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Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals
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Umbilic defects of strength s = ±1 were induced in a nematic liquid crystal with negative dielectric anisotropy,
confined to Hele-Shaw cells with homeotropic boundary conditions, and their annihilation dynamics followed
experimentally. The speeds of individual defects of annihilating defect pairs with strengths of equal magnitude
and opposite sign were determined as a function of several externally applied parameters, such as cell gap, electric
field amplitude, frequency, and temperature. It was shown that annihilating defects do not approach each other
at equal speeds, but that a speed anisotropy is observed, with the positive defect moving faster than the negative
one. The defects move more slowly as the strength of the applied electric field or the cell gap is increased. The
speed anisotropy is found to be essentially constant for varying external conditions which do not change the
material properties of the liquid crystal material, i.e., confinement, electric field amplitude, or frequency. Only
for applied conditions that change material properties, such as temperature changing viscosity, does the speed
anisotropy vary. The annihilation dynamics was also simulated numerically giving good qualitative agreement
with the experiments. Using insight gained from the simulations we interpret the defects’ speed in terms of their
overlap and the speed asymmetry as arising from backflow effects and anisotropy in the elastic constants.
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I. INTRODUCTION

The study of coarsening behavior has been a topic of
considerable interest in condensed matter physics over many
decades, both theoretically [1] and experimentally [2]. Mate-
rial properties are often largely dependent on their formation
history and thus on the coarsening of domain structures and
the annihilation of defects. This behavior may be observed
in a wide range of condensed matter systems, such as alloys,
semiconductors, polymers, liquid crystals, complex fluids, or
biologically engineered systems. Liquid crystalline materials
in particular provide an ideal system to observe the dynamic
behavior during defect annihilation. This is due to the very
small values of their elastic constants, which imply defect
extensions over several tens of micrometers [3], compared
to atomic distances in solid state materials. Also, due to
the inherent optical birefringence of liquid crystals, the
annihilation process can easily be followed in situ on practical
time scales through polarizing optical microscopy.

Liquid crystals [4,5] are anisotropic fluids, individual
phases of which are thermodynamically located between
the solid crystal and the isotropic liquid. Various phases
exhibit different degrees of order, with the nematic phase
being structurally the most simple, i.e., the liquid crystal
phase with the highest degree of symmetry. The nematic
phase exhibits solely orientational order of the long axis of
rodlike molecules, the direction of orientation being referred
to as the director, while the molecular centers of mass are
isotropically distributed. It is generally the first liquid crystal
phase to be observed on cooling from the isotropic melt. A
common polarizing microscope texture of the nematic phase
is the Schlieren texture [6], which can exhibit four different
director configurations in the vicinity of topological defects of
strength, s = ±1/2 and s = ±1. These defects are connected
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via a network of two- and fourfold brushes observed in
polarizing microscopy, as shown in Fig. 1. The sum over all
defect strengths of a large sample tends towards zero, and
due to a minimization of the elastic contribution to the free
energy, defects of equal strength and opposite sign attract each
other and eventually annihilate, ideally resulting in a uniform
director configuration.

The coarsening dynamics of liquid crystal defects has been
studied before by several authors: Scaling laws describing
point defect or string densities and defect separations have been
measured. Experimental studies were largely related to string
defects [7–10] and defect loops [10,11], but the annihilation of
point defects was also investigated [12–14]. Other experiments
were concerned with smectic C liquid crystals [15] (which
exhibit only s = ±1 defects), and with nematic polymer
systems [16,17]. Theoretical work and computer simulations
[18–22] largely support the experimental findings of a scaling
relation for the defect density of ρ(t) ≈ t−1 and defect
separation of D(t) ≈ (t0–t)1/2, as t tends to t0, the time to
annihilation.

The formation of defects in liquid crystals is generally
promoted through either temperature [12,15–17] or pressure
quenches [9–12] across the isotropic-to-liquid-crystal phase
transition. A sudden change of an intensive variable of state is
employed to induce a phase transition, which is accompanied
by the formation of defects in the liquid crystalline state. This
investigation uses a different mechanism to induce topological
defects in the nematic phase. A homeotropically aligned
nematic of negative dielectric anisotropy is subjected to an
applied electric field. Above a certain threshold an electric
field induced director reorientation into the planar state is
observed, accompanied by the formation of umbilic defects
[4,23–25]. Umbilic defects are regions where the in-plane
component of the director rotates through ±2π (s = ±1).
These are not true defects, however, in the sense that the
director field is not singular, but rather is a localized region
of escape where the director reorients parallel to the electric
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FIG. 1. (Color online) Nematic Schlieren texture illustrating
connected defects of strength s =±1/2 and s =±1. On the large scale
these form a network of connected defects with vanishing total charge
and defects of equal magnitude and opposite sign annihilating to form
a uniform director orientation. The image shown is approximately
350 × 500 micrometers.

