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Grand-potential formulation for multicomponent phase transformations combined with
thin-interface asymptotics of the double-obstacle potential
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In this paper, we describe the derivation of a model for the simulation of phase transformations in
multicomponent real alloys starting from a grand-potential functional. We first point out the limitations of a
phase-field model when evolution equations for the concentration and the phase-field variables are derived from a
free energy functional. These limitations are mainly attributed to the contribution of the grand-chemical-potential
excess to the interface energy. For a range of applications, the magnitude of this excess becomes large and its
influence on interface profiles and dynamics is not negligible. The related constraint regarding the choice of the
interface thickness limits the size of the domain that can be simulated and, hence, the effect of larger scales
on microstructure evolution can not be observed. We propose a modification to the model in order to decouple
the bulk and interface contributions. Following this, we perform the thin-interface asymptotic analysis of the
phase-field model. Through this, we determine the thin-interface kinetic coefficient and the antitrapping current to
remove the chemical potential jump at the interface. We limit our analysis to the Stefan condition at lowest order
in ε (parameter related to the interface width) and apply results from previous literature that the corrections to the
Stefan condition (surface diffusion and interface stretching) at higher orders are removed when antisymmetric
interpolation functions are used for interpolating the grand-potential densities and the diffusion mobilities.
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I. INTRODUCTION AND MODEL MODIFICATION

Phase-field modeling has been used for alloy solidification
and for the simulation of microstructures for more than a
decade and the principal concepts are fairly well known,
with the first ideas originating more than a century ago from
the first works by Van der Waals, who proposed the use
of a diffuse interface for treating capillary driven problems
[1]. However, it is necessary to highlight the importance of
certain modifications without which large scale quantitative
microstructure simulations of the order of micrometers are
not possible. In this paper, we describe a modification of the
multi-phase-field model described in [2]. The foundation of
this particular model is the entropy functional written as

S(e,c,φ) =
∫

�

[
s(e,c,φ) −

(
εã(φ,∇φ) + 1

ε
w̃(φ)

)]
d�,

(1)

where e is the internal energy of the system, s is the bulk
entropy density, and w̃ is the surface potential of the system.
c = (c1, . . . ,cK ) is the vector with the compositions of the K

components and φ = (φ1, . . . ,φN ) are the volume fractions of
the N phases in the system. An equivalent form can be defined
as a free energy functional at a given temperature T :

F(T ,c,φ) =
∫

�

[
f (T ,c,φ) +

(
εa(φ,∇φ) + 1

ε
w(φ)

)]
d�.

(2)

The uniqueness lies in the usage of the double-obstacle
potential w(φ) = {∑N,N

α<β γαβ
16
π2 φαφβ , when (φα,φβ > 0 and

φα + φβ = 1) and ∞ elsewhere} in describing the surface
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energy potential. However, if the free energies are interpolated
as in [2,3], f = ∑N

α=1 fα(T ,c,φ)hα(φ), where fα(T ,c) is
the bulk free energy density of phase α and hα(φ) is an
interpolation function for the phase α, two problems exist:
(i) The surface energy σαβ of an αβ interface is a function
of the chemical free energy density landscape in the system,
and (ii) the equilibrium interface width 
αβ becomes far too
restrictive for simulating large scale microstructures.

These restrictions of the model will be highlighted in more
detail in the following discussion. The equilibrium equation in
one dimension (1D) for two phases α and β, where φα + φβ =
1, starting from the interpolation of the free energies can be
written as

γαβε
∂2φα

∂x2
= − 16

π2

γαβ

2ε
(1 − 2φα) − 1

2

df

dφα

+ 1

2

K−1∑
i=1

μi

dci

dφα

= − 16

π2

γαβ

2ε
(1 − 2φα) − 1

2

d

dφα

(
f −

K−1∑
i=1

μici

)
,

(3)

where μ = (μi, . . . ,μK−1) is the vector consisting of the K −
1 equilibrium chemical potentials of the system at the given
system temperature. Equation (3) can be used to derive the
stationary solution of the phase field φα , which can be used to
derive expressions for the surface energy of a binary interface
σαβ and equilibrium interface width 
αβ as [4,5]

σαβ

= 2γαβ

∫ 1

0

√(
16

π2
φα(1 − φα) + ε

γαβ

[�
(T ,c,φα)]

)
dφα,

(4)
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FIG. 1. The grand-chemical-potential difference varies across the
interface and has a form similar to that of a potential. At equilibrium,
the two phases are at the same grand chemical potential, which is
seen qualitatively from the graph. Notice also the asymmetry of the
potential around φα = 0.5, which is inherited from the asymmetry in
the chemical free energy states of the two phases.


αβ = ε

∫ 1

0

dφα√(
16
π2 φα(1 − φα) + ε

γαβ
[�
(T ,c,φα)]

) . (5)

Here, γαβ is a term in the surface energy density, ε is
a factor related to the length scale of the interface, and
�
(T ,c,φα) = (f − ∑K−1

i=1 μici) − (f − ∑K−1
i=1 μici)φα=0 is

the grand-chemical-potential difference between values at
the interface and that of the bulk phases in equilibrium.
At equilibrium, the terms (f − ∑K−1

i=1 μici)φα=0 and (f −∑K−1
i=1 μici)φα=1 are equal, and Fig. 1 plots the variation

of the term �
(T ,c,φα). We clearly see that the term
1
2

d
dφα

(f − ∑K−1
i=1 μici) is nonzero across the interface.

The area under the curve is the grand-chemical-potential
excess at the interface. This contribution affects the equilib-
rium shape and properties of the interface. From the above, the
following is evident:

(i) The parameters σαβ and 
αβ can not be fixed indepen-
dently of the grand-chemical-potential contribution in the form
�
(T ,c,φα).

(ii) Given the required σαβ and 
αβ , the simulation pa-
rameters γαβ and ε can be determined by simultaneously
solving Eqs. (4) and (5). Notice that even though we have
one parameter ε, the resulting interface thicknesses can be
different, depending on the excess �
(T ,c,φα).

For very large chemical excess contributions in the form of
�
(T ,c,φα), Eqs. (4) and (5) can be written approximately as

σαβ = 2
√

γαβε

∫ 1

0

√
[�
(T ,c,φα)]dφα (6)


αβ =√
γαβε

∫ 1

0

dφα√
[�
(T ,c,φα)]

. (7)

In this case, σαβ and 
αβ are no longer independent.
The term σαβ


αβ
becomes just a function of the chemical free

energy of the system and independent of the terms γαβ and ε.

This implies that once a value for σαβ is chosen, the value
of 
αβ is fixed, and for certain choices of σαβ , the 
αβ

gets prohibitively lower, which makes simulation of larger
domain structures unfeasible. These relationships have been
studied fairly extensively in the past decade, and two principal
solutions have been suggested [4,6–8]. The ideology is to
completely avoid any contribution of the grand-chemical-
potential excess contribution to the interface excess. This
implies that the stationary solution is independent of any
chemical contribution. While this is achieved in the work
by [4,7,8] through the use of different concentration fields
cα
i in each phase, the same is affected for dilute alloys, with a

single concentration field but the use of effective interpolation
functions to interpolate the entropy and enthalpy contributions
to the free energy. The common idea is that the driving force for
phase transformation is the grand-potential difference between
the phases at the same chemical potential. We motivate a
similar idea from the following discussion.

