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The theory of Kolmogorov-Johnson-Mehl-Avrami for phase transition kinetics is subjected to severe limitations
concerning the functional form of the growth law. This paper is devoted to sidestepping this drawback through
the use of the correlation function approach. Moreover, we put forward an easy-to-handle formula, written in
terms of the experimentally accessible actual extended volume fraction, which is found to match several types of
growths. Computer simulations have been performed for corroborating the theoretical approach.
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I. INTRODUCTION

The Kolmogorov-Johnson-Mehl-Avrami (KJMA) model
[1–3] finds applications in a vast ambit of scientific fields,
which range from thin film growth to materials science [4–11]
to biology and pharmacology [12,13], let alone the applied
probability theory [14,15]. In the majority of these papers,
the authors made use of a simplified version of the KJMA
formula: the stretched exponential X(t) = 1 − exp(−atn),
where X is the fraction of the transformed phase and a and
n (the latter known as Avrami’s exponent) are constants. The
model, in principle, is simple because it rests on a Poissonian
stochastic process of points in space to which a growth law
is attached. In fact, owing to the Poissonian process, the
nucleation takes place everywhere in the space, i.e., also in the
already transformed phase. This partially fictitious nucleation
rate [I (t)], for we are dealing with a Poissonian process, is
linked to the actual (real) nucleation rate [Ia(t)] according to
Ia(t) = I (t)[1 − X(t)], where X(t) is the transformed fraction.
The growth law transforms each point in a nucleus of radius
R(t), where t stands for time. The pair, points’ generation and
growth law, is a key quantity of the theory. It happens that the
KJMA model fails for the time-dependent points generation
rate (i.e., nucleation rate) associated with diffusional-type
growth laws [16,17]. In particular, let us define two classes
of growth laws: (i) d2R/dt2 � 0 and (ii) d2R/dt2 < 0. The
KJMA model is suitable for describing the first class of
growths, and for this reason, we named it KJMA compliant,
opposite to the second to which we attach the adjective KJMA
noncompliant. The reason for that is due to the particular
stochastic process taken into account. As a matter of fact,
the Poissonian process requires that points can be generated
everywhere throughout the space independently of whether
the space is, because of growth, already transformed or not.
Points generated in the already transformed space are named
phantoms after Avrami. It goes without saying that, in the
case of KJMA-compliant growths, phantoms do not contribute
to the true transformed fraction, i.e., they are just virtual
points whose only role is to simplify the mathematics [18].
On the other hand, in the KJMA-non-compliant growths,
phantoms may contribute to the phase transition through
the nonphysical overgrowth events [3]. Incidentally, it is

worth noticing that the KJMA-non-compliant growths and
KJMA-compliant growths are indistinguishable if associated
with simultaneous nucleation [19].

According to what has been said, one can summarize saying
that the concept of phantom implies the existence of the two
classes of growths.

One has to keep in mind that the above stretched exponential
expression, [X(t) = 1 − exp(−atn)], is the exact solution
of the kinetics only in cases I (t) = constant and I (t) ∼
δ(t), where I is the nucleation rate and δ(t) is Dirac’s δ

function, provided the growth is according to a power law.
In general, the term atn is a simple way to approximate the
convolution product between the nucleation rate (phantom
included) and the nucleus volume. This convolution is the
extended transformed fraction, X̂e, and takes the contribution
of phantoms into account. In view of the extensive use of
KJMA theory for dealing with experimental data, it should
be desirable to make use of an extended transformed fraction
deprived of phantom contribution Xe. A pictorial view of the
geometrical meaning of X̂e, Xe, and X is reported in Fig. 1.

The aim of this contribution is twofold: (i) to model the
phase transformation kinetics in terms of actual quantities,
such as the nucleation rate, (ii) to provide an expression for
the transformed fraction as a function of Xe.

II. THEORY

In this section, we discuss the stochastic theory that has to
be employed in order to get rid of phantoms in modeling
the kinetics of phase transformations ruled by nucleation
and growth. To this end, let us define the phantom-included
nucleation rate I (t) and the actual nucleation rate Ia(t),
namely, the rate of birth of the real nuclei; Ia(t) is the
quantity that is experimentally accessible. It goes without
saying that a mathematical formulation of the phase transition
kinetics, which employs the actual nucleation rate, holds true
for both KJMA-compliant and KJMA-non-compliant growth
laws. This automatically overcomes the limit of the KJMA
approach. However, actual nuclei imply a severe complication
of the stochastic nature of the process under study, for we
shift from a Poissonian to a non-Poissonian process: In fact,
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FIG. 1. (Color online) Pictorial view of a random ensemble of
actual (dots 1–3) and phantom (dots 4 and 5) nuclei. The definitions
of both phantom-included (X̂e) and actual (Xe) extended fractions
also are reported. The (extended) volume of the ith nucleus is denoted
as |Xi |, and the transformed fraction is denoted as X. The symbol |A|
denotes the cardinality of the set A.