field. This is analogous to the s = ±1 Schlieren defects
except that the parallel alignment of the core matches smoothly
onto the homeotropic surface anchoring instead of ending in
singular points. Investigations of the annihilation dynamics of
umbilical defects have the advantage that very well defined
defect configurations can be studied, as only defects of
strength s = ±1 are formed during electric field application.
Nevertheless, studies of such systems are rare [13,14], with
only one systematic investigation [26] reporting in detail on
the dependencies of scaling exponents on external parameters.

It has been proposed on the basis of numerical simulations
[27–29] that the annihilation of s = ±1/2 defects in nematic
liquid crystals, and of s = ±1 defects in SmC films [30], may
be subject to an anisotropy in the speed at which defects of
opposite strength approach each other. This speed anisotropy
has recently been verified experimentally both for s = ±1
defects in a cholesteric with homeotropic anchoring [31] and
for s = ±1/2 defects in a nematic under an applied electric
field [32].

Here we extend these findings with an experimental
investigation of defect annihilation for s = ±1 umbilical
defects and verify an anisotropy in the defect speeds. The
annihilation speeds of opposite strength defects, and their
corresponding speed anisotropy while approaching each other,
are detailed as a function of cell gap, applied electric field
amplitude, frequency, and temperature. These experimental
findings are complemented by numerical simulations. The
dynamic effects of a variable strength of the electric field
and variable cell thickness are qualitatively reproduced and
explained. The defect dynamics is a consequence of a complex
interplay between backflow coupling, the values of the elastic
constants, director dynamics, and confinement.

II. EXPERIMENT

The liquid crystal employed in this investigation is a com-
mercially available nematic mixture ZLI-2806 from Merck,
Darmstadt, with negative dielectric anisotropy, �ε < 0. Its
phase sequence on cooling is given by Iso 100 N −20 Cryst.,
with temperatures given in ◦C. Sandwich cells with homeo-
tropic alignment conditions (polyimide JALS 240-R40

from JSR Electronics, Leuven) and cell gaps between 6
and 50 μm were capillary filled at elevated temperatures
in the isotropic phase. Defects were induced by electric
square wave field application with a TTi TG1010 function
generator, in combination with an in house built linear high
voltage amplifier. Throughout observation of the defect
annihilation process electric fields were kept applied. Electric
field amplitudes were varied between 1 and 5 V μm−1

for frequencies in the range of 1–106 s−1. At smaller field
amplitudes the Freedricksz transition from homeotropic to
planar is not completely achieved and defects are not formed.
The temperature dependence of the annihilation dynamics,
i.e., its qualitative variation with viscosity, was studied by
regulating the temperature with a Linkham TMS91 hot stage
and controller, providing relative temperature control to 0.1 ◦C
at absolute temperature accuracies of ±1 ◦C. The defect
annihilation process was followed by time resolved polarizing
microscopy (Nikon Optiphot-pol) in conjunction with digital
image acquisition. The digital camera employed (JVC
KY-F1030) offered a time resolution of one image per second
at a spatial resolution of 1280 × 960 pixels, corresponding
to an actual image size of 520 × 390 μm2. Subsequent digital
image analysis was carried out with software IMAGETOOL3.0,
developed at the University of Texas Health Science Center,
San Antonio.

Two different methods for the analysis of defect annihi-
lation speeds were employed. (i) Following the trajectories
of a single defect pair at early times, i.e., far from the time
of actual defect annihilation where the displacement can
be approximated as being linear with time. We calculated
the distance each defect traveled as a function of time,
and subsequently determined the defect speeds from linear
displacement versus time diagrams. As the time regime of
approximate linear motion changes strongly with cell gap, care
was taken that a linear time regime was analyzed. Although this
is, in itself, a time consuming procedure, it does not take into
account that neighboring defects, which are not involved in the
individual annihilation process, may have an influence on the
dynamics of the defect pair studied. (ii) The second procedure
disregards the actual details of the motion of individual
defect pairs, but averages over many annihilation incidents,
considering initial and final spatial positions of many defect
pairs over a given time interval. This method accounts for the
influences of neighboring defects, but neglects the actual defect
trajectories during the annihilation process, i.e., the fact that
defect annihilation follows a square root law at times close to
annihilation. In this analysis we avoided including any defect
pairs which exhibited pinning effects at impurities. It is worth
stressing that both analysis methods yield the same defect
speed values within the limits of experimental error as stated
in Sec. III. This is because the defects approach each other in
an approximately linear fashion during the early times of the
annihilation process and only exhibit square root behavior at
times close to annihilation.