A. Motivation

Consider the phase-field evolution equation in 1D at the
lowest order in ε, which is a parameter related to the interface
thickness:

ωε
∂φα

∂t
= γαβε

∂2φα

∂x2
− 16

π2

γαβ

2ε
(1 − 2φα)

− 1

2

d

dφα

(
f −

K−1∑
i=1

μici

)
, (8)

where ω is the relaxation constant of the interface. This is
also the evolution equation at the sharp-interface limit for
this model [9]. The chemical potential μ = (μ1, . . . ,μK−1) is
constant across the interface in this limit. For small velocities,
the evolution equation in moving coordinate frame in 1D, at
steady state velocity V, reads as

−V τε
dφα

dx
= γαβε

d2φα

dx2
− 16

π2

γαβ

2ε
(1 − 2φα)

− 1

2

d

dφα

(
f −

K−1∑
i=1

μici

)
. (9)

It is important to note that the moving frame is moving with
velocity V along with the interface, which is denoted by the
contour line φα = 0.5. By multiplying with dφα

dx
on both sides

and integrating, we get

−V τε

∫ ∞

−∞

(
dφα

dx

)2

dx

=
∫ ∞

−∞
γαβε

d2φα

dx2

dφα

dx
dx −

∫ ∞

−∞

16

π2

γαβ

2ε
(1 − 2φα)

dφα

dx
dx

−
∫ ∞

−∞

1

2

d

dφα

(
f −

K−1∑
i=1

μici

)
dφα

dx
dx.
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We denote the integral
∫ ∞
−∞( dφα

dx
)2dx as (I) and elaborate the

other integrals as follows:

−V τεI = γαβε

2

(
dφα

dx

)2∣∣∣∣∞
−∞

− 16

π2

γαβ

2ε
φα(1 − φα)

∣∣∣∣1
0

− 1

2

(
f −

K−1∑
i=1

μici

) ∣∣∣∣1
0

. (10)

The first two integrals on the right-hand side drop out to zero
and so the velocity of the interface can be written as

−V τεI = 1

2

(
f −

K−1∑
i=1

μici

)∣∣∣∣1
0

. (11)

Clearly, the interface mobility is proportional to the difference
of the grand chemical potential of the two phases. Adequately,
the driving force for phase transformation in alloys in the
sharp-interface limit is the difference of the grand potentials
of the two bulk phases. The evolution equations drive the
system in a direction to reduce the difference of grand
potentials between the bulk phases. This being the case, the
motivation arises to formulate the phase-field model in terms
of a grand-potential functional for the case of alloys.

B. Model modification

We write the grand potential 
 as an interpolation of the
individual grand potentials 
α , where 
α are functions of the
chemical potential μ and temperature T in the system


(T ,μ,φ) =
N∑

α=1


α(T ,μ)hα(φ) with (12)


α(T ,μ) = fα(cα(μ,T ),T ) −
K−1∑
i=1

μic
α
i (μ,T ). (13)

The concentration cα
i (μ,T ) is an inverse of the function

μα
i (c,T ) for every phase α and component i. From Eq. (13),

the following relation can be derived:

∂
(T ,μ,φ)

∂μi

=
N∑

α=1

∂
α(T ,μ)

∂μi

hα(φ). (14)

Since the grand chemical potential 
(T ,μ,φ) is the Legendre
transformof the free energy density of the system f (T ,c,φ),
and from their coupled relation ∂
(T ,μ,φ)

∂μi
= −ci , it follows that

ci =
N∑

α=1

cα
i (μ,T )hα(φ). (15)

The above is the constraint used in [4,7,8] to determine the
concentrations cα

i in the interface along with the condition
that the phase concentrations cα

i are related by the condition
of common equilibrium chemical potential among all the
phases. This, however, derives elegantly starting from the
grand chemical potential. It is important to note that the entire
structure rests on the invertibility of the function μα(c,T ). This
would result in a unique grand potential for a given μ.

FIG. 2. Illustration of the driving force for phase transformation
between two phases.

Since at equilibrium the grand chemical potentials of the
phases are equal, for a two phase interface we can write


(T ,μeq) = 
α(T ,μeq) = 
β(T ,μeq). (16)

This implies that at equilibrium the surface energy has no
contribution from the chemical free energy and, equivalently,
the chemical-grand-potential excess �
 is zero. The con-
sequence of this is that the surface energy σαβ is the same
as the simulation parameter γαβ . Also, it can be derived
that the equilibrium interface width 
αβ is independent of
the chemical free energy of the system and is related to
constant ε by the relation π2

4 ε for the obstacle potential.
The grand-chemical-potential difference can be visualized as
in Fig. 2. A corollary of the above discussion is that the
free energy of a mixture of two phases for alloys is not the
interpolation of the free energies of the respective phases at
a given concentration, but it is a mixture of the phases at the
respective concentrations at which they are at thermodynamic
equilibrium, i.e., at the same chemical potential μ. This can
be realized through the reverse Legendre transform of the
expression in Eq. (13), which gives

f (T ,c,φ) =
N∑

α=1

fα(cα(μ,T ),T )hα(φα). (17)

This is the start point of the derivation of the KKS (Kim-Kim-
Suzuki) model [4]. In summary, the principal result is that we
write the evolution equations using the chemical potential μ,
which is analogous to T for the case of pure materials. The
driving force, which is the difference of free energies in the
case of pure materials, translates to the difference of grand
potentials for alloys.

Note: Strictly speaking, the grand potential is defined in
terms of the number of particles of the various components
written as G − ∑K−1

i=1 μiNi , where G is the free energy of the
system of N particles, and Ni is the number of particles of
component i, while μi = ∂G

∂Ni
. In the discussion on phase field,

we require the energy densities of the respective phases, and
hence, the energy of the system is generally divided by the
volume of the system, which for the case of 1 mole of particles
would be Vm, which is the molar volume. Also, the number
of particles can be written in terms of the concentrations
“mole fraction” through the relation Ni = ciNo, where No

is the Avogadro number. By utilizing this, it is easy to see that
Ni

∂G
∂Ni

= Vmci
∂f

∂ci
, where G = f Vm and we have assumed the

021602-3



ABHIK CHOUDHURY AND BRITTA NESTLER PHYSICAL REVIEW E 85, 021602 (2012)

molar volumes of all particles the same. This implies that the
total grand potential can be written as Vm(f − ∑K−1

i=1 μici),
giving us the grand-potential density as (f − ∑K−1

i=1 μici).
This is the form, which is used in the entire paper.

C. Evolution equations

The evolution equations for the phase and concentration
fields can be evaluated in the standard way. Phase evolution
is determined by the phenomenological minimization of
the modified functional, which is formulated as the grand-
potential functional

�(T ,μ,φ)

=
∫

�

[

(T ,μ,φ) +

(
εa(φ,∇φ) + 1

ε
w(φ)

)]
d�.

(18)

The concentration fields are obtained by a mass conserva-
tion equation for each of the K − 1 independent concentration
variables ci . The evolution equation for the N phase-field
variables can be written as

ωε
∂φα

∂t
= ε

(
∇ · ∂a(φ,∇φ)

∂∇φα

− ∂a(φ,∇φ)

∂φα

)
− 1

ε

∂w(φ)

∂φα

− ∂
(T ,μ,φ)

∂φα

− λ, (19)

where λ is the Lagrange parameter to maintain the constraint∑N
α=1 φα = 1. a(φ,∇φ) represents the gradient energy density

and has the form

a(φ,∇φ) =
N,N∑

α,β = 1
(α < β)

γαβ[ac(qαβ)]2|qαβ |2, (20)

where qαβ = (φα∇φβ − φβ∇φα) is a normal vector to the αβ

interface. ac(qαβ) describes the form of the anisotropy of the
evolving phase boundary. The double-obstacle potential w(φ),
which was also previously described in [2,3], can be written
as

w(φ) = 16

π2

N,N∑
α,β = 1
(α < β)

γαβφαφβ, (21)

where γαβ is the surface energy density. The evolution equation
for the concentration fields can be derived as

∂ci

∂t
= ∇ ·

⎛⎝K−1∑
j=1

Mij (φ)∇μj

⎞⎠ . (22)

Here, Mij (φ) is the mobility of the interface, where the
individual phase mobilities are interpolated as

Mij (φ) =
N−1∑
α=1

Mα
ijgα(φ), (23)

where each of the Mα
ij is defined using the expression

Mα
ij = Dα

ij

∂cα
i (μ,T )

∂μj

. (24)

The function gα(φ) interpolates the mobilities and is in general
not the same as hα(φ), which interpolates the grand potentials.
Dα

ij are the interdiffusivities in each phase α. Both the evolution
equations require the information about the chemical potential
μ. Two possibilities exist to determine the unknown chemical
potential μ:

(i) The chemical potential μ can be derived from the
constraint relation (15). The K − 1 independent components
μi are determined by simultaneously solving the K − 1
constraints for each of the K − 1 independent concentration
variables ci , from the given values of ci and φα at a given grid
point. A Newton iteration scheme can be used for solving the
system of equations

{
μn+1

i

} = {
μn

i

} −
[ N∑

α=1

hα(φ)
∂cα

i (μn,T )

∂μj

]−1

ij

×
{
ci −

N∑
α=1

cα
i (μn,T )hα(φ)

}
. (25)

This is precisely the approach in the KKS model [4].
However, there is a substantial difference in that we propose
to solve directly for the thermodynamic variable μ, which
relate the phase concentrations cα

i instead of solving for
phase concentrations themselves. This is possible because the
concentrations cα

i (μ,T ) are written as explicit functions of the
thermodynamic variable μ. The method also bears similarity
to the method of [7,8], where a partition relation is used to
close the relationship between the phase concentrations.

