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Force-induced breakdown of flexible polymerized membrane
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We consider the fracture of a free-standing two-dimensional (2D) elastic-brittle network to be used as protective
coating subject to constant tensile stress applied on its rim. Using a molecular-dynamics simulation with a
Langevin thermostat, we investigate the scission and recombination of bonds, and the formation of cracks in the
2D graphenelike hexagonal sheet for different pulling force f and temperature T . We find that bond rupture
occurs almost always at the sheet periphery, and the first mean breakage time 〈τ 〉 of bonds decays with membrane
size as 〈τ 〉 ∝ N−β , where β ≈ 0.50 ± 0.03 and N denotes the number of atoms in the membrane. The probability
distribution of bond scission times t is given by a Poisson function W (t) ∝ t1/3 exp(−t/〈τ 〉). The mean failure
time 〈τr〉 necessary to rip off the sheet declines with growing size N as a power law 〈τr〉 ∝ N−φ(f ). We also
find 〈τr〉 ∝ exp(�U0/kBT ), where the nucleation barrier for crack formation �U0 ∝ f −2, in agreement with
Griffith’s theory. 〈τr〉 displays an Arrhenian dependence of 〈τr〉 on temperature T . Our results indicate a rapid
increase in crack spreading velocity with growing external tension f .
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I. INTRODUCTION

Fracture in engineering materials is a long-standing topic
of research due to problems that arise with technological
applications and the ensuing economic implications. Thus, for
decades a lot of attention has been focused on understanding
the macroscopic and microscopic factors that trigger failure.
Recently, interest in gaining a better understanding of the
interplay between elastic and fracture properties of brittle
materials has been revived due to the rapidly developing design
of advanced structural materials.

Promising aspects for applications include reversible poly-
mer networks [1,2] and also graphene, which shows un-
usual thermomechanical properties [3,4]. Among other things,
graphene, which is a honeycomb lattice packed with C atoms,
can be used as anticorrosion gas barrier protective coating [5],
in chemical and biosensors [6], or as an efficient membrane for
gas separation [7]. In all possible applications, the temperature
and stress-dependent fracture strength of this two-dimensional
(2D) network is of crucial importance. Graphene has been
investigated recently by Barnard and Snook [8] using ab initio
quantum-mechanical techniques whereby it was noted that that
the problems “ha(ve) been overlooked by most computational
and theoretical studies.”

An important example of biological microstructure is
spectrin, the red blood cell membrane skeleton, which rein-
forces the cytoplasmic face of the membrane. In erytrhrocytes,
the membrane skeleton enables it to undergo large extensional
deformations while maintaining the structural integrity of the
membrane. A number of studies based on continuum [9],
percolation [10–12], or molecular level [13–15] considerations
of the mechanical breakdown of this network, modeled as a
triangular lattice of spectrin tetramers, have been reported
so far. Many of these studies can be viewed in a broader
context as part of the problem of thermal decomposition of
gels [16], epoxy resins [17,18] and other 3D networks both
experimentally [16–18] and by means of simulations [19] in
the case of poly-dimethylsiloxane (PDMS).

The aforementioned examples illustrate well the need for
a deeper understanding of the processes of failure in brittle
materials. In addition to analytical and laboratory investiga-
tions, computer simulations [20–22] have provided a lot of
insight into aspects that are difficult to perceive through direct
observations or theoretical treatment; for a review of previous
works, see Alava et al. [23]. Most of these studies focus on
the propagation of (preexisting) cracks, relating observations
to the well-known Griffith’s model [24] of crack formation.
A number of important aspects of material failure have
therefore received little attention. Thus only a few simulations
examine the rate of crack nucleation, which involves long
time scales necessary for thermal activation; see, however,
[25–28]. The effects of system size on the characteristic time
for bond rupture have not been examined except in a recent
molecular dynamics (MD) study by Dias et al. [29]. Also, the
recombination of broken bonds has not been considered. These
and other insufficiently explored properties related to fracture
have motivated our present investigation of a free-standing 2D
honeycomb brittle membrane by means of MD simulation.
In view of the possible applications as anticorrosion and gas
barrier coating, we consider a radially spanned sheet of a
regular hexagonal flake shape so as to minimize the effects of
corners and unequal edge lengths that are typical for ribbonlike
sheets. Tensile constant force is applied on the rim of the flake,
perpendicular to each edge. By varying the system size, tensile
force, and temperature, we collect a number of results that
characterize the initiation and the course of fragmentation in
stretched 2D honeycomb networks.

