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Mean-field theory for coarsening faceted surfaces
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A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening
of generic one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory
of Ostwald ripening in two-phase systems, but the mechanism of coarsening in faceted surfaces requires the
addition of convolution terms recalling work on particle coalescence, and induces an unexpected coupling
between the convolution and the rate of facet loss. As a generic framework, the theory concisely illustrates how
the universal processes of facet removal and neighbor merger are moderated by the system-specific mean-field
velocity describing average rates of length change. For a simple, example facet dynamics associated with the
directional solidification of a binary alloy, agreement between the predicted scaling state and that observed after
direct numerical simulation of 40 000 000 facets is reasonable given the limiting assumption of noncorrelation
between neighbors; relaxing this assumption is a clear path forward toward improved quantitative agreement
with data in the future.
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I. INTRODUCTION

In many examples of faceted surface evolution, a facet-
velocity law giving the normal velocity of each facet can be ob-
served, assumed, or derived. Examples of such dynamic laws
describe the growth of polycrystalline diamond films from the
vapor [1,2], the evolution of faceted boundaries between two
elastic solids [3], the evaporation-condensation mechanism of
thermal annealing [4], and various solidification systems [5–9].
Such velocity laws are typically configurational, depending
on surface properties of the facet such as area, perimeter,
orientation, or position, and reduce the computational com-
plexity of evolving a continuous surface to the level of a finite-
dimensional system of ordinary differential equations. This
theoretical simplification enables and invites large numerical
simulations for the study of statistical behavior. This has
been done frequently for one-dimensional surfaces [5–14],
while less frequently for two-dimensional surfaces due to
the necessity of handling complicated topological events
[4,15–19]. Such inquiries reveal that many of the systems
listed above exhibit coarsening—the continual vanishing of
small facets and the increase in the average length of those that
remain. Notably, these systems also display dynamic scaling,
in which common geometric surface properties approach a
constant statistical state, which is preserved even as the length
scale increases.

The dynamic scaling behavior of coarsening faceted sur-
faces recalls the process of Ostwald ripening [20], in which
small solid-phase grains in a liquid matrix dissolve, while
larger grains accrete the resulting solute and grow in a
scale-invariant way at late times. Indeed, it was observed
some time ago that facets of alternating orientations on a
one-dimensional surface are analogous to alternating phases
of a separating two-phase alloy [21,22] and the Cahn-Hilliard
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equation [23], which models phase separation, has been used,
in modified form, to describe several different kinds of faceted
surface evolution [9,24,25]. More distantly related coarsen-
ing systems exhibiting dynamic scaling include coarsening
cellular networks describing soap froths and polycrystalline
films [26–30] and films growing via spiral defect [31]. In
all of these cases, the system is characterized by a network
of evolving boundaries that separate domains of possibly
differing composition and exhibit coarsening and convergence
toward scale-invariant steady states.

Because dynamic scaling pushes complex systems into
a state that can be approximately characterized by just a
few statistics, it is natural to seek simplified models that
approximately mimic the resulting scaling laws and scaling
functions. The canonical example of this approach is the
celebrated theory of Lifshitz, Slyozov, and Wagner describing
Ostwald ripening [32–34]. Generically, such an approach
selects a distribution of some quantity and includes just enough
of the total system behavior to specify the effective behavior
of that quantity; for example, the original Lifshitz-Slyozov-
Wagner (LSW) theory first identifies the average behavior of
particles as a function of size and uses that result to identify
a continuity equation describing distribution evolution. Ideas
of this kind have been applied to several of the higher-order
cellular systems introduced above: for soap froths [35,36],
polycrystals [37], and spiral-growth films [31]. To the extent
that such approaches mirror experimental data, they can yield
valuable physical insight that cannot be gained by considering
single particles or even by direct numerical simulation of larger
ensembles. However, to date, no similar attempt has been made
for evolving faceted interfaces, which is somewhat surprising
given the wide variety of examples of purely faceted motion
and past success in applying mean-field analyses to coarsening
these systems.