actual nuclei are correlated spatially. Let us address this point
in more detail by denoting the radius of a nucleus with R(t,t ′)
at running time t , which starts growing at time t ′ < t . To
be an actual nucleus, it has to lie at a distance r > R(t ′,t ′′)
from any other older nucleus with t ′′ < t ′. In other words,
in the spirit of the statistical mechanics of hard spheres, this
condition is formalized (at the lowest order) through the pair
distribution function for the pair of nuclei (t ′,t ′′) at relative
distance r ,

f2(r,t ′,t ′′) ≈ H (r − R(t ′,t ′′)), (1)

where H (x) is the Heaviside function. Throughout the paper,
we employ the notation by Van Kampen [20] according to
which n-dots distribution and correlation functions are denoted
as fn and gn, respectively.

In previous papers, we have presented a theory for de-
scribing phase transitions in the case of spatially correlated
nuclei and for the time-dependent nucleation rate [21,22]. The
untransformed fraction can be expressed in terms of either
the distribution functions (fn functions) or the correlation
functions (gn functions) where the fn’s and gn’s are linked
by cluster expansion [20]. Given a generic point of space, we
have computed the probability that this point is not covered
(transformed) by any nucleus up to time t . This probability
is the fraction of untransformed phase, i.e., Q(t) = 1 − X(t).
By denoting the volume of a nucleus with |�(t,t ′)|, which
starts growing at time t ′ < t at running time t and in the case
of symmetric fn and gn functions, the uncovered fraction is
given by

Q(t) = 1 −
∫ t

0
Ĩ (t1)dt1

∫
�(t,t1)

f1(r1)dr1

+
∫ t

0
Ĩ (t1)dt1

∫ t1

0
Ĩ (t2)dt2

∫
�(t,t1)

dr1

×
∫

�(t,t2)
dr2f2(r1,r2) − · · ·

= 1 +
∞∑

m=1

(−1)m

m!

∫ t

0
Ĩ (t1)dt1 · · ·

∫ t

0
Ĩ (tm)dtm

∫
�(t,t1)

dr1

∫
�(t,t2)

dr2 · · ·∫
�(t,tm)

fm(r1, . . . ,rm)drm, (2)

or

Q(t) = exp

[ ∞∑
m=1

(−1)m

m!

∫ t

0
Ĩ (t1)dt1 · · ·

∫ t

0
Ĩ (tm)dtm

∫
�(t,t1)

dr1

∫
�(t,t2)

dr2 · · ·
∫

�(t,tm)
gm(r1, . . . ,rm)drm

]
. (3)

In the case of non symmetric fn functions, care must be
taken on time ordering.

It is worth pointing out that the nucleation rates entering
these equations, in fact, are subjected to the condition imposed
by the correlation among nuclei. This quantity may or may not
imply phantoms depending on the specific form of the fn

functions. For this reason, we introduce the new symbol Ĩ . In
particular, for the hard-core correlation [Eq. (1)], Ĩ coincides
with the actual nucleation rate Ĩ = Ia , which leads to the
solution of the phase transition kinetics in terms of the actual
nucleation rate.

Since [Eqs. (2) and (3)] are the exact solutions of the
stochastic process linked to the phase transition, they also
coincide with the KJMA formula provided the above men-
tioned preconditions are met, i.e., random nucleation and
KJMA-compliant growth.

As far as the hard-core correlation [Eq. (1)] and the kinetics,
Eqs. (2) and (3), are concerned, we note that the number of
nuclei of size R(t,t1) is Ia(t1)dt1 = O(dt1). As a consequence
and in the framework of the statistical mechanics of hard sphere
fluid, we are dealing with an extremely dilute solution of pairs
of components t1,t2. Accordingly, because the number density
of t2 spheres is on the order of O(dt2), higher order terms in
the cluster expansion of the f2 function can be neglected, thus,
f2(r,t ′,t ′′) = H (r − R(t ′,t ′′)) in Eq. (2).