The paper is organized as follows. After a brief introduction,
we sketch our model in Sec. II, where we consider interactions
between atoms in the brittle honeycomb membrane, define the
threshold for bond scission, and also introduce some basic
quantities that are measured over the course of the simulation.
In Sec. III, we present our simulation results. In Sec. III A,
we present briefly the results on the recombination of broken
bonds. In Sec. III B, we present the distribution of bond
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scission rates over the membrane surface, the dependence of
the mean first breakage time (MFBT) before a bond scission
takes place and of the mean failure time until the 2D sheet
breaks apart on applied tensile force, and we examine how
these times depend on membrane size and temperature. The
formation of cracks at different cases of applied stress as well
as their propagation in a 2D honeycomb brittle sheet are briefly
considered in Sec. III C. We end the paper with a brief summary
of results in Sec. IV.

II. MODEL AND SIMULATION PROCEDURE

A. The model

We study a coarse-grained model of a honeycomb mem-
brane embedded in three-dimensional (3D) space. The mem-
brane consists of N spherical particles (beads and monomers)
of diameter σ connected in a honeycomb lattice structure
whereby each monomer is bonded with three nearest neighbors
except for the monomers on the membrane edges, which have
only two bonds [see Fig. 1 (left panel)]. The total number
of monomers N in such a membrane is N = 6L2, where L

denotes the number of monomers (or hexagon cells) on the
edge of the membrane (i.e., L characterizes the linear size of
the membrane). There are altogether Nbonds = (3N − 6L)/2
bonds in the membrane. In our studies, we consider symmetric
hexagonal membranes (i.e., flakes) so as to minimize possible
effects due to the asymmetry of edges or vortices at the
membrane periphery.

For the analysis of our results, we find it appropriate to
divide the two-dimensional membrane network so that all
bonds fall into different subgroups presented by concentric
“circles” with consecutive numbers [see Fig. 1 (right panel)]
proportional to their radial distance from the membrane
center. Odd circle numbers thus contain bonds that are nearly
tangential to the corresponding circle. Even circles contain no
radially oriented bonds (shown to cross the circle in Fig. 1).
The total number of circles C in a membrane of linear size L

is found to be C = (2L − 1). We use this scheme of labeling
the groups of bonds that compose the membrane in order to
represent our simulation results in an appropriate way that
relates them to their relative proximity to the membrane’s
periphery.

FIG. 1. (Color online) (a) A membrane with a honeycomb
structure that contains a total of N = 54 beads and has a linear
size L = 3 (L is the number of hexagonal cells on the edge of
the membrane). (b) A snapshot of a typical conformation of an
intact membrane with L = 30 containing 5400 monomers after
equilibration with no external force applied. Typical wrinkles are
seen to form on the surface.

B. Potentials

The nearest neighbors in the membrane are connected to
each other by breakable anharmonic bonds described by a
Morse potential,

UMorse(r) = εM{1 − exp[−α(r − rmin)]}2, (1)

where r is the distance between the monomers. Here α = 1 is
a constant that determines the width of the potential well (i.e.,
bond elasticity) and rmin = 1 is the equilibrium bond length.
The dissociation energy of a given bond, εM = 1, is measured
in units of kBT , where kB denotes the Boltzmann constant
and T is the temperature. The minimum of this potential
occurs at r = rmin, UMorse(rmin) = 0. The maximal restoring
force of the Morse potential, fmax = −dUMorse/dr = αεM/2,
is reached at the inflection point, r = rmin + α−1 ln(2) ≈ 2.69.
This force, fmax, determines the maximal tensile strength of
the membranes bonds. Since UMorse(0) ≈ 2.95, the Morse
potential, Eq. (1), is only weakly repulsive and beads could
partially penetrate one another at r < rmin. Therefore, in order
to allow properly for the excluded volume interactions between
bonded monomers, we take the bond potential as a sum of
UMorse(r) and the so called Weeks-Chandler-Anderson (WCA)
potential, UWCA(r) (i.e., the shifted and truncated repulsive
branch of the Lennard-Jones potential),

UWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε for r � 21/6σ,

0 for r > 21/6σ,
(2)

with parameter ε = 1 and monomer diameter σ = 2−1/6 ≈
0.89 so that the minimum of the WCA potential coincides
with the minimum of the Morse potential. Thus, the length
scale is set by the parameter rmin = 21/6σ = 1. The nonbonded
interactions between monomers are taken into account by
means of the WCA potential, Eq. (2). Thus, the nonbonded in-
teractions in our model correspond to good solvent conditions,
whereas the bonded interactions make the bonds breakable
when subject to stretching. External stretching force f is
applied to monomers at the membrane rim perpendicular to
the respective edge; see Fig. 2(a).