Errors from simply a linear fit to the selected early
time experimental data regime would be underestimating
the real errors on the experimental measurements. We thus
estimated errors from the variation of results of five repeat
experiments each for different initial conditions. This leads
to a uniform error for all of the experimental data, which we
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FIG. 2. (Color online) Exemplary texture series illustrating the
time evolution of a pair of s = ±1 umbilical defects during the defect
annihilation process. The applied field is 1 V μm −1, frequency f =
300 Hz, and cell gap d = 50 μm. Each image shown is approximately
350 × 500 micrometers.

believe provides a more realistic way to estimate experimental
uncertainties.

III. RESULTS AND DISCUSSION

Figure 2 depicts an exemplary time series of an s = ±1
umbilical defect pair during the process of defect annihilation.
The two topological defects are attracted to each other in order
to annihilate and thus decrease the overall free energy of the
sample by diminishing the elastic energy associated with the
nonuniformities in the director field. The trajectory of the two
defect cores is easily followed by polarized microscopy. A
typical example is shown in Fig. 3. Already at this point it can
clearly be observed that one defect is moving faster than its
counterpart of opposite strength. Figure 4 depicts an example
of the distance traveled by each of the s = +1 and s = −1
defects during the whole defect annihilation process. It can
be seen that at early times, far from annihilation, the distance
traveled is directly proportional to time, for both defects. This
can also be verified by a log-log plot of the data at early times
which gives a scaling exponent of 1.055 ± 0.005 for the fast
s = +1 defect, and 1.007 ± 0.005 for the slower s = −1 defect.
It is thus experimentally justified to estimate defect speeds
at the early stages of annihilation via a linear distance-time
relationship. At later times, closer to annihilation, the square
root behavior seen in other defect annihilation experiments
is recovered. The general behavior displayed in Fig. 4 is
also observed for different cell gaps and varying applied
conditions.

FIG. 3. Exemplary trajectories of a fast s = +1 (closed symbols)
and a slow s = −1 (open symbols) defect during the annihilation
process at a time resolution of 60 s. Already from this plot, it is clear
that annihilating defects move at different speeds. The inset shows
trajectories at the microscope image scale. The applied field is 1 V
μm−1, frequency f = 300 Hz, and cell gap d = 50 μm. (Note that
this is an example at very low defect density and very slow defect an-
nihilation, as observed for large cell gaps. For decreasing cell gap, the
defect density increases, and the annihilation process becomes faster.)

The constant speed of the defects during annihilation, apart
from at late times, differs from the behavior of free defects
without a field [27,29]. However, it is consistent with the
electric field experiments of Ref. [32] and is also qualitatively

FIG. 4. During the early times of the defect annihilation process
the distance that a defect travels is approximately linearly proportional
to time, allowing an easy determination of the speeds of both
approaching defects. The speeds of an annihilating defect pair are
not equal in magnitude, but exhibit a certain defect speed anisotropy
�v. The applied field is 3 V μm−1, frequency f = 300 Hz, and cell
gap d = 50 μm. (Note that this is an example at very low defect
density and very slow defect annihilation, as observed for large cell
gaps. For decreasing cell gap the approximately linear speed regime
extends much closer to the time of defect annihilation.)
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FIG. 5. (a) Defect speeds of the fast s = +1 (closed circles)
and the slow s = −1 (open circles) defect during the annihilation
process as a function of Hele-Shaw cell gap. (b) Corresponding defect
annihilation speed anisotropy, which is practically independent of cell
gap. (The case of the d = 23 μm data point is discussed in more detail
in relation to Figs. 6 and 7.)

reproduced by our numerical simulations, as discussed in
Sec. IV. We find that the crossover from linear to nonlinear
behavior in the defect separation versus time sets in at defect
separations L of approximately twice the cell gap d, i.e., at
L ≈ 2d, suggesting that the linear scaling behavior occurs
when effects of the walls on the director distortion dominate
over those due to the proximity of the defects.