A. KJMA-compliant growths

In this section, we show that Eq. (2) is compatible with
the KJMA kinetics only in the case of a KJMA-compliant
function. On the other hand, such a comparison will give
deeper insight into the reasons why the KJMA kinetics does
not work in the case of KJMA-non-compliant functions.
In the following, we discuss the linear growth law for the
two-dimensional (2D) case. Also, to simplify the complexity
of the computation, the actual nucleation rate Ia is taken as a
constant; as a consequence, the phantom-included nucleation
rate reads [3,19] I (t) = Ia/[1 − X(t)] = Ia/Q(t) ≡ IaF (t),
and the KJMA kinetics becomes

F (t) = exp

[∫ t

0
IaF (t ′)πR2(t,t ′)dt ′

]
, (4)

where R(t,t ′) = v(t − t ′) and v is a constant.
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We consider the series expansion of F (t) around t = 0. One
gets

dn+1F (t)

dtn+1
≡ F (n+1) = (F�)(n) =

n∑
k=0

(
n

k

)
F (n)�(n−k), (5)

where �(t) = 2πIa

∫ t

0 F (t ′)R(t,t ′)∂tR(t,t ′)dt ′ =
2πIav

∫ t

0 F (t ′)R(t,t ′)dt ′.
Moreover, since �(m+2) = κF (m), where κ = 2πv2Ia and

F (0) = 1 and �(0) = �(1) = 0, from Eq. (5), it is found
that only the terms F (3n)(0) are different from zero, i.e.,
F (t) = ∑∞

n=0
1

(3n)!F
(3n)(0) t3n = ∑∞

m=0 cmtm. In particular,

the first coefficients are as follows: F (3)(0) = κ, F (6)(0) =
11κ2, F (9)(0) = 375κ3, and F (12)(0) = 234 147κ4.

Next, we derive the series expansion of the untransformed
fraction Q(t) = ∑∞

n=0 bnt
n by exploiting the condition 1 =

Q(t)F (t) = ∑∞
n=0 bnt

n
∑∞

m=0 cmtm. Even in this case, the bn

coefficients are different from zero for n = 3k (with integer
k). The first four coefficients are

b0 = 1

c0
= 1, b3 = −c3,

(6)
b6 = −c6 + c2

3, b9 = −c9 + 2c3c6 − c2
3.

By using the expression of cn’s, the series of the untrans-
formed fraction up to t9 is given as

Q(t) = 1 − 1

6
κt3 + 1

80
κ2t6 − 207

9!
κ3t9 + O(t12). (7)

Since Xe = 1
3!κt3 = 1

3πIav
2t3 = ∫ t

0 IaπR2(t,t ′)dt ′, the
series, Eq. (7), can be rewritten as

Q(t) = 1 − Xe + 9
20X2

e − 69
560X3

e + O
(
X4

e

)
, (8)

where the last two coefficients are 0.45 and 0.123. We
emphasize that the coefficients of this series only depend
upon the growth law for the constant Ia (see also the last
section).

The next step is to show that the untransformed
fraction, given by the series, Eq. (2), is equal to Eq. (7)
or Eq. (8). We have carried out the first two terms,
exactly, while, owing to the tremendous computational
complexity for the third term, an approximation has been
employed. It is worth being reminded that the distribution
functions are f1(r1) = 1, f2(r12,t1,t2) = H (r12 − R(t1,t2)),
and f3(r12,r13,r23,t1,t2,t3) = H (r12 − R(t1,t2))H (r13 −
R(t1,t3))H (r23 − R(t2,t3)), where rij is the relative distance.
In fact, since Iadti = O(dti), the system of dots is dilute,
and f3(1,2,3) = f2(1,2)f2(1,3)f2(3,2), i.e., the superposition
principle holds true [23]. Since the system is homogeneous, the
fn functions depend on rij = |rij | = |ri − rj |. Equation (2)
becomes

Q(t) = 1 − Ia

∫ t

0
dt1

∫
�(t,t1)

dr1 + I 2
a

∫ t

0
dt1

∫ t1

0
dt2

×
∫

�(t,t1)
dr1

∫
�(t,t2)

dr2H (r12 − R(t1,t2))

− I 3
a

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫
�(t,t1)

dr1

∫
�(t,t2)

dr2

FIG. 2. (Color online) The integration domains and the corre-
lation circles are depicted for the integrals over the f2 function.
The cases of KJMA-compliant and KJMA-non-compliant growths
are reported in panels (a) and (b), respectively. In the drawing,
R1,2 ≡ R(t1,t2), Ri ≡ R(t,ti) (i = 1,2), and t2 < t1. In the case of
KJMA-compliant growths, (a) R1 + R1,2 � R2, and the hard-core
circle is within the integration domain R2. In the case of KJMA-
non-compliant growths, (b) R1 + R1,2 > R2, and the hard-core disk
overcomes the integration domain of the older nucleus.