Before we turn to the problem of membrane failure under
constant tensile force, we show here some typical elastic
properties of the intact honeycomb network sheet that is used
in our computer experiments; see Fig. 2. In Fig. 2(b), one
can see an S-shaped variation of the stress-strain relationship
with initial significant elongation at vanishing stress due to the
straightening of the membrane wrinkles (ripples) that are typi-
cal for an unperturbed membrane; cf. Fig. 1(b). This behavior is
followed by a linear stress-strain elastic relationship where we
measure the Young modulus Yr = 2.02 × 10−2 (kBT /a3) [or
Yu = 2.95 × 10−2 (kBT /a3)], depending on whether radial of
uniaxial loading is applied. Eventually, for stronger stretching,
the elasticity of the network decreases as the anharmonicity
of the bond potential comes into play. Moreover, Fig. 2(b)
indicates that the destructive strain of the whole membrane is
considerably weaker in the case of uniaxial stretching.

In our work, we have tried to develop a generic model for all
kinds of 2D brittle-elastic networks with honeycomb orienta-
tion. We have been anxious to emphasize the common features
of failure in materials with similar architecture but largely
varying elasticity properties, e.g., from 1000 GPa graphene’s
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FIG. 2. (Color online) (a) A protective honeycomb network is spanned at the orifice of a prism whose size may vary due to thermal expansion.
Tensile forces acting on the membrane periphery are indicated by arrows. (b) Mean strain of a honeycomb membrane of size L = 10 as a
function of external tensile stress f at T = 0.01 and γ = 0.25. Depending on the way in which external force is applied—(i) radial stretching
[Fig. 9(f)] or (ii) uniaxial stretching [Fig. 9(b)]—the observed Young modulus is Yr = 2.02 × 10−2 (kBT /a3) or Yu = 2.95 × 10−2 (kBT /a3).

Young modulus [4] compared to 4 × 10−3 GPa for spectrin
[15]. Applying the value of a Kuhn segment (σ = 1.44 Å) and
taking the thermal energy kBT = 4 × 10−21 J at T = 300 K,
we get from our simulation a Young modulus ∼0.03 GPa,
which ranges between typical values for rubberlike materials
0.01–0.1. Compared to ab initio simulations of graphene with
linear size L = 6, which corresponds to 216 network nodes [8],
our objects are about an order of magnitude larger, L = 50 and
2500 nodes, in units of elementary cells.

C. MD algorithm

As in our previous studies concerning scission kinetics
of linear chains [30,31] and bottle brushes [32], we use a
Langevin dynamics that describes the Brownian motion of a
set of interacting particles whereby the action of the solvent
is split into slowly evolving viscous (frictional) force and a
rapidly fluctuating stochastic (random) force. The Langevin
equation of motion is the following:

m
−→̇
vi (t) = −→

Fi (t) − mγ−→vi (t) + −→
Ri (t), (3)

where m denotes the mass of the particles, which is set to
m = 1, −→vi is the velocity of particle i,

−→
Fi = (

−→
FM + −−−→

FWCA)i is
the conservative force, which is a sum of all forces exerted
on particle i by other particles in the system, γ is the
friction coefficient, and

−→
Ri is the three-dimensional vector

of random force acting on particle i. The random force
−→
Ri ,

which represents the incessant collision of the monomers
with the solvent molecules, satisfies the fluctuation-dissipation
theorem 〈Riα(t)Rjβ(t ′)〉 = 2γ kBT δij δαβδ(t − t ′), where the
symbol 〈· · ·〉 denotes an equilibrium average and the greek-
letter subscripts refer to the x, y, or z components. The friction
coefficient γ of the Langevin thermostat is set to γ = 0.25.
Our simulation was performed in the weakly damped regime
of γ = 0.25, where the effects of inertia are important. This
value of γ is more or less standard in Langevin MD. However,
we carried out additional simulation in the strongly damped
regime for γ = 10. No qualitative changes were discovered

except an absolute overall increase of the rupture times
τ , which is natural for a more viscous environment. The
integration step is 0.002 time units (t.u.) and the time is
measured in units of rmin

√
m/εM . We emphasize at this point

that in our coarse-grained modeling, the solvent is taken
into account only implicitly. In this work, the velocity-Verlet
algorithm is used to integrate the equations of motion.