The speeds are visibly different for the two annihilating
defects. In the following, we will discuss the defect speeds
during annihilation and the respective speed anisotropy in
defect motion as a function of externally applied parameters,
such as electric field, confinement, anchoring strength, and
temperature. In Fig. 5 we show the dependence of the
defect speeds on confining cell gap, which was varied over
approximately one order of magnitude in size. The speed of
both types of defects as they approach each other to annihilate
decreases as the cell gap increases [Fig. 5(a)]. This suggests

FIG. 6. (a) Defect speeds of the fast s = +1 (closed circles)
and the slow s = −1 (open circles) defect during the annihilation
process as a function of applied electric field amplitude for a cell
with strong homeotropic anchoring conditions. (b) Corresponding
defect annihilation speed anisotropy, which is practically constant for
increasing field amplitude.

that defects in bulk samples annihilate more slowly, and may be
understood on the basis that increased confinement increases
the size of the region of distortion around the defects, leading
to greater overlap between defects. The difference in defect
speeds between the fast and the slow moving defects, �v, on
the other hand is independent of cell gap, as demonstrated in
Fig. 5(b). This indicates that the effect of confining surfaces is
the same for both defect types. (The case of the d = 23 μm
cell with values in brackets will be discussed in more detail
below. This represents a cell that was prepared differently from
the others with respect to surface alignment treatment—the
substrates were Octadecyltrimethoxysilane (OTMS) coated,
possibly giving weaker anchoring, as also suggested by a lower
threshold voltage).

Figure 6 depicts the speeds v and the anisotropy �v of
two annihilating defects as a function of applied electric field
amplitude E for a cell with strong anchoring. The speed
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for both types of defects decreases slightly with increasing
electric field amplitude [Fig. 6(a)]. Nevertheless, the effect
of the applied electric field amplitude is equivalent for both
types of annihilating defects, which is exemplified by the fact
that the speed anisotropy is independent of field amplitude
[Fig. 6(b)]. We remark that the size of the region of director
distortion around a defect depends strongly on the applied
voltage, decreasing from tens of micrometers at very low
voltages to tens of nanometers at high voltages. The larger
extent of the deformation around the center of the defect for
small voltages will cause a larger overlap between the defects
and hence a faster annihilation.

These behavioral trends are sensitive to the anchoring
conditions of the cell. The experimental data of Fig. 6

FIG. 7. (a) Defect speeds of the fast s = +1 (closed circles)
and the slow s = −1 (open circles) defect during the annihilation
process as a function of applied electric field amplitude for a cell with
weak homeotropic anchoring conditions. (b) Corresponding defect
annihilation speed anisotropy. At large applied electric fields E >

3 V μm−1 the defect annihilation speed anisotropy �v deviates from
a constant value. This may be due to the onset of electrohydrodynamic
effects, which are suppressed by strong anchoring conditions.

were taken using a cell with strong homeotropic anchoring
conditions, and similar results were obtained for all the cells
with strong anchoring. However, for the d = 23 μm cell,
which was prepared with a different alignment agent and
presumably weaker anchoring conditions, a quite different
electric field amplitude dependence of the annihilation speeds
as well as their anisotropy was seen. This is illustrated in
Fig. 7. For relatively small applied electric field amplitudes
E < 3 V μm−1, the defect speeds of both defect types are
practically constant, although different in magnitude. At larger
electric field amplitudes of approximately E > 3 V μm−1

the defect speeds and the speed anisotropy show a strong
increase. This may be due to the onset of electrohydrodynamic
effects, which are suppressed by strong anchoring conditions.
We should mention that we did not directly observe the
development of electroconvective rolls, simply because we
stopped measurements at the onset of seeing irregular motion
within the liquid crystal at field and frequency parameters
where electrohydrodynamics sets in. This parameter regime
is outside of the current interest, experimentally, as well as
from the perspective of computer modeling. The ionic charge
relaxation covers a frequency regime to about 500 Hz, so that
our measuring frequency of f = 300 Hz is right in the middle
of that regime.

Another applied electric field parameter that was varied
was the applied square wave frequency f , which was changed
over more than five orders of magnitude, between 1 and 106 Hz
(Fig. 8). Although the two approaching defects clearly show
different speeds (open versus closed symbols), these speeds
were constant and independent of the applied electric field
frequency, as depicted in Fig. 8(a). Consequently, the speed
anisotropy �v was also independent of applied field frequency,
as demonstrated in Fig. 8(b). This behavior can be understood
by the dielectric nature of the electric field interaction with
nematic liquid crystals. The interaction between the electric
field and the liquid crystal is proportional to E2, thus an applied
ac square wave field acts effectively like a dc field (except when
acting on ions). These results suggest that ionic contamination,
which is always present in any liquid crystal, does not play any
significant role in this experiment.