×
∫

�(t,t3)
dr3H (r12 − R(t1,t2))H (r23 − R(t2,t3))

×H (r13 − R(t1,t3)) + · · · , (9)

where the integration domain �(t,ti) is the circle of radius
R(t,ti) = v(t − ti). The f1 containing term is the extended
surface fraction Xe(t) = Ia

∫ t

0 dt1|�(t,t1)| and coincides with
the second term of the expansion, Eq. (8). Let us focus our
attention on the integrals in the spatial domain—for the sake of
clarity shown in Fig. 2(a) together with the circle of correlation
R(t1,t2)—of the f2 containing term. By employing relative
coordinates, the integrals read∫

�(t,t1)
dr1

∫
�(t,t2)

dr12H (r12 − R(t1,t2))

=
∫

�(t,t1)
dr1A(r1,t,t1,t2), (10)

where A(r1,t,t1,t2) = A(r1,R(t,t2),R(t1,t2)) is the area
spanned by the second nucleus when the first one is located
at r1 (t2 < t1 < t). It is at this point of the computation
that the growth law comes into play; indeed, in the case
of KJMA-compliant growth laws (here linear growth), the
correlation circle R(t1,t2) is entirely within the integration
domain R(t,t2) [Fig. 2(a)]. Consequently,

A(t,t1,t2) = π [R2(t,t2) − R2(t1,t2)] (11)

is independent of r1. On the other hand, in the case of
KJMA-non-compliant growth laws, the correlation circle
overcomes the integration domain of the second nucleus,
and the relationship above does not hold true anymore
[see Fig. 2(b)]. In general, the KJMA-compliant functions
satisfy the condition R(t,t1) + R(t1,t2) � R(t,t2), i.e., for a
power growth law (t − t1)n + (t1 − t2)n � (t − t2)n, which is
verified only for n � 1. In fact, by setting τ = t1 − t2 and
η = t−t2

τ
> 1, the inequality above reads (η − 1)n � ηn − 1,

which is satisfied for n � 1. On the other hand, for n = 1/k

(with integer k > 1), the inequality is [(η − 1)1/k + 1]k � η,
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namely,

k−1∑
μ=1

(
k

μ

)
(η − 1)μ/k � 0, (12)

which is never satisfied (η > 1).

For the KJMA-compliant growth, the contribution of the f2

containing term becomes

πI 2
a

∫ t

0
dt1

∫ t1

0
dt2

∫
�(t,t1)

dr1[R2(t,t2) − R2(t1,t2)] = π2I 2
a

∫ t

0
dt1

∫ t1

0
dt2R

2(t,t1)[R2(t,t2) − R2(t1,t2)]

= X2
e

2
− π2I 2

a

∫ t

0
dt1

∫ t1

0
dt2R

2(t,t1)R2(t1,t2). (13)

It is possible to show that, for linear growth, the last term of Eq. (13) is equal to 1
180 (πIav

2t3)2; consequently, we get
X2

e

2 − 9X2
e

180 = 9
20X2

e , which coincides with the term of the same order in the KJMA series, Eq. (8).
Let us now briefly consider the contribution of the f3 containing term in the general expression, Eq. (2). Figure 3 shows

the integration domains Ri = R(t,ti) and the correlation circles R(ti ,tj ) for the three nuclei born at time ti (i = 1,2,3). The
configuration integral over f3 in Eq. (9) becomes

I 3
a

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫
�(t,t1)

dr1

∫
�(t,t2)

dr2H (r12 − R(t1,t2))
∫

�(t,t3)
dr3H (r13 − R(t1,t3))H (r23 − R(t2,t3))

= I 3
a

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫
�(t,t1)

dr1

∫
�(t,t2)

dr2H (r12 − R(t1,t2))A(r12,R(t1,t3),R(t2,t3)), (14)

where t3 < t2 < t1 < t is assumed. In this equation,
A(r12,R(t1,t3),R(t2,t3)) is the area spanned by the third
nucleus when the first and second ones are located at r1

and r2, respectively. Because of the possible overlap between
the correlation circles R(t1,t3) and R(t2,t3) and for R(t1,t3)
encompassed within R(t,t3), this area is a function of r12 as

A(r12) = ω(r12)H [R(t1,t3) + R(t2,t3) − r12]