Our MD simulations are carried out in the following order.
First, we prepare an equilibrated membrane conformation,
starting with a fully flat configuration, Fig. 1, where each bead
in the network is separated by a distance rmin = 1 equal to the
equilibrium separation of the bond potential (UM + UWCA)
[see Eqs. (1) and (2)]. The external constant force is switched
on from the very beginning of the simulation. Then we start
the simulation with this prepared conformation and let the
membrane equilibrate with the applied force in the heat bath
for a sufficiently long time (≈107 t.u.) at a temperature that is
low enough so that the energy barrier for scission is high and
the membrane stays intact. This equilibration is done in order
to prepare different starting conformations for each simulation
run. Once the equilibration is finished, the temperature is raised
to the working one and we let the membrane equilibrate at
this temperature for roughly ∼20 t.u. We have checked that
this time interval is sufficient for equipartition and uniform
distribution of temperature to be established throughout the
membrane sheet. Then the time is set to zero and we
continue the simulation with this well-equilibrated membrane
conformation, checking for scission of the bonds.

We measure the elapsed time τ until the first bond rupture
occurs and repeat the above procedure for a large number of
runs (103–104), starting each time with a new equilibrated
conformation so as to sample the stochastic nature of rupture
and determine the mean 〈τ 〉, which we refer to as the mean first
breakage time. In the course of simulation, we also calculate
properties such as the probability distribution of breaking
bonds, examining their position in the membrane (a rupture
probability histogram), the probability distribution function
of the first breakage time W (τ ) (i.e., the MFBT probability
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distribution), the strain (extension) of the bonds with respect
to the consecutive circle number in the membrane, as well as
other quantities of interest.

In separate runs, each simulation is terminated as soon as
the honeycomb sheet disintegrates into two separate parts,
whereby the time it takes to “rip off” the sheet is termed
“mean failure time” 〈τr〉 and measured. In order to monitor
the propagation of cracks, we perform also individual runs
labeling breaking bonds in succession and reconstructing the
crack trajectory, which is a laborious and rather involved
problem.

D. Rupture criterion

An important aspect of our simulation is the recombination
(self-healing) of broken bonds. The constant stretching force
acting on the monomers at the membrane edges creates a well-
defined activation barrier for bond scission. Direct analysis of
the one-bond potential with external force, UMorse(r) − f r ,

indicates that the positions of the (metastable) minimum r−
and of the barrier (or hump) r+ are given by Ref. [33]

r−,+ = 1

a
ln

[
2

1 ±
√

1 − f̃

]
, (4)

where the dimensionless force f̃ = 2f/aεM . For the range
of tensile forces used in the present study, one has typically
r+ ≈ 3rmin. The activation energy (barrier height) for single
bond scission is itself given by Ref. [33]

Eb = U (r+) − U (r−)

= εM

{√
1 − f̃ + f̃

2
ln

[
1 −

√
1 − f̃

1 +
√

1 − f̃

]}
. (5)

One can easily verify that Eb decreases with f̃ . Since a bond
may get stretched beyond the energy barrier and nonetheless
shrink back again, i.e., recombine, in our numeric experiments
we use a sufficiently large value for critical extension of the

FIG. 3. (Color online) Snapshots illustrate the process of bond breakage (crack generation) in different time moments for a membrane with
N = 600 particles subject to external tensional force f = 0.15 at T = 0.05 and γ = 0.25. The force is applied to periphery monomers only
and stretches the network perpendicular to its original edges.
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bonds, rh = 5rmin, which is defined as a threshold to a broken
state of the bond. This convention is based on our checks
that the probability for recombination (self-healing) of bonds,
stretched beyond rh, is vanishingly small, as demonstrated
below. In our model, we deal with Eb/(kBT ) = 20, which at
300 K and bond length rmin = 0.14 nm corresponds to ultimate
tensile stress ∼0.6 GPa. This is a reasonable value for our
membrane, which is considerably softer than graphene with
∼100 GPa [4] and ranges between typical values for rubber
materials 0.03–14 GPa.