(ii) Alternatively, explicit evolution equations for all the
K − 1 independent chemical potentials can be formulated
by inserting the constraint equation (15) into the evolution
equation for the concentration field, Eq. (22). For a two
phase binary alloy, i.e., (φα + φβ = 1) and cA + cB = 1, the
evolution equation can be written as

(
∂cα(μ,T )

∂μ
hα(φ) + ∂cβ(μ,T )

∂μ
[1 − hα(φ)]

)
∂μ

∂t

= ∇.

[(
Dαgα(φ)

∂cα(μ,T )

∂μ

+Dβ[1 − gα(φ)]
∂cβ(μ,T )

∂μ

)
∇μ

]
− [cα(μ,T ) − cβ(μ,T )]

∂hα(φ)

∂t
,

where cα,β (μ) are the phase concentrations as functions of the
independent chemical potential μ. Dα , Dβ are the independent
interdiffusivities in the two respective phases. It is noteworthy
that this equation looks very similar to the evolution equation
of the temperature field in pure materials. The last term on the
right-hand side cα(μ,T ) − cβ(μ,T ) corresponds to a source
term for rejection of mass at the interface during growth,
which is analogous to the release of latent heat in pure
material solidification. For a general, multiphase, multicom-
ponent system, the evolution equations for the components
of the chemical potential μ can be written in matrix form

021602-4
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by{
∂μi

∂t

}
=

[ N∑
α=1

hα(φ)
∂cα

i (μ,T )

∂μj

]−1

ij

×
{
∇ ·

K−1∑
j=1

Mij (φ)∇μj−
N∑
α

cα
i (μ,T )

∂hα(φ)

∂t

}
.

(26)

The above derivation bears a lot of resemblance to the recent
derivation by Plapp [10]. It is worth to comment on how the two
methods compare in the computational complexity. For this,
it is first essential to identify the similarity of the approaches,
as can be seen by comparing Eqs. (25) and (26). Consider
the case when Eq. (25) is written for the case of binary alloy,
which reads as

μn+1 = μn + c − ∑N
α=1 cα(μn,T )hα(φ)∑N

α=1
∂cα (μn,T )

∂μ
hα(φ)

, (27)

where we intend to calculate the μ for the next time step
(t + 1), μn being the start guess for the iteration that satisfies
the equation c − ∑N

α=1 cα(μn,T )hα(φ) = 0 for the values of
c = co and φ = φo at the time step t . By expanding the second
term on the right-hand side in En. (27) for small change in time
δt , we can write

μn+1 − μn = co − ∑N
α=1 cα(μn,T )hα(φo)∑N

α=1
∂cα (μn,T )

∂μ
hα(φo)

+ δt

( ∂c
∂t

− ∑N
α=1 cα(μn,T ) ∂hα(φo)

∂t∑N
α=1

∂cα (μn,T )
∂μ

hα(φo)

)
+O(δt2). (28)

Note that additional terms arise out of the linear expansion, but
we simplify using the fact that c0 − ∑N

α=1 cα(μn,T )hα(φ0) =
0. Using the same fact, the preceding equation simplifies to

μn+1 − μn

δt
=

( ∂c
∂t

− ∑N
α=1 cα(μn,T ) ∂hα(φo)

∂t∑N
α=1

∂cα (μn,T )
∂μ

hα(φo)

)
+ O(δt),

(29)

which in the region of small enough δt implies convergence is
achieved in one iteration and hence can be written as

∂μ

∂t
=

(∇ · (M∇μ) − ∑N
α=1 cα(μn,T ) ∂hα(φo)

∂t∑N
α=1

∂cα (μn,T )
∂μ

hα(φo)

)
. (30)

The derived equation is identical to the binary variant of
Eq. (26). It is not surprising to see the similarity since we are
essentially solving for the same variable μ and the difference
is that while Eq. (25) is an implicit type of calculation
scheme of the chemical potential, Eq. (26) describes an
explicit computation. It would be interesting to compare the
performance and accuracy of both methods.

II. ASYMPTOTIC ANALYSIS

In this section, we perform the asymptotic analysis of the
phase-field model for a two phase binary alloy solidification
with the assumption of one-sided diffusion in the liquid and

vanishing diffusivity in the solid. Our aim is to derive the
expressions for the kinetic coefficient in the thin-interface limit
for the case of solute diffusion by performing an asymptotic
analysis unto second order in the phase field, and for this
purpose the analysis in 1D suffices. The asymptotic analysis is
applied to the presented model ensuring no free energy excess
at the interface. For simplicity, we treat here a two phase binary
alloy. Hence, the chemical potential μ will be written as μ

since there exists only one independent chemical potential. At
the onset, we express the grand potentials 
α(μ,T ) as a linear
expansion about the equilibrium chemical potential μeq :


α(T ,μ) = 
α(T ,μeq) + ∂
α(T ,μ)

∂μ

∣∣∣∣
μeq

(μ − μeq). (31)

The driving force �Fα is then

�Fα = [
α(T ,μ) − 
β(T ,μ)]
∂hα(φ)

∂φα

(32)

=
(

∂
α(T ,μ)

∂μ

∣∣∣∣
μeq

− ∂
β(T ,μ)

∂μ

∣∣∣∣
μeq

)
× (μ − μeq)

∂hα(φ)

∂φα

(33)

= −[cα(μeq,T ) − cβ(μeq,T )](μ − μeq)
∂hα(φ)

∂φα

,

(34)

implying that the evolution equation for the phase field for a
two phase system can be written as

ωε2 ∂φα

∂t
= ε2γαβ

∂2φα

∂x2
− 16

2π2
γαβ(1 − 2φα)

+ 1

2
ε[cα(μeq,T ) − cβ(μeq,T )]

× (μ − μeq)
∂hα(φα)

∂φα

. (35)

Notice that we have reduced a system of two dependent
equations to one independent equation by incorporating
the Lagrange multiplier formalism. Also, the interpolation
function hα(φ) is now for the two phase system just a function
of φα . Hence, for the forthcoming derivations, we will omit
the vector notation. The interpolation functions satisfy the
property hα(φα) = 1 − hβ(φβ). Further, we consider small
deviations from equilibrium, which is generally a suitable
assumption for most cases of solidification. For larger driving
forces, such as in rapid solidification, this assumption of the
linearization of the driving forces will no longer hold. For the
case where we have Dα � Dβ , the evolution equation for the
chemical potential of a binary system reads as(

∂cα(μ,T )

∂μ
hα(φα) + ∂cβ(μ,T )

∂μ
[1 − hα(φα)]

)
∂μ

∂t

= ∇ ·
[(

Dβ[1 − gα(φα)]
∂cβ(μ,T )

∂μ

)
∇μ

]
− [cα(μ,T ) − cβ (μ,T )]

∂hα(φα)

∂t
. (36)

We nondimensionalize the system of equations (35) and (36)
by choosing the length scale do = γαβ

f ∗ , where f ∗ is the energy
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scale of the system, the time scale t∗ = d2
0

Dβ
with Dβ being

the diffusivity in the liquid, and replace ω with nondimension-
alized parameter ζ as Dω

γαβ
. The nondimensional phase-field

equation yields with the described scaling parameters

ζ ε2 ∂φα

∂t
= ε2 ∂2φα

∂x2
− 16

2π2
(1 − 2φα)

+ 1

2
ε[cα(μeq,T ) − cβ(μeq,T )]

× (μ − μeq)
∂hα(φα)

∂φα

, (37)

while the nondimensionalized chemical potential equation can
be written as(

∂cα(μ,T )

∂μ
hα(φα) + ∂cβ(μ,T )

∂μ
[1 − hα(φα)]

)
∂μ

∂t

= ∇.