+π [R2(t,t3) − R2(t1,t3) − R2(t2,t3)]

×H (r12 − R(t2,t3) − R(t1,t3)), (15)

where ω(r12) = π [R2(t,t3) − R2(t1,t3) − R2(t2,t3)] +
� (r12,R(t1,t3),R(t2,t3)) with � (x,ρ1,ρ2) being the overlap
area of two circles of radii ρ1 and ρ2 at relative distance x,

� (x,ρ1,ρ2) = −1

2

√
4x2ρ2

1 − [
ρ2

2 − x2 − ρ2
1

]2

+ ρ2
1 arccos

ρ2
1 + x2 − ρ2

2

2xρ1

+ ρ2
2 arccos

ρ2
2 + x2 − ρ2

1

2xρ2
. (16)

It turns out that the computation of the third order term
of the series, Eq. (14), is a formidable task indeed. We
do not attempt to perform the exact estimate of this term,
which, however, must coincide with the same order term
of the KJMA series. On the other hand, an approximate
evaluation of this term, by using an oversimplified form
of the A(r12) area, is possible by formally rewriting this
area as A(r12) = π [R2(t,t3) − R2(t1,t3) − βR2(t2,t3)], where
β ∈ (0,1) is given by β = {1 − � (r12)

πR2(t2,t3)H [R(t1,t3) +

R(t2,t3) − r12]}. In the case of complete overlap (β = 0), we
get

π3I 3
a

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3R

2(t,t1)[R2(t,t2)

−R2(t1,t2)][R2(t,t3) − R2(t1,t3)], (17)

FIG. 3. (Color online) Integration domains and correlation hard
disks for the integral over the f3 function. In the drawing, Ri,j ≡
R(ti ,tj ) and Ri ≡ R(t,ti). In the case of KJMA-compliant growth, all
the circles are entirely within the R(t,t3) circle.
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which, for the linear growth [R(t,t ′) = v(t − t ′)], gives
24
7! I

3
a π3v6t9 = 72

560X3
e to be compared with the exact value

69
560X3

e , which brings an uncertainty of 4.3%.

B. KJMA-non-compliant growths

Let us now consider the parabolic growth R(t,t ′) =
v
√

t − t ′. In this case, the series expansion of the function
F (t) = 1/Q(t), given by Eq. (4), can be performed by
employing the same computation pathway discussed above
where now �(n+1) = κF (n) and κ = πIav

2. In this case,
F (2n)(0) 	= 0 implies F (t) = 1 + κ

2 t2 + 1
6κ2t4 + 34

6! κ
3t6 and

Q(t) = 1 − κ

2
t2 + κ2

12
t4 − κ3

180
t6 + O(t8)

= 1 − Xe + 1

3
X2

e − 4

90
X3

e + O
(
X4

e

)
, (18)

where the two last coefficients are 0.33 and 0.044. It is
worth pointing out that, in such an evaluation, the transformed
fraction X is comprehensive of the contribution of phantoms.
In fact, we recall that Eq. (4) is the KJMA solution with the
phantom-included nucleation rate Ia/(1 − X).

The f1 containing term of Eq. (2) gives the extended
volume fraction κ

2 t2. As far as the third term is concerned
(f2 contribution), it also is possible to show that, for n = 1/2,
the integral, Eq. (13), coincides with the third term of Eq. (18),
κ2

12 t4. However, it is important to stress that, in this case,
Eq. (13) does not coincide with the integral over the f2 function
of the exact solution, Eq. (9) since, in the latter equation, we
only enter the actual nuclei. From the mathematical point of
view, in the case of parabolic growth, the correlation circle
is not contained within the integration domain as depicted in
Fig. 2(b). In other words, for KJMA-non-compliant growth
laws, area A is a function of r1, and the term of order I 2

a

in Eq. (9) does not coincide with X2
e

3 of Eq. (18) (parabolic
growth). In particular, under these circumstances, we get

A(r1,t,t1,t2) = ω(r1)H (r1 + R(t1,t2) − R(t,t2))

+π [R2(t,t2) − R2(t1,t2)]H [R(t,t2)

− r1 − R(t1,t2)], (19)

where ω(r1) = πR2(t,t2) − � (r1,R(t,t2),R(t1,t2)) with
� (r1) as the overlap area of two circles of radii R(t,t2) and
R(t1,t2) at distance r1 [Eq. (16)].