In this work, therefore, we take a step in that direction
by introducing a framework for describing the distribution of
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facet lengths in one-dimensional faceted surface evolution.
Our approach closely resembles the LSW theory of Ostwald
ripening, in that a number density n(l,t), of facets of length l

at time t , is transported by a known length-dependent effective
velocity law. However, whereas vanishing drops in Ostwald
ripening simply exit the system, each vanishing facet on a
coarsening surface causes its two immediate neighbors to
join together. Accounting for this process of merging requires
the consideration of a convolution integral reminiscent of
equations due to von Smoluchowski [38] and Schumann [39]
describing coagulation (see also Ref. [40]). However, since
the removal rate of small facets from the system necessarily
sets the rate of the concomitant merger of those neighboring
facets, a nonlocal coupling arises wherein the probability flux
at the origin is found to weight the convolution integral. We
therefore arrive at the resulting evolution equation for the
probability distribution ρ(l,t) of facets of length l at time t :

∂ρ

∂t
+ ∂

∂l
[ρv] = −ρ(0,t)v(0,t)

∫ l

0
ρ(l − s,t)ρ(s,t)ds, (1)

where the velocity v(l,t) takes the special form

v(l,t) = V̂[l,L(t)] for L(t) ≡
∫ ∞

0
lρ(l,t)dl (2)

for a derived and prescribed mean-field velocity law V̂(l,L),
which encodes an effective rate of change of length for
facets of length l purely in terms of that length l and the
mean facet length L. The left-hand side of Eq. (1), in
particular the appearance there of the mean-field velocity
V̂(l,L), is precisely where our theory mimics the essential
transport concept underlying the LSW theory. In contrast,
the convolution on the right-hand side of Eq. (1) is strongly
reminiscent of coagulation models. Finally, we note that the
time-dependent function multiplying the convolution (ρ ∗ ρ),

R = −ρ(0,t)v(0,t),

is a rate of probability flux at the origin, which encodes the
link between facets shrinking to zero and the concomitant
merger of the two neighboring facets.

II. EXAMPLE PROBLEM: FROM MODELING
TO MORPHOMETRICS

A. Example coarsening dynamical system

During the directional solidification of a strongly
anisotropic binary alloy, small-wavelength faceted surfaces
develop. If the alloy is solidified above a critical velocity, a
layer of supercooled liquid is created at the interface, which
drives a coarsening instability governed by the facet dynamics
[9]

Vi = μ cos(ω)hi, (3)

where Vi is the (instantaneous) normal velocity and hi is the
mean height of the ith facet. The constant μ is a mobility
with units of sec−1; we may assume μ = 1 without loss
of generality, but will retain the constant to render units
consistent. Finally, (−1)iω is the fixed facet angle (the Wulff
angle); we assume throughout, for simplicity, that only two
alternating facet orientations are present on the surface.

FIG. 1. Facet schematic: diagram illustrating a representative
facet and its two neighbors. Here hi denotes the mean height of
the center facet and Li denotes its width (length). The parameters are
similar for the neighbors of the center facet.

Letting li(t) denote the length of the ith facet at time t , we
will now show that, between coarsening events, one can derive
from Eq. (3) a dynamical system for these facet lengths. First,
we note the general, kinematic relation

dli

dt
= (−1)iμ

sin(2ω)
(Vi+1 − Vi−1); (4)

the prefactor (−1)i reflects our convention that odd (even)
facets have negative (positive) slopes. If we now use the facet
velocity law (3) to specify the dynamics, we can convert this
equation, via elementary geometry (see Fig. 1), to a dynamical
system on facet lengths alone:

dli

dt
= μ

4
(2li − li+1 − li−1). (5)

Thus, even though the normal velocity of a facet depends on
its mean height and slope, the rate of change of its length does
not.