III. MD RESULTS

We examine the scission of bonds between neighboring
nodes in the network sheet with honeycomb topology, assum-
ing thermal activation as a driving mechanism, in agreement
with early experimental work by Brenner [34] and Zhurkov
[35]. In Fig. 3, we show a series of representative snapshots of
a membrane of size L = 10 with N = 600 monomers taken at
different time moments during the process of decomposition.
Typically, the first bonds that break are observed to belong
to the last (even) most remote circle as, for example, at
t ≈ 171 t.u. in Fig. 3. As mentioned above, these are the
radially oriented bonds, which belong to concentric circles of
even number. Gradually, a line of edge beads is then severed
from the rest of the membrane and a crack is formed that
propagates into the bulk until eventually a piece of the network
sheet is ripped off, as in Fig. 3 at t ≈ 370 t.u. As we shall
see below, this mechanism of membrane failure, whereby
an initial crack is formed parallel to the edge monomers,
yet perpendicular to the tensile force, dominates largely the
process of disintegration under constant tensile force. The
process is, therefore, mainly described by two characteristic
times, τ and τr , which mark the occurrence of the first scission
of a bond (MFBT) and that of the eventual breakdown of the
flake into two distinct parts.

A. Bond recombination

As mentioned in Sec. III, throughout our studies of the
brittle sheet breakdown, we use a threshold for critical bond
stretching (rupture criterion), rh = 5rmin. In the right inset of
Fig. 4, we display the function Qh(h), which represents the
probability distribution of bond stretching h beyond the hump
position r+, given that a subsequent recombination has taken
place. To this end, one monitors for 104 integration steps the
length of each bond once the bond expands beyond r+ and
stores its maximal expansion, h, provided such a bond con-
tracts again to r < r+. Then Qh(h) is computed as the fraction
of extensions to h over the total number of recombination
events. For each bond recombination, one measures also the
distribution of the respective self-healing times, Ph(t), which
is shown in Fig. 4 too. Both distributions are characterized
by exponentially fast decaying tails, indicating that successful
recombinations are possible after a very short time interval,
≈1.3 t.u., and the possible stretching of a bond in such cases is
minimal—about 0.19–0.5 beyond the energy barrier position
at r+ ≈ 2.96, that is, significantly shorter than rh ≈ 5. We also
find that recombination of bonds seldom takes place (roughly
1.5% over 5 × 104 runs of average length ≈437 t.u. for a
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FIG. 4. (Color online) Probability distribution Ph(t) of maximal
times (full circles) and Qh(h) of maximal bond lengths h (empty
circles, right panel of inset) before a recombination event in the
stretched membrane with N = 600, T = 0.1, and γ = 0.25 takes
places. The exponential tail of Ph(t) is represented by a blue dashed
line. The exponential decay of Qh(h) is given by a solid red line.
The left panel of the inset shows the healing probability Rh vs circle
number C. The healing events under applied stress occur roughly 10
times less frequently than for f = 0.

membrane composed of N = 600 beads). Yet as indicated
below, allowing for self-healing events may significantly
change the observed kinetics of membrane destruction. The
left inset in Fig. 4 indicates that self-healing of bonds happens
most frequently at the membrane periphery, C = 19, where
bond stretching occurs most frequently.

B. Mean first breakage time

These conclusions, based on visual evidence from snap-
shots taken in the course of membrane decomposition, are
corroborated in Fig. 5(a), where we show the probability
distribution of a first rupture for all bonds in the honeycomb
membrane flake as a 3D plot. It is seen that the scission rate
is localized in the outermost circle of radial bonds, whereas
bonds in the inner part of the membrane almost never break.
Note that this is not a trivial effect since tension is distributed
uniformly over all bonds in the equilibrated membrane, so
there is no additional propagation of the tension front from the
rim toward the center. Figure 5(b) also indicates a qualitative
change in the rupture PDF when self-healing is not allowed for
(by reducing the threshold position to that of the energy barrier,
rh = 3.1), in contrast to results in which self-healing was fully
taken into account, rh = 5. Moreover, a closer inspection of
Fig. 5(b) indicates that scission of bonds with no self-healing
takes place almost uniformly throughout the membrane, while
that with self-healing is concentrated only at the membrane
periphery.