III. NUMERICAL SIMULATIONS

The ultimate aim of this section is to propose a simple
formula for describing the kinetics on the basis of the actual
extended transformed fraction Xe. On the grounds of Eq. (3),
the transformed fraction can be rewritten in the general form

X(t) = 1 − exp{−Xe(t)γ [Xe(t)]}, (20)

where γ [Xe(t)] embodies the contributions of correlations
among nuclei [21]. It is worth noticing that, for KJMA-
complaint growths (random nucleation), Eq. (3) actually re-
produces the KJMA formula. In fact, by identifying Ĩ with the
phantom-included nucleation rate (Ĩ ≡ I ), one gets gm>1 = 0
leading to the formula Q = exp(−X̂e). On the other hand,
working with the actual nucleation rate, in Eq. (3), Ĩ ≡ Ia and

gm 	= 0, and the series has infinite terms. Therefore, γ [Xe(t)]
can be expanded as a power series of the extended actual
volume fraction Xe. Moreover, by exploiting the homogeneity
properties of the fn functions (see below), it is possible to
attach a physical meaning to the power series coefficients in
terms of nucleation rate and growth law. Also, for constant
Ia , the coefficients of this series only depend upon growth
law. For the aim of achieving a suitable compromise between
handiness and pliability, we retain the linear approximation of
γ [Xe(t)] by obtaining the following kinetics:

X = 1 − exp
[−(

aXe + bX2
e

)]
, (21)

with a and b as constants. For the sake of completeness, we
point out that, according to its physical meaning, parameter a

should be unitary. Nevertheless, the substitution of the infinite
expansion with only two terms authorizes the introduction of
the new parameter a. In any case, the a values are found to be
nearly 1 [see Fig. 7 below].

In order to study the transition kinetics in terms of actual
nuclei and to test Eq. (21), we worked out 2D computer
simulations for several growth laws at the constant nucleation
rate Ia .

Typically, for these kinds of papers [5,24], the simulation
is performed on a lattice (square in our case) where, in order
to mimic the continuum case, the lattice space is much lower
than the mean size of the nuclei.

In particular, the transformation takes place on a square
lattice whose dimension is 1000 × 1000 with a nucleation rate
of Ia = 3. It is worth being reminded that, since the nucleation
is Poissonian, it occurs on the entire lattice independent of
whether the space is transformed already or not. The computer
simulation can be run either taking the presence of phantoms
into account or not. In the former case, the outputs have been
labeled as with “w,” whereas, the latter have been labeled
as without “wo.” As far as the growth laws are concerned,
we limited ourselves to the power laws R(t) ∼ tn for n =
1/4, 1/3, 1/2, 1, 3/2, and 2.

The results of the simulations for the KJMA-non-compliant
growths are displayed in Figs. 4(a)–4(c). In particular, the
fractional surface coverage X, as a function of the actual
extended fraction Xe, with and without the contribution of
phantoms, are reported (curves labeled with w and wo,
respectively). The contribution of phantom overgrowth to the
transformation kinetics is highlighted in Fig. 5 and shows
that this effect brings an uncertainty to X, which ranges
from 2 to 5% ongoing from n = 1/2 to n = 1/4. In the
case of parabolic growth, this figure is lower than 2%. These
results are in qualitative agreement with previous papers
on phantom overgrowth, although performed for different
nucleation laws [16,24]. As discussed in more detail below,
the results displayed in Figs. 4 and 5 are universal, i.e.,
they only depend on power exponent n and the nucleation
law (in the present case, Ia = constant). Accordingly, the
lower n, the more important phantom overgrowth. In fact,
let us consider a phantom, which starts growing at time t̄ ,
located at rp from the center of an actual nucleus, which starts
growing at t = 0 [Fig. 6(a)]. For KJMA-non-compliant growth
R(t − t ′) = v(t − t ′)1/k (with integer k > 1), the phantom
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FIG. 4. (Color online) Computer simulations of phase transfor-
mations ruled by KJMA-non-compliant growths. The surface fraction
X is shown as a function of the extended fraction Xe for the power
law (R ≈ tn) where n = 1/2, 1/3, and 1/4 in (a)–(c), respectively.
The kinetics with (w) and without (wo) the inclusion of phantoms are
displayed.

overtakes the actual nucleus at time to, that is, the solution
of equation rp + v(to − t̄)1/k = vt

1/k
o , namely,

ξ = η1/k − (η − 1)1/k, (22)

where ξ = rp

vt̄
1
k

< 1 and η = to
t̄

> 1. The graphical solution of

Eq. (22) is depicted in Fig. 6(b) and indicates that to (and,
therefore, η) decreases with k. This is in agreement with the
results of Fig. 5, which show that the overgrowth phenomenon
is more important at greater k.