Now the morphometric structure of the evolving coarsening
faceted surface is encoded in an ordered facet-length ensemble,
denoted L[t] : Z → (0,∞), associated with the evolving
interface; L[t](i) ≡ li(t). Since the dynamical system (5)
results in lengths that tend to zero, resulting in the merging
of the two neighboring facets (a coarsening event), we need
to rewrite L[t] at such critical times. To see how, we again
consider Fig. 1 and imagine that the j th facet Fj shrinks to
length 0 at the critical time t∗. When this happens, this Fj

obviously vanishes; however, in addition, the two neighbors
of Fj , namely, Fj−1 and Fj+1, also vanish as independent
entities, to be replaced by a new facet with length equal to the
sum of the lengths of its ancestors. A natural reindexing of the
resultant faceted surface provides the update rule L[t+∗ ],

L[t+∗ ](i) ≡

⎧⎪⎨
⎪⎩
L[t−∗ ](i + 1), i � j − 2

L[t−∗ ](j − 1) + L[t−∗ ](j + 1), i = j

L[t −
∗ ](i − 1), i � j + 2.

(6)

Taken together, Eqs. (5) and (6) constitute a coarsening
dynamical system (CDS), which is the object of our further
study.
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B. Numerical simulation and morphological statistics

For three different initial length distributions, random
faceted surfaces containing 1 000 000 facets were constructed
by generating two sets of numbers obeying that distribution
and scaled to have equal sums; these random lengths were
then interleaved to generate a periodic faceted surface. The
initial empirical distributions of facet lengths �(l) were

�0,comp(l) = 10

18
χ(1/10,19/10),

�0,exp(l) = exp(−l), (7)

�0,poly(l) = 2

(1 + l)3
.

Hence we have explored initial distributions of facet lengths
with compact support, exponential decay, and polynomial
decay.

Figure 2(a) depicts a representative local patch of surface
evolving under the CDS (5) and (6). There the locations of facet
boundaries (corners) are plotted over time and we see many
instances of the binary coarsening described by the update
rule (6). As the system continues to evolve, all three initial
conditions [Fig. 2(b)] begin to coarsen exponentially, with
the average facet length L(t) ∝ e1.8t at late times [Fig. 2(c)].
The arrival at this rate indicates the attainment of the scaling
state, in which the associated empirical probability distribution
�(l,t), of facet lengths l at time t , is observed to approach a
universal scale-invariant form

�(l,t)
t→+∞−−−−→ 1

L(t)
P

(
l

L(t)

)
, (8)

which is illustrated in Fig. 2(d).

III. MEAN-FIELD THEORY FOR BINARY-COARSENING
FACETED SURFACES

We now turn to a theoretical study of the evolving
facet ensemble associated with the CDS. Our focus is the
formulation of a general theory that sheds light on the
empirical probability distribution �(l,t). Inspired by the LSW
theory, our aim is to formulate an approximation for � by
rationally constructing a mass-transport evolution equation
for a theoretical probability function ρ(l,t), supplemented by
sinks or sources that simultaneously and properly account
for the appropriate coarsening mechanism of the original
CDS. Our closed theory emerges from a number of mean-
field approximations of the underlying facet ensemble; such
approximations are often referred to as mean-field hypotheses.

A. Preliminaries

We begin by introducing a number of quantities derived
from ρ(l,t) that are specific to coarsening systems. First, as
small facets shrink to zero and are removed from the system,
the average length L(t) of the remaining facets increases. This
monotonically increasing quantity is simply the first moment
of ρ:

L(t) ≡
∫ ∞

0
lρ(l,t)dl.

Second, we define the number density n(l,t) by

n(l,t) ≡
(

L0

L(t)

)
ρ(l,t), (9)

where both L0 and L(t) have units of length; hence n(l,t)
and ρ(l,t) have the same units of probability per unit length.
[For convenience, we define L0 ≡ 1 so that n(l,t) describe
number density per unit interface length of surface; however,
we retain the symbol L0 so that all equations retain consistent
units.] Note that the zeroth moment N (t) = ∫

n(l,t)dl, which
counts the total number of facets, decreases as L(t) increases.
However, its first moment

∫
ln(l,t)dl ≡ 1 is a conserved

quantity, reflecting the fact that the conserved quantity in our
coarsening faceted surface is the total interface length.