One can try to relate this finding to the distribution of
strain within the network, as shown in Fig. 6(a) and sampled
for several strengths of the external stretching force f . In
the case of strongest pulling, f = 0.15, the variation of
the mean-squared bond length 〈l2〉 with distance from the
membrane center (i.e., with consecutive circle number C)
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FIG. 5. (Color online) (a) Rupture probability histogram of the flexible hexagonal membrane subjected to external tensile stress f = 0.15.
(b) Scission probability histogram vs consecutive circle number for the membrane pulled with f = 0.125 displayed for different rupture
thresholds rh as indicated. Real rupture events (rh = 5.0) are concentrated at the periphery, whereas fictitious ones (rh = 3.1) are distributed
more uniformly all over the membrane. Here N = 600, T = 0.05, and γ = 0.25.

displays a well-expressed sawtooth behavior, whereby the
peaks correspond to bonds with radial rather than tangential
orientation (odd C). The alternation of strongly and weakly
stretched bonds modulates the overall gradual increase of the
mean bond length with growing distance from the center.
Evidently, the amplitude of the mean-squared bond length
attains a pronounced maximum on the last circle of radially
oriented network bonds. This distribution of strain is found to
persist down to vanishing tensile force f = 0; see Fig. 6(a).
The distribution of first scission events is clearly seen in
Fig. 6(b), where we show it for several strengths of f .
Evidently, with a growing value of f , bonds also break deeper
inside the membrane, although such events remain much less
probable.

The variation of the MFBT τ with system size N (i.e., with
the number of monomers in the membrane N = 6L2, where
L denotes the linear size of the flake) is shown in Fig. 7.

For sufficiently large membranes, one observes a power-law
decline of the MFBT, τ ∝ N−β , with an exponent β ≈ 0.5 ±
0.03 for the tensile forces studied. If thermally activated bonds
break independently from one another and entirely at random,
then the MFBT τ measures the interval before any of the
available intact bonds undergoes scission, that is, either the first
bond breaks or the second one, and so on, which, at a constant
rate of scission, would reduce the MFBT τ ∝ 1/N as observed,
for instance, in the case of thermal degradation of a linear
polymer chain [31]. This simple result can be derived more
comprehensively by means of the classical theory of Weibull.
In the present system of a honeycomb membrane, the bonds
that undergo rupture are nearly all located at the rim of the flake
and their number is proportional to L so that with β ≈ 0.5 (cf.
Fig. 7) and N ∝ L2, one obtains eventually the important result
τ ∝ 1/L. This observation is in agreement with recent results
of Grant et al. [29], who studied the nucleation of cracks in a
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FIG. 6. (Color online) (a) Variation of the mean-squared bond length 〈l2〉 with consecutive circle number in a membrane with N = 5400
beads subjected to different strengths of the external force f (as indicated in the legend). (b) Probability distribution of the first bond scission
event vs circle number in a membrane with N = 600 beads at different strengths of the external force f as indicated. For a force f � 0.15,
the bonds from the last two outer circles (Nos. 18 and 19) in the membrane have the highest rupture probability. With increased strength of the
pulling force f � 0.175, the bonds that are located in the circles Nos. 18 and 16 attain the highest rupture probability. Parameters of a heat
bath are T = 0.05 and γ = 0.25.
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FIG. 7. (Color online) (a) Mean first breakage time 〈τ 〉 vs number of particles N in the membrane pulled with different tensile stress f as
indicated. Symbols represent simulation data, whereas solid lines stand for fitting functions 〈τ 〉 ∼ N−β . The inset shows force-dependent 〈τ 〉
for a membrane composed of N = 294 beads. (b) MFBT probability distribution W (t) for the first scission of a bond in a flake with N = 600
particles at stress f = 0.15. Symbols denote the results of simulation, and the full line denotes for the fitting function W (t) ∝ tn exp(−t/τ ),
with n = 1/3 and τ = 291.85 t.u. Parameters of the heat bath are T = 0.05 and γ = 0.25.

brittle 2D sheet. We should like to point out that without self-
healing, cf., Fig. 5(b), rupture time goes as 〈τ 〉 ∝ N−β , with
β ≈ 1 (not plotted here), in contrast to the observed exponent
β ≈ 0.5.