(
[1 − gα(φα)]

∂cβ(μ,T )

∂μ
∇μ

)
− [cα(μ,T ) − cβ(μ,T )]

∂hα(φα)

∂t
. (38)

For our further analysis, we choose the chemical potential
equation for the asymptotic expansions. For the case of one-
sided diffusion, it has been shown in various previous works
[11,12] that there exists a thin-interface defect called solute
trapping when simulations are performed with interface thick-
nesses, orders of magnitude larger than those of a real interface.
One must note that, although this is a phenomenon observed
in experiments, the artifact in the phase-field simulations
occurs at velocities much lower than those in the experiments
where solute trapping is reported. The methodology proposed
to correct this effect is the incorporation of an antitrapping
current in the evolution equation of the chemical potential.
While such expressions have been derived for double well type
potentials [6,11,13], the case of the double-obstacle potential
is untreated so far. We complete this gap by deriving the
thin-interface limit of the model for a double-obstacle potential
and formulating an expression of the antitrapping current jat

for the case of one-sided diffusion. We follow the formulations
described in literature and incorporate the antitrapping term as
an additional flux of solute from the solid to the liquid in
the normal direction to the interface. The modified evolution
equation for the chemical potential along with the antitrapping
term is(

∂cα(μ,T )

∂μ
hα(φα) + ∂cβ(μ,T )

∂μ
[1 − hα(φα)]

)
∂μ

∂t

= ∇ ·
(

[1 − gα(φα)]
∂cβ(μ,T )

∂μ
∇μ − jat

)
− [cα(μ,T ) − cβ(μ,T )]

∂hα(φα)

∂t
. (39)

To make sure that the antitrapping current appears in the first-
order correction to the chemical potential, we formulate the
antitrapping current of the following form:

jat = s(φα)ε[cβ(μ,T ) − cα(μ,T )]
∂φα

∂t

qαβ

|qαβ | , (40)

where s(φα) is a function such that the chemical potential
jump vanishes at the interface. qαβ is the normal vector to the
interface, given as (φα∇φβ − φβ∇φα). To see this, use φα =
φβ for the case of a binary interface between the α and the
β interfaces. Then, the vector qαβ reduces to φα∇(φβ − φα).
Since the gradient of the scalar field (φβ − φα) is normal to any
contour (φβ − φα) = const , we have ∇(φβ − φα) normal to
the contour (φβ − φα) = 0, which defines the binary interface.

For the case of only two phases, it can be shown that
the expression of the antitrapping current can be reduced
to

jat = −s(φα)ε[cβ(μ,T ) − cα(μ,T )]
∂φα

∂t

∇φα

|∇φα| . (41)

Note that all terms in the above equation are used in the
nondimensional form, so ε is the nondimensional parameter
related to the interface width and t is the nondimensional time.
By writing the phase field and chemical potential evolution
equations in one dimension, we have

ζ ε2 ∂φα

∂t
= ε2 ∂2φα

∂x2
− 16

2π2
(1 − 2φα) + 1

2
ε[cα(μeq,T ) − cβ(μeq,T )](μ − μeq)

∂hα(φα)

∂φα

, (42)(
∂cα(μ,T )

∂μ
hα(φα) + ∂cβ(μ,T )

∂μ
[1 − hα(φα)]

)
∂μ

∂t

= ∂

∂x

(
[1 − gα(φα)]

∂cβ(μ,T )

∂μ

∂μ

∂x
− s(φα)ε[cβ(μ,T ) − cα(μ,T )]

∂φα

∂t

)
− [cα(μ,T ) − cβ(μ,T )]

∂hα(φα)

∂t
, (43)

which on transformation to the moving frame (fixed to φα = 0.5) becomes

−ζvε2 ∂φα

∂x
= ε2 ∂2φα

∂x2
− 16

2π2
(1 − 2φα) + 1

2
ε[cα(μeq,T ) − cβ(μeq,T )](μ − μeq)

∂hα(φα)

∂φα

, (44)

−
(

∂cα(μ,T )

∂μ
hα(φα) + ∂cβ(μ,T )

∂μ
[1 − hα(φα)]

)
v
∂μ

∂x

= ∂

∂x

(
[1 − gα(φα)]

∂cβ(μ,T )

∂μ

∂μ

∂x
+ vs(φα)ε[cβ(μ,T ) − cα(μ,T )]

∂φα

∂x

)
+ v[cα(μ,T ) − cβ(μ,T )]

∂hα(φα)

∂x
, (45)

where v is the nondimensional velocity scaled as V d0
Dβ . To perform the asymptotic analysis, the region of evolution is divided into

three parts. The “inner” region where there is rapid variation of the phase field φα and chemical potential μ, and two “outer”
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regions, which denote regions where there is little change in the phase field φα . To probe into the inner solutions, we scale the
coordinate with the parameter ε by introducing a scaling parameter η = x

ε
. With this scaling, the equations rewrite to

−ζvε
∂φα

∂η
= ∂2φα

∂η2
− 16

2π2
(1 − 2φα) + 1

2
ε[cα(μeq,T ) − cβ(μeq,T )](μ − μeq)

∂hα(φα)

∂φα

, (46)

−
(

∂cα(μ,T )

∂μ
hα(φα) + ∂cβ(μ,T )

∂μ
[1 − hα(φα)]

)
v

ε

∂μ

∂η

= 1

ε2

∂

∂η

(
[1 − gα(φα)]

∂cβ(μ,T )

∂μ

∂μ

∂η

)
+ 1

ε

∂

∂η

(
vs(φα)[cβ(μ,T ) − cα(μ,T )]

∂φα

∂η

)
+ v

ε
[cα(μ,T ) − cβ (μ,T )]

∂hα(φα)

∂η
. (47)

The strategy is to write each of the outer and inner solutions as
powers of the scaling parameter ε and match the outer and inner
solutions order by order. The outer solutions are denoted by μ̃

and φ̃α and are expanded by φ̃α = φ̃0
α + εφ̃1

α + ε2φ̃2
α and μ̃ =

μ̃0 + εμ̃1 + ε2μ̃2. The inner solutions similarly write as φα =
φ0

α + εφ1
α + ε2φ2

α and μ = μ0 + εμ1 + ε2μ2. The matching
conditions between the outer and the inner solutions can be
written by expanding each of the outer functions μ̃0,μ̃1,μ̃2 as
an expansion around x = 0, i.e., x = (0 + ηε) and equating
them to the corresponding values of the inner solution. So, all
the derivatives are computed at the position x = 0, marking
the interface at φα = 0.5:

lim
η→±∞ μ0 = μ̃0|±, (48)

lim
η→±∞ μ1 = lim

η→±∞

(
μ̃1|± + η

∂μ̃0

∂x

∣∣∣∣±), (49)

lim
η→±∞ μ2 = lim

η→±∞

(
μ̃2|± + η

∂μ̃1

∂x

∣∣∣∣± + η2

2

∂2μ̃0

∂x2

∣∣∣∣±) (50)

and the derivative matching conditions

lim
η→±∞

∂μ0

∂η
= 0, (51)

lim
η→±∞

∂μ1

∂η
= ∂μ̃0

∂x

∣∣∣∣±, (52)

lim
η→±∞

∂μ2

∂η
= lim

η→±∞

(
∂μ̃1

∂x
+ η

∂2μ̃0

∂x2

)
. (53)

The matching conditions for the phase field are trivial, as the
phase field is constant in the bulk on both sides. Hence, the
outer solution in the phase field is nonzero only for the lowest
order. Now, we solve the phase field and chemical potential
equations order by order and derive the various boundary
conditions for the chemical potential as solvability conditions.