As far as the guess function, Eq. (21), is concerned, it
matches the simulation curves with a very high degree of
correlation. For instance, the output of the fit to the n = 2

FIG. 5. (Color online) Contribution of phantom overgrowth to
the kinetics reported in Fig. 4 [displayed is the difference between
curves (w) and (wo)]. The area beneath the curves, normalized to
the area of the kinetics of Fig. 4, are 0.053, 0.038, and 0.02 for
n = 1/4, n = 1/3, and n = 1/2, respectively.

curve gives a = 0.9750 ± 0.0007, b = 0.088 ± 0.001, and a
squared correlation coefficient practically 1. For the sake of
completeness, the a and b fitting parameters are shown in Fig. 7
where a is found to be nearly 1. This is in agreement with the
theoretical value predicted by Eq. (3).

The behavior of the transformed fraction for KJMA-
compliant growths is reported in Fig. 8 for n = 1, n = 3/2,
and n = 2. These kinetics are very close to each other and
differ markedly from that at n = 1/2 also reported in the same
figure. In the inset, the kinetics for n = 1/2 and n = 1 are
compared with the KJMA series expansions, Eqs. (18) and
(8), respectively. The fact that the curves for n = 1, 3/2,
and 2 collapse on the same curve can be rationalized by
computing the coefficients of the series expansion of Q(Xe)
for integer n. In particular, by employing the method discussed
in the previous section, the last two coefficients of the series

FIG. 6. (a) Sketch of the overgrowth process in the space domain.
rp denotes the location of the phantom, which starts growing at time
t̄ when the size of the actual nucleus is R(t̄). The phantom overtakes
the actual nucleus at time to when the size of the actual nucleus is
R(to). (b) Graphical solution of Eq. (22) for the determination of
η = to

t̄
> 1.
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FIG. 7. (Color online) Behavior of the fitting parameters a and
b of Eq. (21) as a function of growth exponent n for KJMA-non-
compliant growths.

[e.g., Eq. (8)] are 0.4960, 0.1633 and 0.5, 0.1673 for n = 2
and 3, respectively. We also performed computer simulations
of phase transitions for the nonconstant actual nucleation rate.
The output of this computation is displayed in Fig. 9 where
the behavior of the nucleation rate is also shown as a function
of Xe. In particular, the actual nucleation rate is given by the
function Ia(t) ≈ t2 exp(−ãt3). Also, in this case, the function,
Eq. (21), has been found to match the kinetics with a high
degree of correlation where, again, the independent variable is
the actual extended surface fraction.

Let us address, in more detail, the question of the depen-
dence of volume fraction on extended volume fraction. To this
end, we discuss the second order term of the exact solution of
Eq. (2), namely,∫ t

0
Ia(t ′)dt ′

∫ t ′

0
Ia(t ′′)dt ′′

∫
�(t,t ′)

dr1A(r1,R(t ′,t ′′),R(t,t ′′)),

(23)

where Eq. (10) has been employed. We point out that,
in Eq. (23), A(r1,R(t ′,t ′′),R(t,t ′′)) is a second order ho-
mogeneous function of r1, R(t ′,t ′′), and R(t,t ′′) variables.

FIG. 8. (Color online) Kinetics of the actual surface fraction as
a function of the actual extended surface fraction for several values
of n. In the graph, the kinetics for n = 1/2 is compared with the
KJMA-compliant growth with n = 1, n = 2, and n = 3/2 (from the
top, respectively). In the inset, the kinetics for n = 1 and n = 1/2
are displayed together with the truncated KJMA series expansions,
Eqs. (8) and (18), respectively.

FIG. 9. (Color online) Kinetics of the actual surface fraction as
a function of the actual extended surface for the nonconstant actual
nucleation rate (left scale). The best fit of the function, Eq. (21), to
the X(Xe) kinetics has been shown as a dashed line. The correlation
coefficient of the fit is, in fact, 1 for the parameters a = 1.014 and
b = 0.0382. The actual nucleation rate as a function of Xe also is
reported on the right scale in nuclei × 106/site units.

Accordingly, for the growth law R(t,t ′) = v(t − t ′)n, using
the rescaled variables r ′

1 = r1/vtn, τ ′ = t ′/t , and τ ′′ = t ′′/t ,
the integral becomes

π2v4t4n+2
∫ 1

0
Ia(τ ′)dτ ′

∫ τ ′

0
Ia(τ ′′)dτ ′′

∫
�(τ ′)

dr′
1A(r ′

1,τ
′,τ ′′).

