2n,

a2n−|i−j−2n| otherwise,

and the entries of b are

b(i) = a|2n−i+1|ρ2n − a2n−|2n−i|ρ0. (20)

From the symmetry of ρ shown in Eq. (16), it results that
ρd can be determined completely after the sole determination
of its entries ρd(i) for 0 � i � n − 1 ∨ 2n � i � 3n − 1.
Additionally, b(i) can be simplified by using the identity
ρ0 = ρ2n.

If we define ρds ∈ R2n as ρds = (ρds1,ρds2)T where ρds1 =
(ρd(0),ρd(2), . . . ,ρd(n−1)) and ρds2 = (ρd(2n),ρd(2n+1), . . . ,

ρd(3n−1)), and bds ∈ R2n as bds = (bds1,bds2)T where bds1 =
(b(1),b(2), . . . ,b(n)) and bds2 = (b(2n+1),b(2n+2), . . . ,b(3n)), the
following linear system is obtained:

Pdsρds = bds,
(21)(

I − Pds1 0

−Pds2 I

) (
ρds1

ρds2

)
=

(
bds1

bds2

)
,

where Pds is a (2n) × (2n) matrix. Additionally, both the
matrices I − Pds1 and Pds2 are (n) × (n) and the vectors ρds1,

ρds2, bds1, and bds2 are (n) dimensional. The entries of the
matrices Pds1 and Pds2 and of the vectors bds1 and bds2 are
defined, respectively, as

Pds1(i,j ) = a|i−j | − a|i−[2n−(j−1)]|
= a|i−j | − a2n+1−i−j , (22)

Pds2(i,j ) = a2n−|i−j | − a2n−|i−[2n−(j−1)]|
= a2n−|i−j | − ai+j−1, (23)

bds1(i) = (a2n−i+1 − ai)ρ0,
(24)

bds2(i) = (ai−1 − a2n−i)ρ0.

From Eq. (22) and the inequality ai > aj (i < j ) [see Eq. (11)],
all the entries of Pds1 and bds2 are positive and all the entries
of Pds2 and bds1 are negative.

Let us consider ρds1. From Eq. (21) it follows that

(I − Pds1)ρds1 = bds1. (25)

The matrix (I − Pds1) of Eq. (25) is strictly diagonally
dominant because of the relationships of Eq. (11). For this
reason, the matrix is invertible and the real parts of all its
eigenvalues are positive.

Additionally, all the off-diagonal entries of (I − Pds1) are
negative because the all entries of Pds1 are positive as shown in
Eq. (22). This means that the matrix (I − Pds1) is a Z matrix
for definition of Z matrix [Z = (z(i,j )); z(i,j ) � 0,i 
= j ].

The matrix (I − Pds1) is thus Z matrix with eigenvalues
whose real parts are positive, i.e., it is an M matrix. Its
inverse (I − Pds1)−1 is a positive matrix, i.e., the inverse
matrix entries are non-negative. In each row of the inverse
there must be at least a positive entry, otherwise the matrix
would not have full rank. Therefore in the solution of Eq. (25)
ρds1 = (I − Pds1)−1bds1 all the entries of ρds1 are negative
because all entries of bds1 are negative and all entries of
(I − Pds1)−1 are non-negative, and no row is completely null.

Next, let us focus on ρds2. Equation (21) leads to the
following equation:

ρds2 = bds2 + Pds2ρds1. (26)

Since all elements of bds2, Pds2, and ρds1 are positive, negative,
and negative, respectively, the elements of ρds2 are all positive.

From the result of the above proofs, the sign of the ith
element of the vector ρd is

sign(ρd(i)) =

⎧⎪⎨
⎪⎩

−1 if 0 � i � n − 1,

+1 if n � i � 3n − 1,

−1 if 3n < i � 4n − 1.

(27)

From Eq. (27), it follows that the stationary distribution ρ is
monomodal and that the peak is located at the state n.

We can therefore state that, under the assumption
B−1ABx′

t � �u and assuming �u sufficiently small for the
linear approximation of g, Et = CBx′

t , an agent controlled by
the restricted MBR will follow a trajectory that with maximum
probability corresponds to the positive gradient direction at
each point of the x′ space.
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IV. SIMULATION

In order to clarify the meaning of the results of the proof,
let us introduce two concrete examples. As a first example, let
us conduct a numerical simulation in which an agent moves
according to the MBR in a two-dimensional state space. Let
us define the dynamics of the agent as follows:

xt+1 = Axt + But ,
(28)

B = R

(
atan2

(
x

(2)
t ,x

(1)
t

) + 3

8
π

)(
10 0

0 1

)
,

where xt = [x(1)
t ,x

(2)
t ] and the ut are two-dimensional vectors,

A is a 2 × 2 matrix and

R(θ ) =
(

cos θ sin θ )

− sin θ cos θ

)
(29)

is a 2 × 2 rotation matrix that depends nonlinearly on the state
xt . The evaluation function E, which determines the behavior
of the agent, is defined by the nonlinear function:

E = g(x)

= exp(−||x||), (30)

that has its only maximum x∗ in (0,0)T . In the previous section,
we did not investigate the direction actually taken by the agent
in the x coordinates and considered the movement just in the
x′

t coordinates, where the effect of ut is isotropic, for the
convenience of the proof.