Finally, we investigated the defect annihilation behavior
and its speed anisotropy as a function of temperature T .
Temperature variation of the liquid crystal between 30 ◦C
and 90 ◦C will primarily affect the viscosity of the material.
Decreases of the orientational nematic order parameter on
increasing temperature in the regime investigated will not
influence the macroscopic behavior of defect coarsening
significantly. This is because the largest changes of the order
parameter are observed within the vicinity of a few degrees
of the phase transition. Our experimental investigations are
focused onto a temperature regime quite far below the clearing
point at reduced temperatures of (TC–T ) = 10–70 K.

The speed at which annihilating defects approach each
other increases exponentially with increasing temperature
[Fig. 9(a)], primarily resulting from an Arrhenius-like decrease
in material viscosity. Such behavior is observed for both types
of defects, the fast s = +1 as well as the slow s = −1 one,
as illustrated by the closed and open symbols in Fig. 9(a),
respectively. As expected the defect speed anisotropy also
increases exponentially, as illustrated in Fig. 9(b).
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FIG. 8. Frequency dependence of (a) the defect speeds and (b) the
corresponding defect speed anisotropy. Defect speeds are practically
independent of the frequency of the applied electric field, due to the
dielectric nature of the interaction between field and liquid crystal.
The defect annihilation speed anisotropy is thus also independent of
applied field frequency.

An interesting observation from all of these systematic
investigations is the fact that the speed difference between
the fast and the slow moving defect is approximately constant
at �v ≈ 0.1 μm s−1 for all externally applied parameter
changes that do not directly influence the material properties
of the liquid crystal, i.e., cell gap d [Fig. 5(b)], electric field
amplitude E [Fig 6(b)], and frequency [Fig. 8(b)]. Only in
the case where actual material properties are varied, such as
viscosity, does the defect annihilation speed anisotropy �v

depend on external parameters, i.e., temperature [Fig. 9(b)].
In the case of weak anchoring [Fig. 7(b)], deviations may
be attributed to possible electrohydrodynamic contributions at
large applied electric field amplitudes (E > 3 V μm−1).

A point of discussion is that of the connection between
the defect sign and the fast or slow moving defects. Numerical
simulations of the annihilation of s = ±1/2 defects in nematics
[27–29] and of s = ±1 defects in SmC films [30] and the
simulations we report here all find the positive defect to

FIG. 9. Temperature dependence of (a) the defect speeds and
(b) the annihilation defect speed anisotropy. Defect speeds increase
exponentially with increasing temperature, due to an Arrhenius-like,
exponential decrease of the liquid crystal viscosity. With temperature
variation changing the material properties of the liquid crystal
(primarily its viscosity) the defect annihilation speed anisotropy also
changes with temperature.

move faster. Our experimental systems are obviously much
less idealized than the numerical simulations, especially since
we do not observe isolated defect pairs, but rather networks
of many defects. Nevertheless, in numerous experiments, we
also found that in the annihilation of umbilic defects the s =
+1 defect is always faster than the s = −1 defect.

IV. SIMULATION

We now describe a numerical investigation of the dy-
namics of umbilic defect annihilation which complements
these experimental results. Our simulations were performed
using a hybrid lattice Boltzmann algorithm [33] to solve the
Beris-Edwards [34] equations for the evolution of the liquid
crystalline order parameter and fluid velocity. We focus our
attention on an idealized situation in which a single pair of
opposite strength defects attract each other and annihilate. The
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calculations are performed in full three dimensions and mirror
the experimental conditions qualitatively.

In our approach the order parameter for a nematic liquid
crystal is taken to be a traceless symmetric second rank tensor
Qαβ [4]. The director field nα , which describes the principal
alignment direction of the liquid crystal molecules, is given by
the maximal eigenvector of Qαβ . We describe the equilibrium
properties of the liquid crystal with the Landau-de Gennes free
energy density,

F = L

2
(∂αQβγ )2 − εaε0

3
EαQαβEβ + A

2
Q2

αβ

+ B

3
QαβQβγ Qγα + C

4

(
Q2

αβ

)2
, (1)

where L is a single elastic constant, εa is the microscopic
dielectric anisotropy, ε0 is the permittivity of free space, Eα is
the applied electric field, and A, B, and C are liquid crystalline
material constants. It is important to note that in systems
of umbilic defects one needs to choose negative dielectric
anisotropy εa < 0. The Q-tensor evolves in time according to
the equation