Finally, we presume that under a closure or mean-field hy-
pothesis of statistically independent neighboring facet lengths,
it is possible to formulate a probabilistic, length-dependent
transport rate

v(l,t) ≡
〈
dli

dt

〉
{i|li=l}

(10)

describing the average rate of length change for facets of length
l at time t .

B. Derivation of an evolution equation

Assuming the existence of v(l,t) implies a population flux
J (l,t)

J (l,t) ≡ n(l,t)v(l,t). (11)

For a generic coarsening system, v(l,t) < 0 in some neighbor-
hood of l = 0; the rate of facet removal is then given by the
population flux into the origin

R(t) ≡ −J (0,t) > 0. (12)

Upon reaching zero length, these facets are removed from
the system. However, critically, according to the coarsening
rule (6), the two neighboring facets must also be removed and
replaced with a new facet having length equal to their sum:

(. . . ,L−,L,L+, . . .)
L→0+−−−→ (. . . ,L− + L+, . . .).

Hence, the coarsening process, in addition to transporting
facets out of the domain at l = 0 at a rate of R(t), induces
both a loss LC(l,t) and a gain GC(l,t) of facets, which
themselves are statistically distributed in length. The shape
of these distributions comes from our closure hypothesis,
which assumes no correlation between neighboring lengths.
Under this hypothesis, the two lost neighbors L− and L+ are
each independently distributed according to the probability
distribution ρ(l,t). In addition, the facetL− + L+ that replaces
them, being the sum of two random variables, must satisfy the
joint probability function

[ρ ∗ ρ](l,t) =
∫ l

0
ρ(s,t)ρ(l − s,t)ds. (13)

Under these considerations, we therefore have

LC(l,t) = 2R(t)ρ(l,t), (14)

GC(l,t) = R(t)[ρ ∗ ρ](l,t), (15)
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(a)

(b)

(d)

(c)

FIG. 2. (Color online) Survey of coarsening behavior. (a) Representative example of the evolution of corners between facets during
coarsening (the initial distribution is compact): light (dark) corresponds to hills (valleys), but the problem has up-down symmetry and the
distinction is irrelevant. (b) Length distributions for three different initial surfaces, as described by Eqs. (7) (natural log scale). (c) Growth with
time of the average facet length L(t) for each of the initial conditions (natural log scale). The scaling state is reached when the curve becomes
straight. (d) Numerically observed scaling function P( l

L(t) ) describing the scaling state common to all three of the initial conditions. Each
scaling state in (d) was obtained by averaging the data over the corresponding shaded regions in (c).

which are merely the expression within the mean-field frame-
work of the coarsening rule (6). Taken together, the popul-
ation flux (11), the neighbor-loss rate (14), and the neighbor-
replacement rate (15) imply a balance law on the number
density given by

∂n

∂t
+ ∂

∂l
(nv) = R(ρ ∗ ρ − 2ρ). (16)

We now proceed to recast the left-hand side of Eq. (16)
purely in terms of the probability density ρ. To that end, it will

be useful to introduce the probability flux J ,

J (l,t) ≡ ρ(l,t)v(l,t) = L(t)

L0
J (l,t),

and the associated probability flux at the origin (rate of flux of
probability at 0)

R(t) ≡ J (0,t) = L(t)

L0
R(t).
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Noting that integrating the number density (16) with respect
to l over the interval (0,∞) yields a rate of facet loss dN

dt
given

by

dN

dt
= d

dt

(
L0

L

)
= −2R = −2

L0

L
R, (17)

we obtain

∂n

∂t
= ∂

∂t

(
L0

L
ρ

)
= −2

L0

L
Rρ + L0

L

∂ρ

∂t
. (18)

Inserting Eq. (18) into Eq. (16), we conclude that the governing
equation for the probability distribution ρ(l,t) is

ρt + (ρv)l = R(ρ ∗ ρ). (19)

This equation, which is our main result, is generic to
coarsening faceted surfaces exhibiting binary coarsening, with
the effect of the particular facet dynamics limited to the
term v(l,t).