However, for the setup defined by Eq. (28), the direction
taken by the agent with the highest probability can be easily
computed as ū = Bu∗ where u∗ is given by

u∗T = ∂

∂u

[[
∂

∂t
E

]
x=xt

]

=
[

∂

∂x
E

]
x=xt

∂

∂u

[
∂

∂t
x
]

x=xt

= − exp(−||xt ||)
||xt || xT

t R

(
atan2

(
x

(2)
t ,x

(1)
t

) + 3

8
π

)(
10 0

0 1

)
.

(31)

We note that the A can assume different forms, and the
direction taken with the maximum probability at each direction
does not change, as long as (I + B−1AB)x′

t � �u and the
effect of (I + B−1AB)x′

t does not invalidate the hypothesis
that the evaluation function linearization can be considered
essentially constant for a sufficient number of time steps.
It is also interesting to note that Eq. (31) contains a term
corresponding to the spacial gradient [∂/∂x E]x=xt

even if the
MBR takes as input only the sign of the temporal gradient (in
a discretized form).

Figure 2 shows the vector field ū obtained from Eq. (31)
and the trajectory obtained as the average direction taken in a
Monte Carlo simulation with 105 particles and �u = 10−4. We
notice a close agreement between the vector field computed
analytically and the direction actually taken by the particles.

We may also be interested in analyzing whether the SR
effect observed in Ref. [10] for a simplified, isotropic case is
valid also in this case. More in detail, it is still unclear whether
or not the statistical dependence between ū and the distribution

FIG. 2. The averaged trajectory generated by the MBR starting
from [4,4]T and the vector field ū calculated from the dynamics of
the agent and the evaluation function.

of the direction taken by the particles is a concave function of
the perturbation intensity η. Figure 3 shows the relationship
between η and the mutual information of the agent’s motion
directions and ū. The typical SR curve can be clearly observed
in this nonisotropic case as well.

As a second example, let us observe the behavior in a more
highly dimensional space. In detail, let us analyze the system

ẋt = xt + ut , (32)

E = x(1), (33)

where x(1) denotes the first component of xt , for xt ,ut ∈ Rn

with n = 3, 5, and 10. Figure 4 shows the distribution of the

FIG. 3. The mutual information between the agent’s direction and
the direction ū for different values of η.
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(a)

(b)

(c)

FIG. 4. (Color online) Frequency of the arccosine (in degrees) of
the angle between the optimal direction [1,0, . . . ,0]T and the direction
taken by the agent in an n-dimensional space, respectively, for
n = 3 (a), n = 5 (b), and n = 10 (c).

arccosine of the angle with the optimal direction [1,0, . . . ,0]T

obtained with a Monte Carlo simulation.
We notice that, as expected, the density of the direction

taken by the agent on the hypersphere is a decreasing function

of the angle with the optimal direction. The validity of this
property for high dimensional spaces makes MBR particularly
interesting for research fields outside biology, as was shown
by preliminary experiments on real world robots with a high
number of degrees of freedom [30].

V. DISCUSSION

In this paper, we studied the behavior of an extremely simple
behavioral model, MBR, that emerges as an abstraction of the
movement of bacteria toward high nutrient concentrations.
MBR, initially derived as a model for explaining how noise
could influence bacteria chemotaxis, is revealed to be interest-
ing in more general settings.

In detail, this paper provided an analytical investigation
on the behavior taken by an agent driven by MBR, and it
shows that the behavior taken with the highest probability
corresponds to the one of the steepest gradient of an evaluation
function (for instance, the food concentration) computed in a
space where the effect of the input is isotropic. Under the as-
sumptions taken in the previous sections, any non-null level of
noise is sufficient to generate this gradient following behavior.

Additionally, the paper reported simulation experiments
that exemplify the results of the analysis in concrete settings.
In particular, we briefly analyzed the movement of agents with
a strongly nonlinear dynamics and the behavior of agents in
highly dimensional spaces.

The presented minimalistic behavioral rule has a high
potential in robotics applications. Many robotic works, in fact,
mimic animal chemotaxis for environmental monitoring of
gas leaks, drugs, explosives, etc. [31,32] or for the delivery of
drugs [33].

Actually, we note a strong similarity between MBR and the
biologically inspired rule used in Ref. [34] and more recently
in Refs. [35,36]. MBR, however, provides a generalization of
such rule to the n-dimensional case, and allows the control of
robots of unknown dynamics, as shown in Refs. [30,37]. In
addition, the results of this paper provide the guarantee that,
under opportune conditions, the trajectory taken on average
corresponds to the steepest gradient.

Our previous works in the robotics field showed that the
relationship between the randomness in the MBR and the
performance follows the classic stochastic resonance curve.
Future works will need to consider from a theoretical point
of view how the noise intensity η influences the statistics of
the trajectory taken by a MBR-controlled agent. Intuitively the
noise intensity η regulates the probability in taking directions
close to the gradient direction (i.e., it influences how sharp
the stationary distribution is) and how long it takes to reach
a stationary distribution from an arbitrary distribution (i.e., it
influences the mixing time of the Markov chain introduced in
this paper). Once an analytical formulation will be provided,
it will be possible to both make better predictions on the
behavior of living beings whose movement can be modeled
by the MBR and choose the η that maximizes the performance
in engineering problems.
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