A. Sharp-interface limit

The phase-field equation at zero order in ε reads as

∂2φ0
α

∂η2
− 16

2π2

(
1 − 2φ0

α

) = 0. (54)

Integrating yields ∂φ0
α

∂η
= − 4

π

√
φ0

α(1 − φ0
α), where the sign

results from the boundary conditions limη→+∞ φ0
α = 0 and

limη→−∞ φ0
α = 1. The lowest order chemical potential equa-

tion at order 1/ε2 is

1

ε2

∂

∂η

([
1 − gα

(
φ0

α

)]∂cβ(μ0,T )

∂μ

∂μ0

∂η

)
= 0. (55)

Integrating the above equation once, we get[
1 − gα

(
φ0

α

)]∂cβ(μ0,T )

∂μ

∂μ0

∂η
= A1. (56)

We observe limη→∞ gα(φ0
α) = 0 and the factor ∂cβ (μ0,T )

∂μ

is nonzero. By using the matching condition in Eq. (51), we
derive that A1 is zero. By inserting A1 = 0 into Eq. (56) and
integrating once, we get

μ0 = μ0. (57)

μ0 is an integration constant. To fix the value, we insert this
constant in the phase-field equation at order ε that reads as

−ζv
∂φ0

α

∂η
= ∂2φ1

α

∂η2
+ 16

π2
φ1

α + 1

2
[cα(μeq,T ) − cβ (μeq,T )]

× (μ0 − μeq)
∂hα

(
φ0

α

)
∂φα

. (58)

For brevity, we determine the constant (μ0 − μeq) from the
solvability condition. It is useful to identify a useful operator,
which derives from the phase-field equation at zeroth order as

∂2φ0
α

∂η2
− 16

2π2

(
1 − 2φ0

α

) = 0. (59)

By differentiating the above equation and rearranging, we get(
∂2

∂η2
+ 16

π2

)
∂φ0

α

∂η
= 0. (60)

The term in the brackets ∂2

∂η2 + 16
π2 is a linear operator and we

define this as L. Using this linear operator, the phase-field
equation at order ε is

Lφ1
α = −ζv

∂φ0
α

∂η
− 1

2
[cα(μeq,T ) − cβ(μeq,T )]

× (μ0 − μeq)
∂hα

(
φ0

α

)
∂φα

. (61)
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From Eq. (60), we see that ∂φ0
α

∂η
is a homogeneous solution of

the operator L, hence, the solvability condition for a nontrivial
φ1

α reads as

∫ ∞

−∞
−ζv

(
∂φ0

α

∂η

)2

∂η =
∫ ∞

−∞

1

2
[cα(μeq,T ) − cβ(μeq,T )]

× (μ0 − μeq)
∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η.

(62)

By making use of the integrals
∫ ∞
−∞( ∂φ0

α

∂η
)2∂η = 1

2 and∫ ∞
−∞

∂hα(φ0
α )

∂φα
∂η = −1, the equation simplifies to

(μ0 − μeq) = −ζv

[cβ(μeq,T ) − cα(μeq,T )]
. (63)

This is the departure from the equilibrium chemical potential
in the sharp-interface limit.

B. Thin-interface limit

For the thin-interface correction, we solve the chemical
potential equation at the next order at 1/ε as

−
(

∂cα(μ0,T )

∂μ
hα

(
φ0

α

) + ∂cβ(μ0,T )

∂μ

[
1 − hα

(
φ0

α

)])v

ε

∂μ0

∂η

= 1

ε

∂

∂η

([
1 − gα

(
φ0

α

)]∂cβ(μ0,T )

∂μ

∂μ1

∂η

)
+ 1

ε

∂

∂η

(
vs

(
φ0

α

)
[cβ(μ0,T ) − cα(μ0,T )]

∂φ0
α

∂η

)
+v

ε
[cα(μ0,T ) − cβ(μ0,T )]

∂hα

(
φ0

α

)
∂η

. (64)

Note that at order 1/ε, there are additional terms. However, we make use of the fact that μ0 is constant and hence all its derivatives
vanish, so that Eq. (64) simplifies to

∂

∂η

([
1 − gα

(
φ0

α

)]∂cβ(μ0,T )

∂μ

∂μ1

∂η

)
= −v

∂

∂η

(
s
(
φ0

α

)
[cβ(μ0,T ) − cα(μ0,T )]

∂φ0
α

∂η

)
+ v[cβ(μ0,T ) − cα(μ0,T )]

∂hα

(
φ0

α

)
∂η

. (65)

By integrating this once, we get([
1 − gα

(
φ0

α

)]∂cβ(μ0,T )

∂μ

∂μ1

∂η

)
= −v

(
s
(
φ0

α

)
[cβ(μ0,T ) − cα(μ0,T )]

∂φ0
α

∂η

)
+ v[cβ(μ0,T ) − cα(μ0,T )]hα

(
φ0

α

) + A2. (66)

To fix A2, we take limη→−∞, which gives [1 − gα(φα)] → 0, ∂cβ (μ0,T )
∂μ

is a positive constant, ∂φ0
α

∂η
→ 0, and hα(φ0

α) → 1.

Therefore, the value of A2 = −v[cβ (μ0,T ) − cα(μ0,T )]. By substituting this in the above equation and rearranging, we get

∂μ1

∂η
=

v[cβ(μ0,T ) − cα(μ0,T )]
(
hα

(
φ0

α

) − 1 − s
(
φ0

α

) ∂φ0
α

∂η

)
∂cβ (μ0,T )

∂μ

[
1 − gα

(
φ0

α

)] . (67)

For brevity, we denote the expression
hα(φ0

α )−1−s(φ0
α ) ∂φ0

α
∂η

[1−gα (φ0
α)] as p(φ0

α). By substituting this in the preceding equation and integrating,
we get

μ1 = μ1 + v[cβ(μ0,T ) − cα(μ0,T )]
∂cβ (μ0,T )

∂μ

∫ η

0
p
(
φ0

α

)
∂η. (68)

To obtain the integration constant μ1, we write the phase-field equation at order ε2 as

−ζvε2 ∂φ1
α

∂η
= ε2 ∂2φ2

α

∂η2
+ ε2 16

π2
φ2

α + 1

2
ε2φ1

α[cα(μeq,T ) − cβ (μeq,T )](μ0 − μeq)
∂2hα

(
φ0

α

)
∂φ2

α

+1

2
ε2[cα(μeq,T ) − cβ (μeq,T )]μ1 ∂hα

(
φ0

α

)
∂φα

,

Lφ2
α = −ζv

∂φ1
α

∂η
− 1

2
[cα(μeq,T ) − cβ (μeq,T )]

[
φ1

α(μ0 − μeq)
∂2hα

(
φ0

α

)
∂φ2

α

+ μ1 ∂hα

(
φ0

α

)
∂φα

]
. (69)
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The solvability condition for a nontrivial φ2
α can be derived as

−
∫ ∞

−∞
ζv

∂φ1
α

∂η

∂φ0
α

∂η
∂η −

∫ ∞

−∞

1

2
φ1

α[cα(μeq,T ) − cβ(μeq,T )](μ0 − μeq)
∂2hα

(
φ0

α

)
∂φ2

α

∂φ0
α

∂η
∂η

−
∫ ∞

−∞

1

2
[cα(μeq,T ) − cβ(μeq,T )]μ1 ∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η = 0. (70)

To see the nature of the first integral, we make use of the
fact that φ1

α satisfies the phase-field equation at order ε, which
reads as

Lφ1
α = −ζv

∂φ0
α

∂η
− 1

2
[cα(μeq,T ) − cβ (μeq,T )]

× (μ0 − μeq)
∂hα

(
φ0

α

)
∂φα

. (71)

The phase-field profile φ0
α is part of a sinus curve and

hence is an odd function, which implies its derivative ∂φ0
α

∂η

is even. Similarly, the interpolation function hα(φ0
α) is an odd

function and hence the function ∂hα(φ0
α )

∂φα
is an even function.