(∂t + u · ∇) Q − S (W,Q) = 
H, (2)

where 
 is a collective rotational diffusion constant, H is
the molecular field, and S represents a generalization of the
convective derivative for rodlike molecules,

S (W,Q) = (ξD + �) (Q + I/3) + (Q + I/3) (ξD − �)

− 2ξ (Q + I/3) tr(QW). (3)

In this expression W is the velocity gradient tensor, with
components Wαβ = ∂βuα , D and � are its symmetric and
antisymmetric parts, respectively, and ξ is a constant related
to the aspect ratio of the molecules that switches between the
flow-aligning and flow-tumbling regimes.

We note that, as an alternative to the Q-tensor-based
formalism used here, the annihilation dynamics of umbilic
defects could also be modeled using a director-based Oseen-
Frank formalism [4]. This is because the umbilic defects have
no singular core, and therefore a vector order parameter—the
director—can characterize the centers of the defects. The
main advantage of the director-based approach is that it is
less computationally demanding. However, the disadvantage
is that it is unable to capture the changes in the nematic degree
of order which emerge in the centers of the umbilic defects
at stronger external fields and are relevant, for example, in
particle and molecular manipulation [35].

The fluid velocity uα satisfies the continuity and Navier-
Stokes equations with a stress tensor generalized for liquid
crystals,

σαβ = −p0δαβ + 2ηDαβ − ξHαγ

(
Qγβ + 1

3
δγβ

)

− ξ

(
Qαγ + 1

3
δαγ

)
Hγβ +2ξ

(
Qαβ + 1

3
δαβ

)
QγδHγδ

+Qαγ Hγβ − Hαγ Qγβ − ∂αQγδ

δF

δ∂βQγδ

. (4)

Here p0 is the pressure and η is an isotropic viscosity.
The presence of terms in the stress tensor involving the

order parameter and the molecular field leads to backflow
effects, whereby the relaxation of the order parameter induces
a fluid flow, which subsequently affects the order parameter
dynamics. In particular, these backflow effects contribute to
the speed asymmetry in defect annihilation [27,29,31,32].
Within the simulations it is possible to turn off the backflow
by decoupling the order parameter and fluid velocity fields.
If this is done, Q evolves according to a purely relaxational
Ginzburg-Landau equation, Eq. (2) with u = 0.

The simulations are performed in a rectangular simulation
box with cubic mesh, typically 200 × 200 × 100 mesh
points. Time-evolution equations for the order parameter
tensor Qαβ are solved by an explicit finite difference scheme
in time, whereas the generalized Navier-Stokes equation for
the velocity field uα is solved by a D3Q15 lattice Boltzmann
method [33]. This lattice Boltzmann method discretizes the
velocity field into 15 distinct symmetric velocity contributions
(partial distribution functions) and propagates them in space
according to collision rules, which give the Navier-Stokes-
equation dynamics. Fixed homeotropic boundary conditions
on the director field and no-slip boundary conditions for the
velocity field are assumed at the top and bottom surface of the
cell, and we use periodic boundary conditions in the lateral
X,Y directions. Unless otherwise stated the following values
for the material parameters are used. These are characteristic
of a typical nematic liquid crystal rather than a quantitative
match to the experiments [34,36,37]: L = 4 × 10−11N, A =
−0.172 MJ/m3, B = −2.12 MJ/m3, C = 1.73 MJ/m3,
ξ = 1, εa = −21, 
 = 7.29/Pa s, the mesh resolution
is �x = 10 nm, time step �t = 0.24 ms, and cell gap
d = 1 μm. Here, note that that the typical cell gap in the
simulations (∼1 μm) is taken considerably smaller than the
gap in experiments (6–50 μm), because of computational
limitations. Therefore the comparison between experiments
and simulations is qualitative.