C. Predictions: Growth rate and scaling state

To investigate the scaling state of Eqs. (19) and (24), we
make the scaling hypothesis that

ρ(l,t) = L0

L(t)
P

(
l

L(t)

)
,

(20)

v(l,t) = L(t)

L0
V

(
l

L(t)

)
,

where the scaling function P satisfies∫ ∞

0
P(l)dl = 1,

∫ ∞

0
lP(l)dl = 1. (21)

This hypothesis leads to two main results. First, we recall that
Eq. (17) contained a differential equation on L(t):

d

dt

(
L0

L

)
= −2R

(
L0

L

)
,

dL

dt
= 2RL.

Under the scaling hypothesis, the probability flux at the origin
R = −ρ(0,t)v(0,t) = −P(0)V(0) becomes a constant and
so the theory predicts that the average facet length grows
according to the exponential relation

L(t) = L0exp[2Rt]; (22)

this form is independent of the particular facet dynamics,
which serve only to choose the constants V(0) and (indirectly)
P(0). Second, upon inserting the ansatz (20) into Eq. (19), we
obtain for the scaling function P(x) the governing equation

d

dx
[V(x)P(x)]

= −V(0)P(0)

{∫ x

0
P(ξ )P(x − ξ )dξ + 2

d

dx
[xP(x)]

}
;

(23)

this integro-differential equation implicitly defines P(x) and
can be solved at least numerically. The results (22) and (23)
are the central predictions of our theory.

IV. COMPARISON OF THEORY VS DATA FOR OUR
EXAMPLE DYNAMICS

We now apply the generic theory of Sec. III to the specific
example dynamics (5) from Sec. II and compare the theoretical
predictions on ρ with the empirical statistical data �.

A. Application of the general theory

To generate a theory specific to the dynamics (3), all that is
required is to calculate the mean-field velocity v(l,t) associated
with the dynamics (5) and insert it into the relevant generic
equations of Sec. III. From Eq. (5), the application of our
neighbor-independent hypothesis leads immediately to

v(l,t) = μ

2
[l − L(t)] or V(x) = μ

2
(x − 1). (24)

Inserting Eq. (24) into the generic scaling state equation (23)
yields as the definition of the scaling function for this dynamics
the equation

d

dx
[(x − 1)P(x)]

= P(0)

{∫ x

0
P(ξ )P(x − ξ )dξ + 2

d

dx
[xP(x)]

}
.

(25)

By inspection, a solution to this equation happens to be

P(x) = exp(−x) (26)

and hence the average facet length is predicted to grow at late
times as

L(t) = e−2V(0)P(0)t = eμP(0)t = eμt . (27)

B. Comparison with data

We now compare the predictions (22) and (26) against
steady-state statistics obtained via direct simulation of the
dynamics (3), in which we set μ = 1. First, the observed
statistical coarsening rate of e1.8t , although different from the
predicted rate of et , is consistent with the generic prediction
(22) in that our observed scaling state exhibited P(0) ≈ 1.8.
This is unsurprising because the prediction (22) is obtained
ultimately from the conservation of total surface length. The
discrepancy between actual values is due to a difference in
the scaling state itself, shown in Fig. 3. There the predicted
exponential distribution is shown in blue; a comparison
with the observed distribution (green) reveals qualitative
but not quantitative agreement. In particular, although both
distributions exhibit exponential decay in the dimensionless
relative length l/L, the observed distribution has more of its
mass near zero and in the tail, which decays like exp(− x

2 )
rather than the predicted exp(−x).