In order to realize this, we utilize the antisymmetric property
of the interpolation function with respect to the η = 0 and,
equivalently, where φα = 1/2:

hα

(
φ0

α(η)
) − 1

2 = 1
2 − hα

(
φ0

α(−η)
)
. (72)

Differentiating both sides with respect to η and using the even

property of ∂φ0
α

∂η
, we derive

∂hα(φα(η))
∂φα

= ∂hα(φα(−η))
∂φα

, (73)

which proves ∂hα(φα (η))
∂φα

is even. Conversely, differentiating

again implies the second derivative ∂2hα(φα (η))
∂φ0

α
2 is odd. Using

these properties, we directly find that the right-hand side of
Eq. (71) is even. Combined with the fact that the operator L is
of the form ∂2

∂η2 + 16
π2 , which does not modify the characteristics

of the right-hand side, we derive that φ1
α is even. Putting all

the arguments together results in the implication that only the
second integral with the term μ1 in the solvability condition
(70) does not vanish and the solvability condition simplifies to∫ ∞

−∞

1

2
[cα(μeq,T ) − cβ(μeq,T )]μ1 ∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η = 0.

(74)

Inserting Eq. (68) for μ1 into the above solvability condi-
tion, we derive an equation for μ1 given by

μ1 = v[cβ(μ0,T ) − cα(μ0,T )]
∂cβ (μ0,T )

∂μ

×
∫ ∞

−∞

[ ∫ η

0
p
(
φ0

α

)
∂η

]
∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η︸ ︷︷ ︸

:=M

. (75)

With the shorthand notation M we can write

μ1 = [cβ(μ0,T ) − cα(μ0,T ])
∂cβ (μ0,T )

∂μ

v

(
M +

∫ η

0
p
(
φ0

α

)
∂η

)
. (76)

The thin-interface limit, which denotes the macroscopic
chemical potential at first order μ̃1, can be derived by using the
limη→±∞ and the matching condition in Eq. (52) and giving

lim
η→±∞

∂μ1

∂η
= ∂μ̃0

∂x

∣∣∣∣±
= [cβ(μ0,T ) − cα(μ0,T )]

∂cβ (μ0,T )
∂μ

vp
(
φ0

α ± )
, (77)

where φ0
α± denotes the value of φ0

α at the respective bulk sides.
By employing the matching condition given by Eq. (49), we
have

μ̃1|± = lim
η→±∞

(
μ1 − η

∂μ̃0

∂x

∣∣∣∣±)
= [cβ(μ0,T ) − cα(μ0,T )]

∂cβ (μ0,T )
∂μ

v(M + F±), (78)

where we define F |± as

F± =
∫ ±∞

0

[
p
(
φ0

α

) − p
(
φ0

α ± )]
∂η. (79)

We realize that the limits on both sides (solid and liquid) do not
match if F+ �= F−, which gives rise to a chemical potential
jump at the interface. To remove this jump, one must now
devise a way to make the following condition true:∫ ∞

0

[
p
(
φ0

α

) + 1
]
∂η =

∫ −∞

0
p
(
φ0

α

)
∂η, (80)

where we have made use of the fact that ∂φ0
α

∂η
is zero at

η → ±∞ and hα(φ0
α) − 1 → 0 at η = −∞ and h(φ0

α) = 0 at
η = +∞. We notice that these are properties directly related
to our interpolation function hα(φ0

α). We intend to retrieve
the same properties [implying p(φα) = h(φα) − 1], which is a
reasonable choice, then we get s(φ0

α) as

s
(
φ0

α

) = −gα

(
φ0

α

)[
1 − h

(
φ0

α

)]
∂φ0

α

∂η

. (81)
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With this modification, we define F := F+(= F−) and the
macroscopic chemical potential μ̃1 at first order in Eq. (78)
yields

μ̃1|± = lim
η→±∞

(
μ1 − η

∂μ̃0

∂x

∣∣∣∣±)

= [cβ(μ0,T ) − cα(μ0,T )]
∂cβ (μ0,T )

∂μ

v(M + F ) (82)

and the chemical potential until the first order in ε writes
μ̃|± = μ0 + εμ̃1|±, which upon subtracting μeq from both
sides becomes

μ̃|± − μeq

= (μ0 − μeq) + ε
[cβ(μ0,T ) − cα(μ0,T )]

∂cβ (μ0,T )
∂μ

v(M + F ).

(83)

Putting all physical properties in their respective dimensions,
we get

μ̃|± − μeq

= (μ0 − μeq) + ε
[cβ(μ0,T ) − cα(μ0,T )]

(Dβ) ∂cβ (μ0,T )
∂μ

V (M + F ).

(84)

C. Kinetic coefficient β and the antitrapping current

To relate the total departure from equilibrium at first order
in ε given in Eq. (84), it is customary to write the modified
temperature of the interface T due to the Gibbs-Thomson effect

written as

T = Tm − |mβ |cβ

i − �κ − βV, (85)

where T and c
β

i are the interfacial temperatures and the
concentrations of the liquid, while mβ is the slope of the
liquidus and Tm is the melting point of the pure component. β is
the kinetic coefficient and � is the Gibbs-Thomson coefficient.
Then, T can be written as follows:

T = Tm − |mβ |cβ(μeq,T ). (86)

With this, the Gibbs-Thompson equation is modified as

(Tm − |mβ |cβ

i ) − [Tm − |mβ |cβ(μeq,T )] = �κ + βV. (87)

The first bracketed term on the left-hand side is the modified
melting point of the interface due to constitutional under-
cooling because of the shift of interfacial concentration c

β

i

with respect to the equilibrium liquidus concentration at this
temperature cβ(μeq,T ). The second bracketed term is the
temperature of solidification. Their difference is nothing but
the equivalent undercooling �T , which matches the Gibbs-
Thomson equation of a pure material. Since we are here treat-
ing only one-dimensional problems, curvature undercooling
drops out and the effective undercooling reads as

�T = mβ[cβ(μeq,T ) − ci] = βV. (88)

In order to relate the undercooling at the interface �̃T , which
is the macroscopic undercooling at first order, to the deviation
of the macroscopic chemical potential from equilibrium in the

thin-interface limit, we multiply Eq. (84) by mβ
∂cβ (μeq ,T )

∂μ
such

that the left-hand side of the equation is nothing but mβ[cβ

i −
cβ(μeq,T )]and, alternatively, −�̃T . With this modification,
the total Eq. (84) becomes

−�̃T |± = mβ

∂cβ(μeq,T )

∂μ

[
(μ0 − μeq) + ε

[cβ(μ0,T ) − cα(μ0,T )]

(Dβ) ∂cβ (μ0,T )
∂μ

V (M + F )

]
. (89)

Using the result obtained in Eq. (63), inserting the appropriate dimensions, and substituting the relation between the undercooling

and the kinetic coefficient (�̃T |± = β̃|±V ), we derive the equation of the kinetic coefficient (̃β|± = β̃) as

β̃ =
mβ

∂cβ (μeq ,T )
∂μ

[cβ(μeq,T ) − cα(μeq,T )]

[
ω − ε

[cβ(μ0,T ) − cα(μ0,T )][cβ(μeq,T ) − cα(μeq,T )]

(Dβ) ∂cβ (μ0,T )
∂μ

(M + F )

]
. (90)

Now, we make the approximation [cβ(μ0,T ) − cα(μ0,T )] ≈ [cβ(μeq,T ) − cα(μeq,T )], which is valid for small driving forces.
Utilizing the approximation, the expression for the kinetic coefficient until the first order becomes

β̃ =
mβ

∂cβ (μeq ,T )
∂μ

[cβ(μeq,T ) − cα(μeq,T )]

[
ω − ε

[cβ(μeq,T ) − cα(μeq,T )]2

(Dβ) ∂cβ (μ0,T )
∂μ

(M + F )

]
. (91)
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An alternative form can also be written using some basic ther-

modynamics relating ∂cβ (μeq ,T )
∂μ

with the latent heat of transfor-
mation Lα using the Clausius-Clapeyron equation for alloys,

which writes as dμeq

∂T
= ∂μeq

∂cβ

dcβ (μeq ,T )
dT

= Lα

T [cβ (μeq ,T )−cα (μeq ,T )] .