A pair of opposite-sign umbilic defects has a distinct
splayed field in the plane perpendicular to the cell walls
(XZ) and dipolar director field in the lateral XY plane
[see Fig. 10(a)]. Importantly, the director field is continuous
everywhere and defects have no melted (isotropic) core;
therefore, it is only the projection of the director field in the
XY plane that has two discontinuous regions, i.e., the centers
of the two umbilic defects. The order parameter tensor Qαβ

of two neighboring umbilic defects can be initialized by an
Ansatz for the director field:

n = (cos φ sin �, sin φ sin �, cos �),
φ(x,y) = arctan(y/x − xdef) − arctan(y/x + xdef),
�(z) = cπ sin [π (z + d/2)/d] /2,

(5)

which in Cartesian coordinates (x, y, z) creates a +1 radial
hedgehog umbilic defect at (xdef ,0,0) and −1 hyperbolic
umbilic defect at (–xdef ,0,0), within a cell of thickness d. The
constant c,−1 � c � 1, determines the tilt in the central XZ

plane of the cell and was taken to be c = 0.6.
Figures 10(b) and 10(c) show the positions Xp, Xm and

velocities Vp, Vm of the two opposite-sign umbilic defects,
presented in Fig. 10(a), as they annihilate in time. The
dynamics of the two defects is nonuniform in time. They
move at roughly constant speeds from the time of initialization
(t = 0), but then accelerate in a short time interval just before
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FIG. 10. (Color online) Simulated annihilation of +/−1 umbilic point defects. (a) Director field of two annihilating umbilic defects in
the XY and XZ characteristic. The centers of the −1 defect (left) and +1 defect (right) are indicated in yellow. Note the coordinate axes.
(b) Defect positions Xp and Xm of the +1 and −1 defects, respectively, as functions of time t . Defects annihilate at t ∼ 6500�t . (c) Defect
speeds Vp = �Xp/�t and Vm = �Xm/�t of the +1 and −1 defects, respectively, as functions of time t. Note, the constant velocity for t <

5000�t and the asymmetry in the velocities of the +1 and −1 defect. (d),(e) Director profiles (in white) and velocity fields (green arrows) in
the XY and XZ planes at various times during the annihilation dynamics. The left three panels show the snapshots before, and the right-most
panels the snapshots after the annihilation. Red dots indicate the centers of the defects in the XY plane. Calculations were performed using a
constant uniform electric field E = 8 V/μm along the z axis.

annihilation, in agreement with the experiments. The speeds of
the two topologically distinct defects are found to be different.
We can clearly attribute this to the backflow as performing
calculations with only liquid crystalline dynamics (velocity
field u = 0) gives no speed asymmetry in the one elastic
constant approximation. As demonstrated in Figs. 10(d) and
10(e), the annihilating +1 defect (note the right red dot) is able
to induce in its surrounding region a substantial material flow
at all times, which is in contrast to the weak flow in the region
of the −1 defect (note the left red dot). The stronger material
flow of the +1 defect helps by advecting the local deformation
field, making the +1 defect move faster. This again is in line
with the experimental results (e.g., see Fig. 4).

The strength of the external electric field and the cell
thickness are two elementary parameters that determine the
dynamics of umbilic defects. We observe that when the electric
field is increased both defects slow down [see Fig. 11(a)], again
in good agreement with experiment [Fig. 6(a)]. Qualitatively,
this behavior can be explained from the changes in the director
profile of the two defects and their overlapping regions, which
we present in Fig. 11(b). A larger electric field compresses
the centers of the two defects making them more localized;
note the increasingly narrower peaks in the director angle in
Fig. 11(b) (bottom curves). The overlapping regions between
the defects—the sources of the annihilation dynamics—are
therefore shrunk and defects move more slowly. Interestingly,
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FIG. 11. (Color online) Annihilation dynamics of +/−1 umbilic
defects for various strengths of the electric field E. (a) Defect
positions Xp and Xm of the +1 and −1 defects, respectively, as
functions of time t for various electric field strengths E. (b) Azimuthal
angle � of the director [see also Eq. (5) and nematic degree of order
S along the X axis at time t = 3000�t for various electric field
strengths. � = 0 indicates the centers of the umbilic defects; S =
0.533 corresponds to the bulk nematic degree of order.

at larger electric fields, the degree of order in the centers of
the two defects also starts to decrease [Fig. 11(b), top curves],
which indicates the formation of weakly melted defect cores.