(24)

Equation (24) takes the form C2X
2
e where

C2{n,[Ia(τ )]}

=
∫ 1

0 dτ ′Ia(τ ′)
∫ τ ′

0 Ia(τ ′′)dτ ′′ ∫
�(τ ′) A(r ′

1,τ
′,τ ′′)dr′

1[ ∫ 1
0 Ia(τ ′)(1 − τ ′)2ndτ ′]2

depends on n and the actual nucleation rate. It is apparent that,
in the case discussed in the previous section, Ia(t) = Ia,C2(n)
as well as higher order coefficients are a function of n only.
In this case, the transformed fraction is expected to be of the
form 1 − X = ∑

k Ck(n)Xk
e .

On the other hand, in the case of a constant phantom-
included nucleation rate, Ia(t) = I0[1 − X(t)] = I0Q(t), and
Eq. (2) becomes an integral equation for the Q(t) unknown.
With reference to the second order term, in this case, Eq. (24)
takes the general form C ′(n)X̂2

e , which now implies the series
1 − X = ∑

k C ′
k(n)X̂k

e (note that this is a series expansion
in terms of the phantom-included extended surface). In
the specific case of KJMA-compliant growths, however,
these series reduce to the exponential series with constant
coefficients (−1)k

k! . It is instructive to estimate the first two
coefficients in the case of linear growth. For the constant
phantom-included nucleation rate, the untransformed fraction
satisfies the integral equation,

Q(t) = 1 − I0

∫ t

0
Q(t ′)|�(t,t ′)|dt ′

+ I 2
0

∫ t

0
dt ′

∫ t ′

0
dt ′′Q(t ′)Q(t ′′)

×
∫

�(t,t ′)
dr1A(r1,t,t

′,t ′′) + O
(
I 3

0

)
. (25)
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The first order term of this equation, namely, on the order
of I0, gives Q(t) = 1 − I0πv2t3/3 = 1 − X̂e. By substituting
Q ≈ 1 − X̂e in Eq. (25), we get

Q(t) = 1 − X̂e + I0

∫ t

0
X̂e(t ′)|�(t,t ′)|dt ′ + I 2

0

∫ t

0
dt ′

∫ t ′

0
dt ′′

×
∫

�(t,t ′)
dr1A(r1,t,t

′,t ′′) + O
(
I 3

0

)
. (26)

Using dimensionless variables r ′
1 = r1/vt, τ ′ = t ′/t , and

τ ′′ = t ′′/t , Eq. (26) eventually becomes

Q(t) = 1 − X̂e + 3X̂2
e

∫ 1

0
τ ′3(1 − τ ′)2dτ ′ + 9X̂2

e

∫ 1

0
dτ ′

×
∫ τ ′

0
dτ ′′(1 − τ ′)2A(τ ′,τ ′′) + O

(
I 3

0

)
, (27)

where A(τ ′,τ ′′) is given through Eq. (11). Notably, the last
term in Eq. (27) has been estimated already in Eq. (13) and is
equal to 9

20 X̂2
e . The coefficient of X̂2

e eventually is computed
as 3

60 + 9
20 = 1

2 , that is, the expected result.
It is worth noting that the present approach also can be

applied to different convex shapes other than circles and
spheres, provided the orientation of nuclei is the same (with
a possible exception for triangles). This aspect has been
discussed in detail in Refs. [25,26].

We conclude this section by quoting the recent results of
Ref. [17]. In this noteworthy paper, the author faced the prob-
lem of describing the kinetics in terms of the actual nucleation
rate. An ingenious application of the so called differential
critical region approach makes it possible to find the Q(t)
kinetics by solving an appropriate integral equation [17].
On the other hand, the different method employed in the
present paper, based on the use of the correlation function,
pertains to the same class of stochastic approaches on which
Kolmogorov’s method is rooted. For the present topic, it could
be enlightening to demonstrate that the two approaches are, in
fact, equivalent.

IV. CONCLUSIONS

We have shown that, by employing the correlation function
approach, the constraints on growth laws underlying the KJMA
theory can be eliminated. In other words, the present modeling
is not constrained to any form of growth law. The actual
extended volume fraction is shown to be the natural variable
of the kinetics, which implies universal curves. Besides, we
proposed a formula to fit experimental data by using the
measurable actual extended coverage. The displacement of
the kinetics from the exponential law, i.e., the b parameter in
Eq. (21), may give insight into the microscopic growth law of
nuclei.
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