By using mβ = dcβ (μeq ,T )
dT

, we derive
mβ

∂cβ (μeq ,T )
∂μ

[cβ (μeq ,T )−cα (μeq ,T )] = T
Lα .

This gives an equivalent form for the kinetic coefficient as

β̃ = T

Lα

[
ω − ε

[cβ(μeq,T ) − cα(μeq,T )]2

(Dβ) ∂cβ (μ0,T )
∂μ

(M + F )

]
.

(92)

From this, it is easy to see that to perform simulations with

vanishing interface kinetic coefficient (̃β = 0), one can choose
the relaxation constant ω according to the relation

ω = ε
[cβ(μeq,T ) − cα(μeq,T )]2

(Dβ) ∂cβ (μ0,T )
∂μ

(M + F ). (93)

For the typical interpolation polynomials of cubic and quartic
type polynomial, when used in combination with the obstacle
potential, the values of F and M are tabulated below:

M F

h(φα) = φ2
α(3 − 2φα) 0.063828 0.158741

h(φα) = φ3
α(10 − 15φα + 6φ2

α) 0.052935 0.129288

Finally, the antitrapping current along with the derived
s(φ0

α) in Eq. (81) is given by

jat = −πε

4

gα

(
φ0

α

)[
1 − hα

(
φ0

α

)]√
φ0

α

(
1 − φ0

α

)
× [cβ(μ0,T ) − cα(μ0,T )]

∂φα

∂t

∇φα

|∇φα| . (94)

D. Effect of curvature and anisotropy

With the above analysis, we derive the expressions for the
relaxation constant and the antitrapping current, which are
dependent on the chemical potential at the zeroth order μ0.
While in one-dimensional problems its value depends on the
local normal velocity and can be determined by Eq. (63), in
the presence of curvature, the Gibbs-Thomson condition is
modified through the contribution of the term proportional
to σκ , which modifies the sharp-interface limit for isotropic
surface energies, given in Eq. (63) in dimensional units as

(μ0 − μeq) = ωV

[cα(μeq,T ) − cβ(μeq,T )]

+ σκ

cα(μeq,T ) − cβ(μeq,T )
.

The preceding equation can be derived by considering the
extra term arising from writing the Laplacian in curvilinear
coordinates represented using the curvature κ and the arc
length as in [6,14]. The value of the chemical potential
μ0 derived through the preceding expression is difficult to
utilize in the expressions derived for the kinetic coefficient

and the antitrapping current since the values of the curvature
and the velocity are not known a priori. A workaround for
this problem would be to use the approximation ∂cβ (μ0,T )

∂μ
≈

∂cβ (μeq ,T )
∂μ

, which is valid for small departures from equilibrium
relevant for most phase transition problems occurring at lower
undercoolings in the absence of appreciable interface kinetics.
The same approximation can also be applied for the rejection
cα(μ0,T ) − cβ(μ0,T ) appearing in both the expressions for the
relaxation constant and the antitrapping current, which varies
little from its value at at the equilibrium chemical potential for
lower undercoolings.

For larger departures from equilibrium, we propose to dy-
namically evaluate the expressions for the relaxation constant
ω and the antitrapping current. To do this, we need the chemical
potential in the sharp-interface limit, which is the average
value across the interface. Since this is computationally time
consuming to evaluate, we use the local chemical potential for
the dynamic computation of the above mentioned quantities.
This introduces an error of order O(ε2) and higher for the
antitrapping, which can be realized by expanding the term
cβ (μ0,T ) − cα(μ0,T ) around the local chemical potential μ.
The highest order correction would be proportional to ( ∂cβ

∂μ
−

∂cα

∂μ
)(μ0 − μ), where μ0 − μ is at highest order proportional

to O(ε) rendering the leading order correction due to this
implementation of the antitrapping current proportional to
O(ε2). A similar result can be derived for the case of the
relaxation constant ω. Since, in the thin-interface limit, we
only claim to derive the relations with accuracy of order O(ε),
this scheme should be certainly acceptable.

Another point worth mentioning concerns the treatment
of anisotropy in kinetics. While using Eq. (93), problems
with vanishing interface kinetics in isotropic situations can
be treated in order to achieve interface evolution with non-
vanishing interface kinetics in the case of isotropic system,
which would require the back calculation of the relaxation
constant through Eq. (92). The more realistic situation of
anisotropy in surface energy and kinetics can be treated
through a modification of Eq. (93). We follow a route suggested
in [14,15] of a simple derivation by writing the equations
of motion for the normal direction, but excluding curvature.
The anisotropy in the surface energy is affected by writing
the gradient energy contribution as γ0ac(n)2|qαβ |2, where n
is the unit normal vector to the interface defined as qαβ

|qαβ |
and ac(n) describes the anisotropy in the surface energy. A
similar function ω(n) is used for tailoring the anisotropy in the
kinetic coefficient. The major modification in the asymptotics
through this calculation is the transformation of the gradient
in the phase-field profile at leading order, which becomes
∂φ0

α

∂η
= − 1

ac(n)
4
π

√
φ0

α(1 − φ0
α). Incorporating this result in the

asymptotics yields the following expression for the kinetic
coefficient:

β̃(n) = T

Lα

[
ω(n)

ac(n)
− εac(n)

× [cβ(μeq,T ) − cα(μeq,T )]2

(Dβ) ∂cβ (μ0,T )
∂μ

(M + F )

]
. (95)
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To achieve vanishing interface kinetics in all directions, we
can choose ω(n) as ω0ac(n)2, where ω0 is derived from the
expression in Eq. (93). The case of anisotropy in kinetics
would, however, require a more careful evaluation of the
functions. Lastly, we would like to recall that a linearization of
the grand potential around the equilibrium chemical potential
was used for deriving the asymptotics. This is valid for small
departures from equilibrium in phase transitions occurring
at low undercoolings, where interface kinetics is absent and
small. For certain situations at very high undercoolings and in
the presence of strong kinetics, there might arise a situation
where this linearization does not hold. This depends on
the nature of the grand potentials and the magnitude of
departure from equilibrium. The linearization is, however,
only a simplification that can be easily relaxed resulting in the
modification of the sharp-interface limit for isotropic surface
energies through the relation


β(μ0,T ) − 
α(μ0,T ) = σκ + ωV. (96)

The derivation of the deviation of the chemical potential,
however, depends on the nature of the grand potentials, where
expansions of the grand potentials, until first or second order in
the term μ0 − μeq , might be necessary. The expression for the
chemical potential at first order remains unchanged. However,
no general rule exists for estimating the validity of the
linearization used in the asymptotics, and the departure from
equilibrium must be used to estimate the difference between
the linearized and the original grand-potential descriptions
before reaching a conclusion.

From the above discussion, we have all the corrections
that we need for performing quantitative simulations. The
corrections to the Stefan condition at higher orders, which
are the interface stretching and the surface diffusion, vanish
when antisymmetric functions are used to interpolate the phase
diffusivities gα(φα) and hα(φα) for the grand potentials that are
applied from results derived in previous literature [6,11]. In
the next section, we perform test benchmarks to quantitatively
evaluate the effect of the calculations.