Figure 12 shows defect annihilation trajectories and defect
speeds at constant electric field for different confinement, i.e.,
for various cell gaps d. We find that by increasing the cell
gap (i) the defect speeds decrease and (ii) the asymmetry
in the defect speeds increases. The decrease of the defect
speeds can again be explained qualitatively by the changes
in the director profile in the region between the two defects.
By increasing the cell gap, the surface-imposed alignment of
the director becomes weaker relative to the external electric
field. (As an example of this, the Freedericksz threshold
field EFreed scales as EFreed∼ 1/d.) Therefore, the electric
field is able to localize the defect centers more, shrinking
the director-overlap regions, which then leads to the slower
dynamics of the defects. The increased asymmetry in the

FIG. 12. (Color online) Annihilation dynamics of +/−1 umbilic
defects for various cell thicknesses d . (a) Defect positions Xp and
Xm and (b) defect speeds Vp and Vm of the +1 and −1 defects,
respectively.

defect speeds, however, arises from the stronger backflow in
wider cells. The maximum velocity of say, a pressure-driven,
Poiseuille flow in the center of a confined cell umax scales as
umax∼ d2 and although the driving mechanism for the flow is
different here, this generic scaling, which is a consequence
of confinement, is still relevant. Therefore, in wider cells, the
relaxational dynamics of the director of the annihilating defects
can initiate material flows which are larger in magnitude,
leading to a larger asymmetry in the defect speeds. Again,
the results on the effect of variable confinement are in good
qualitative agreement with experiments (see Fig. 5).

In addition to backflow, the annihilation dynamics of
defects is also affected by the anisotropy of the liquid
crystalline elastic constants (K1 splay, K2 twist, K3 bend),
which also cause asymmetry in the defect speeds [38,39]. To
assess the role of the elastic anisotropy, we perform additional
numerical calculations, including both the full backflow and
different values for the elastic constants (for details see [32]).
The total free energy F [Eq. (1)] is generalized to include three
elastic tensorial contributions characterized by tensorial elastic
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constants Li (i = 1, 2, 3), which directly map to the standard
Frank elastic constants Ki (i = 1, 2, 3). (In the one elastic
constant approximation K1 = K2 = K3 and L2 = L3 = 0.)

In the annihilation of the +1 and −1 umbilic defects, the
splay and bend elastic deformations are relevant. Therefore, by
changing the ratio K3/K1 we can favor either bend (K3 < K1)
or splay (K3 > K1) elastic deformation and test the role of the
elastic anisotropy. We find that, for favored bend deformation,
the elastic anisotropy drives the s = −1 defect faster than the
s = +1 defect; by contrast, the backflow drives the s = +1
defects faster than the s = −1 ones. The effects of elastic
anisotropy and the backflow effectively oppose one another,
and for K1 = K2 = K3/2 (at E = 8 V/μm) we observe very
little speed anisotropy in the annihilation dynamics of the s =
+1 and s = −1 umbilic defect.

For favored splay, however, as in our experiments, both
the elastic anisotropy and the backflow drive the s = +1
defect faster than the s = −1 defect and they effectively add.
For K1/2 = K2 = K3 (at E = 8 V/μm), the anisotropy in
elastic constants and the backflow each contribute ∼50% to
the total speed anisotropy in the defect annihilation dynamics.
Finally, to generalize, typical nematic materials have K3 >

K1, therefore any observed anisotropy in the annihilation
dynamics of defects stems from the backflow magnified by
the elastic anisotropy.

V. CONCLUSIONS

The annihilation dynamics of pairs of s = ±1 umbilic
defects were investigated both experimentally and numeri-
cally. The defects were observed to exhibit a speed anisotropy,
induced by backflow and differences in the elastic constants, in
agreement with previous simulations and experiments on other

types of defects in liquid crystals [27–32]. Both the experi-
ments and simulations showed the s =+1 defect moving faster.

The experiments systematically investigated the effects
of confining cell gap, electric field strength and frequency,
anchoring conditions, and temperature. The defect speed was
found to increase as both the cell gap and the electric field
strength were decreased. This is consistent in the sense that
both factors act to increase the size of the region of distortion
around the defects. It is natural to assume that increasing the
extent of the distortion will lead to an increase in speed since
there will be a greater overlap between the two defects in
the annihilating pair. While the absolute speed was sensitive
to external parameters, the speed anisotropy was essentially
constant and only showed variation when the temperature was
varied altering the viscosity of the material.

The simulations qualitatively confirm these findings. The
linear relationship between displacement and time found
experimentally at the early times of the annihilation process
is reproduced. This suggests that the defect pairs analyzed
experimentally were rather isolated and largely free from the
influences of other defect pairs. The general experimental
trends of defect speed decreasing as the electric field strength
or cell thickness are increased are also seen in the simulations
which provides support for our interpretation in terms of the
variable localization of the umbilic defects. Finally, simula-
tions indicate that at larger external fields partial, localized
melting can occur in the centers of the defects.
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