It should be mentioned here that there is an interesting
analogy between the observed power-law dependence of the
MFBT time on system size and the power-law decrease of
lifetime with system size in a thermally activated breakdown
of fiber bundles [36,37]. In both our honeycomb network and
in the fiber bundle model (FBM), the failure mechanism is
related to a redistribution of load on neighboring bonds (fibers).
Upon single rupture, bonds in our membrane are subject to
a single scission threshold, whereas in the FBM there is a
random distribution of tensile strengths. As a result, one finds
a single value of β ≈ 0.5 and an Arrhenian dependence of
τ on temperature T in our elastic-brittle honeycomb network
(see below), while the exponent β depends on the external
load f and on T giving rise to a non-Arrhenian τ versus T

relationship.
Note that the decline of MFBT τ in a topologically

connected brittle system is by no means a trivial one. In a
recent study [30] using MD simulation of a single anharmonic
polymer chain subject to constant external tensile force, we
found a rather complex interplay between the polymer chain
dynamics and the resulting bond rupture probability distribu-
tion along the chain backbone. In a breakable chain (rather than
a 2D network), it was observed that the corresponding power
β → 0 as N → ∞. A major factor in this was attributed to
nonlinear excitations as the possible origin for the observed
increasing insensitivity of rupture time with respect to polymer
length as the pulling force grows. One may thus conclude
that nonlinear effects in bond scission are suppressed in 2D
honeycomb networks.

One can also see from the inset in Fig. 7(a) that the MFBT
τ decreases rapidly with growing stress f , that is, the energy
barrier for rupture declines with f , in agreement with Eq. (5)
and Zhurkov’s experiments [35]. The probability distribution

of MFBT W (t) is shown in Fig. 7(b). It is well described
by a Poisson probability distribution function W (t) = 5.57 ×
10−3t1/3 exp(−t/291.85).

C. Cracks and mean failure time

The variation of τr , the mean failure time of the membrane
with system size N , shown in Fig. 8(a) displays also a power-
law dependence on system size N , 〈τr〉 ∝ N−φ , whereby
φ undergoes a crossover to a lower value beyond roughly
N > 300. However, τr has a different physical meaning.
Following Pomeau [38], the failure time can be approximately
identified with the nucleation of a crack of critical size lc
given by Griffith’s critical condition [24,39] assuming that
crack propagation is much faster than the nucleation time. For
a 2D geometry consisting of a flat brittle sheet with a crack
perpendicular to the direction of stress, the potential energy
per unit thickness of the sheet reads U = −πl2f 2

4Y
+ 2εl + U0,

where Y is the Young modulus, ε is the surface energy needed
to form a crack of length l, and U0 is the elastic energy in the
absence of stress (f = 0). This energy reaches a maximum
for a critical crack length lc = 4εY

πf 2 beyond which no stable
state exists except the separation of the sheet into two broken
pieces. Thus, with a crack nucleation barrier �U = 4ε2Y

πf 2 (in 3D

�U ∝ f −4), the failure (ripoff) time τr = τ0 exp(�U0/kBT ),
as found in experiments with bidimensional microcrystals by
Pauchard and Meunier [40] and in gels by Bonn et al. [41].
In Fig. 8(b), we present the variation of τr for membrane
failure with stress f , in good agreement with the expected
relationship �U ∝ f −2. In addition, we show the variation
of τr with temperature [see the inset in Fig. 8(b)], which
is found to follow a well-expressed Arrhenian relation-
ship with inverse temperature, in agreement with earlier
studies [29,39].

As a rule, the end of the sheet rupturing process is marked
by disintegration into two pieces of different size, so it is
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FIG. 8. (Color online) (a) Mean failure time 〈τr〉 (time needed to split the membrane into two pieces) vs number of particles in the membrane
for two values of the external pulling force f at T = 0.05 and γ = 0.25. Symbols denote simulation results and represent power-law fitting
function 〈τr〉 ∼ N−φ . The inset shows the PDF of the number of particles in the moment of splitting for a membrane composed of N = 150
beads. (b) Failure time 〈τr〉 vs f in the case of N = 294. The inset shows variation of τr with inverse temperature (Arrhenian plot).

interesting to assess the size distribution of such fragments
upon failure. In the inset in Fig. 8(a), we show a probability
distribution S(n) of the sizes of both fragments upon membrane
ripoff. In a membrane composed of N beads, one observes
a sharp bimodal distribution with narrow peaks at sizes
N1 ≈ 10 and N2 ≈ 140. Evidently, for the adopted nearly
radial direction—cf. Fig. 2(a)—of the applied tensile force,
one always finds a pair of one small and another very large
fragment.