C. Diagnostic tests for the source of disagreement

Seeking the cause of quantitative discrepancies between
theory and experiment, we reexamine the two main assump-
tions used to construct the theory: the existence of a statistical
mean field velocity and the noncorrelation of neighboring facet
lengths.
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FIG. 3. (Color online) Theory vs simulation. Comparison be-
tween the theoretically predicted scaling function P(x) (solid line)
and the empirically observed function P(x) (dashed line).

(i) Mean-field velocity. To test the validity of the assumption
of an effective flux function v(l), we construct a two-point
distribution of length and velocity pairs (l,v) as they occur in
the simulated ensembles. A contour plot of the logarithm of
this distribution is shown in Fig. 4. Finding the mean velocity
for each length gives the statistical v (dashed line), which turns

0 2 4 6 8 10
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0.0
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(a)

(b)

FIG. 4. (Color online) Diagnostic tests. (a) Contour of the
logarithm of the steady two-point statistical distribution of dimension-
less length-velocity pairs ln[�̃( l

L
, v

L
)]. The mean statistical velocity

〈v〉( l

L
) = ∫ ∞

0 s�̃( l

L
,s)ds is plotted as a dotted line and the predicted

velocity V( l

L
) is a solid line. (b) Steady-state correlation of facet

lengths as a function of neighbor distance d . Plotted is the Pearson
product-moment correlation coefficient of all length pairs (li ,l(i+d)%n),
where d is the number of facets between each pair and n is the number
of facets in the (periodic) system.

out to compare favorably with the predicted v (solid line). A
slight shift between the curves is observed, which we attribute
to a discretization error associated with binning our sample
data into boxes of width 0.1 in the relative velocity and relative
lengths. So this approximation seems to be reasonable.

(ii) Noncorrelation. To test the validity of the assumption
of noncorrelation between neighboring facets, we measure the
correlation coefficient of each nth-neighbor pair for various n.
These coefficients tend toward a steady state as the ensembles
evolve and that state is shown in Fig. 4(b). There we see a small
but possibly significant positive correlation for at least the first
two neighbors, suggesting that facets of similar size tend to
cluster together: large with large and small with small. Hence
the noncorrelation assumption fails, though not spectacularly.
This result is not surprising, as the main weakness of the
original LSW theory that inspires this work was also a failure
to address correlations; later generalizations that corrected this
deficiency agreed well with experimental data [41].

V. CONCLUSION

We have presented a mean-field theory for the evolution
of length distributions associated with coarsening faceted
surfaces. In the spirit of LSW theory, a facet-velocity law
governing surface evolution is used to establish a characteristic
length-change law; this mean-field velocity, along with a con-
sideration of the effect of binary coarsening events observed
during simulation, leads to an continuity equation governing
the evolution of the probability distribution. This equation
combines a transport term similar to LSW theory with a
convolution term reminiscent of coagulation-fragmentation
models. However, it is different from either of these in that
the latter process occurs at a rate determined by the magnitude
of transport at the boundary. Our model therefore serves, apart
from the direct application to facet dynamics, as a study of
mean-field equations with this structure.

For a sample facet dynamics associated with binary solidi-
fication, we find the growth rate, scaling state, and coarsening
efficiency predicted by our framework and then compare
the predictions to statistics obtained from direct numerical
simulation of a large facet ensemble. The results, although
not quantitative, agree surprisingly well for a single-point
statistic. In addition, the theory captures the essential feature of
the dynamically scaling state: a particular mass flux law that
drives coarsening by pushing facets away from the average
length, moderated by competing terms describing coarsening
and continuous rescaling, which push mass toward infinity
and zero, respectively. While later improvements to our model
addressing neighbor correlation will undoubtedly increase its
predictive capabilities, these same forces will still balance
in the steady state. The model as presented thus serves as a
qualitative explanation of the essential features of the scaling
state, as well as a guide to further research efforts.
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