One can readily verify from the typical topology of the
observed cracks in the membrane, presented in Fig. 9, that
(i) cracks usually emerge perpendicular to the direction of
applied stress, and (ii) it is almost always the first row of nodes,
to which the tensile force is immediately applied, that gets
ripped off upon failure. Cracks that break the network sheet in
the middle occur very seldom, in compliance with the sampled
distribution of fragment sizes, S(n) in the inset of Fig. 8(a). One
would therefore predict a breakup of a protective cover spanned

FIG. 9. (Color online) Overview of observed cracks in a honeycomb membrane composed of N = 600 particles for different orientation
of the applied external pulling force. Green arrows indicate the orientation of the applied force (f = 0.15): (a),(b),(d) uniaxial; (c) biaxial;
(e),(f) slanted. Parameters of a heat bath are T = 0.05 and γ = 0.25. The typical cracks are marked in color on the geometrically undistorted
arrangement of network nodes for better visibility.
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FIG. 10. (Color online) (a) Crack propagation velocity (number of broken bonds per unit time) for a membrane with N = 600 beads at
different strength of the external force f as indicated. (b) Three different realizations of cracks at applied force f = 0.14. The inset shows a
variation of the mean crack propagation velocity with f . Here T = 0.05 and γ = 0.25.

on the orifice of a tube like the one shown in Fig. 9 to proceed
immediately at the fixed orbicular boundary where the tensile
force applies to the network. It is interesting to note that the
geometry of cracks in the membrane shown in Fig. 9 appears
very similar to that observed in drying-induced cracking of
thin layers of materials subject to structural disorder [42].

The emerging cracks are expected to propagate with a speed
that increases as the strength of the external force is increased,
as the inset in Fig. 10(a) indicates. In fact, in Fig. 10(a) one
observes typical curves comprising a series of short intervals
with steep growth of the number of broken bonds per unit time
and longer horizontal “terraces” preceding the nucleation of
a new crack. Even though the data, presented in Fig. 10(a),
are not averaged over many realizations, and, as Fig. 10(b)
suggests, individual realizations of propagating cracks may
strongly differ even at the same stress f , a general increase of
the propagation velocity with growing external force f (see
the inset) can be unambiguously detected, in agreement with
earlier observations [20].

For our model membrane with computed Young modulus
Y ≈ 0.02, we get for the Rayleigh wave speed cR ≈ 0.14.
Thus for most of the applied tensile stress values, we observe
crack propagation at a speed less than cR [inset in Fig. 10(b)].
As argued by Ref. [43], propagation speed cannot exceed cR

because the crack splits off into multiple cracks before reaching
cR . In contrast, Abraham and Gao in Ref. [44] have reported on
cracks that can travel faster than the Rayleigh speed. Thus, our
rough estimates (inset in Fig. 10) agree well with data from the
literature. Converting our results to proper metric units, with
bond length σ ≈ 0.144 nm and energy ≈20kBT , which yields
1 MD t.u. ≈ 10−12 s, we estimate the typical crack propagation
speed to be vc ≈ 50 m/s. Note that the mean crack speed for
natural latex rubber was given as 56 m/s [45].

IV. SUMMARY

In the present work, we have studied the bond rupture and
ensuing fracture of a honeycomb brittle membrane subject to
uniform radially applied external stretching forces for different

values of force f , temperature T , and membrane size N .
The most important conclusions that can be drawn from our
molecular-dynamics simulation can be summarized as follows:

(i) Bonds scission in hexagonal 2D sheets with a hon-
eycomb structure of the underlying network subjected to
external pulling perpendicular to the flake’s edges takes place
overwhelmingly at the sheet periphery.

(ii) The mean first breakage time of breaking bonds depends
on membrane size N as a power law, τ ∝ N−β , with β ≈
0.50 ± 0.03.

(iii) The failure time τr until a brittle sheet disintegrates
into pieces follows a power law too, τ ∝ N−φ(f ), and an ex-
ponential decay τr ∝ exp(const/f 2) upon increasing strength
of the pulling force, in agreement with Griffith’s criterion for
failure.

(iv) Cracks emerge in the vicinity of the membrane edges
and typically propagate parallel to the edges, splitting the sheet
in two pieces with a size ratio of ≈7%.

(v) Crack propagation speed is observed to increase rapidly
with tensile force.

We believe that these findings can be seen as generic also
for 2D network brittle sheets of different geometry (hexagonal
lattices, or quadratic lattices with second-nearest-neighbor
bonding) where a similar interplay between elastic and fracture
behavior is expected to take place. It is clear, however, that
more investigations are needed before a full understanding of
fracture in such systems is achieved.
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