III. BENCHMARK

To benchmark our calculations, we construct a system to
model the Al-Cu system on the Al-rich side and we denote
the concentration of the single independent component Al as
c = cAl. The free energies for the α and the liquid are chosen
in the following manner:

f α(T ,c) = f ∗
(

cLα
Al

(
T − T α

Al

)
T α

Al

+ (1 − c)Lα
Cu

(
T − T α

Cu

)
T α

Cu (97)

+ T [c ln c + (1 − c) ln(1 − c)]

)
,

f l(T ,c) = f ∗{T [c ln c + (1 − c) ln(1 − c)]}.
From these expressions, the chemical potentials μα and μl can
be derived as

μα = f ∗
[
Lα

Al

(
T − T α

Al

)
T α

Al

− Lα
Cu

(
T − T α

Cu

)
T α

Cu

+T ln

(
cα

1 − cα

)]
, (98)

μl = f ∗
[
T ln

(
cl

1 − cl

)]
. (99)

Using these expressions, the information of the free energy
versus composition can be transformed into functions cα(μ,T )
and cl(μ,T ) for each phase by inverting the above expressions
for the chemical potential as

cα(μ,T ) =
exp

[μ−(Lα
Al

(T −T α
Al)

T α
Al

−Lα
Cu

(T −T α
Cu)

T α
Cu

)

f ∗T

]
1 + exp

[μ−(Lα
Al

(T −T α
Al)

T α
Al

−Lα
Cu

(T −T α
Cu)

T α
Cu

)

f ∗T

] , (100)

cl(μ,T ) =
exp

[
μ

f ∗T

]
1 + exp

[
μ

f ∗T

] . (101)

Notice that we have written cα(μ,T ) and cl(μ,T ) as functions
of a unique μ as required by the grand-potential formulation.
The parameters of the free energy densities have been chosen
in a manner such that we have the Gibbs-Thomson coefficient
set to the value 2.4 × 10−7 K/m, which is reported in literature
[16]. The solid-liquid surface energy is chosen as 0.35 J/m2,
which is an average value for metallic systems. Consistent with
the above quantities, the energy density scale f ∗ is derived as
73.5 × 10−7 J/m3. We fit the slopes of the liquidus and the
concentrations of the solid and liquid at 870 K. Next, we
nondimensionalize the whole set of evolution equations using
the energy scale as f ∗, the length scale do = σαβ/f ∗, and
the time scale as t∗ = d2

o /Dl , and the reference temperature
is melting point of pure aluminium. The phase diagram
corresponding to these parameters is plotted in Fig. 3. The
simulation parameters with this scaling are Lα

Cu = 8.45 and
Lα

Al = 5.30, while T α
Cu = 0.422 73 and T α

Al = 1.0. The kinetic
coefficient can be computed both for finite and infinite phase-
field interface mobility. For our computations, we set the
infinite interface kinetics in all directions. Our simulations
are performed with smooth cubic anisotropy of the form

ac(qαβ) = 1 − δαβ

(
3 − 4

|qαβ |44
|qαβ |4

)
, (102)

where |qαβ |44 = ∑d
i (qαβ)4

i and |qαβ |4 = [
∑d

i=1(qαβ)2
i ]2, d be-

ing the number of dimensions. δαβ is the strength of the
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FIG. 3. The phase diagram of the Al-Cu system fitted on the
Al-rich side using an ideal solution type of model.
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FIG. 4. Plot of the dendrite tip velocities simulated at a temper-
ature of T = 0.9843. We selectively plot points corresponding to a
simulation to show the convergence of the velocities. We span a range
where ε varies by a factor 4 and achieve convergence in the velocities.
The simulation with the ε = 112.5 has run the least in nondimensional
time (1.5 × 108), but long enough to confirm convergence of the
velocities.

anisotropy, which is set to 0.0097 for the chosen alloy of
Al 4 wt% Cu [17]. To have vanishing interface kinetics in all
directions, we employ the same strategy as [14,15] by choosing
the form of the relaxation constant as a function of the normal
vector qαβ given by

ω(qαβ) = ω0a
2
c (qαβ), (103)

where ω0 is computed using the relation in Eq. (93).
The simulation setup involves a free dendrite growing

into a uniformly undercooled melt. Utilizing the symmetry
of the surface energy anisotropy, we simulate one quadrant
of the dendrite. The first benchmark involves the proof
of invariance of the dendrite tip velocities with varying
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FIG. 5. Chemical potential plot along a linear section at the
dendrite tip in the growing direction, superimposed with the lines
showing the equilibrium chemical potential and the theoretically
predicted chemical potential obtained by considering the shift because
of Gibbs-Thomson effect due to curvature. The curvature used in the
calculation is measured at the dendrite tip from the simulation. σθθ

represent the second derivative of the surface tension as a function of
the polar angle, and the sum σ + σθθ represents the stiffness of the
interface.

interface widths. For this, we set the nondimensional bulk
temperature at T = 0.9843 where the melting temperature
of the chosen alloy composition Al 1.732 at.% is T = 0.99.
Figure 4 plots the dendrite tip velocities upon change in the
interface widths, which confirms our calculations that there
exists a range in interface widths for which the interface
velocities are invariant. Above the maximum considered ε,
the interface becomes instable and the asymptotics seems
to break down and we suppose this occurs because errors
of order O(ε2) become appreciable. Figure 5 displays the
chemical potential along a linear section at the dendrite tip
in the growing direction, along with the equilibrium chemical
potential and the theoretical chemical potential derived from
the Gibbs-Thomson condition considering only the effect of
curvature. The results show good agreement, confirming the
asymptotic expressions and the developed model. The contours
of the chemical potential and the phase profiles in a section
of the domain showing the growing dendrite is portrayed in
Fig. 6.

A. Free energy functional versus grand-potential functional

In this section, we present a short discussion on the range
of applicability of the models derived from the grand-potential
and the free energy functional. The comparison is with respect
to the computational efficiency in simulating a range of
undercoolings for both models and the asymptotics. To start
with, we write the evolution equation for the phase-field
variables for a system of two phases and two components,
starting from the free energy functional

ωε
∂φα

∂t
= γαβε

∂2φα

∂x2
− γαβ

ε

16

2π2
(1 − 2φα)

− 1

2

df

dφα

+ 1

2

∂f

∂c

dc

dφα

.

Noting that for this formulation based on the free energy
functional μ = ∂f

∂c
, the equation can be manipulated as

ωε2 ∂φα

∂t
= γαβε2 ∂2φα

∂x2

−
{
γαβ

16

2π2
(1 − 2φα) + ε

2

d

dφα

(f − μeqc)

}
+ ε

2
(μ − μeq)

dc

dφα

.

At equilibrium μ = μeq , the second bracketed term has the
form of a potential and when εf ∗ ≈ γαβ , where f ∗ is the
energy scale, the potential scales with the length scale of
the interface scales with ε. In the sharp-interface limit, the
chemical potential at the leading order is constant across the
interface, rendering sharp interface limit for one-dimensional
evolution, as derived in Eq. (11). We would derive a similar
sharp-interface limit with the grand-potential functional in
the absence of curvature. Note, however, that the effective
potential in the case of the free energy functional scales with
the interface width. This contribution leads to the modification
of the surface energies and, hence, in the presence of curvature,
the limits will differ. Additionally, there is a deviation in the
phase-field profile at leading order, which is modified due to
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the presence of the grand-potential excess as

∂φα

∂x
= −1

ε

√
16

π2
φα(1 − φα) + ε

γαβ

[(f − μeqc) − (f − μeqc)bulk] (104)

in contrast to ∂φα

∂x
= − 4

επ

√
φα(1 − φα) for the case of the

grand-potential functional. This modifies the effective kinetic
coefficient applicable for both models. Therefore, to perform
comparative simulations with the two models, the first chal-
lenge is to set the surface energies at leading order in the two
models equivalent. The next is to derive the desired interface
width to perform efficient simulations and finally to set the
same kinetic coefficients for both models.

While in the case of the grand-potential functional the
interface width depends directly on the parameter ε, through
the relation π2ε

4 = 2.5ε, and the surface energy is the same as
the simulation parameter γαβ , for the case of the free energy
functional an expression for the interface width and surface
energy at leading order can be derived as in Eqs. (4), and
(5). By solving these equations simultaneously, we can derive
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FIG. 6. Isolevel φα = 0.5 denoting the binary interface between
the solid and the liquid at various times is shown in (a), while
the contours of the chemical potential at a particular instant during
evolution is displayed in (b). Values of some of the contours of the
respective nondimensionalized chemical potential are superimposed
on the plot. The simulations correspond to the case when ε = 300.

the simulation parameters γαβ and ε to derive the surface
energies σαβ and 
αβ for the given free energy functional.
Whereas, this is possible for certain choices of ε, such as
displayed in Fig. 7(a), beyond a critical ε there exists no
unique solution when the contribution to the potential from the
grand-potential excess becomes dominant over that from the
potential term γαβφα(1 − φα). The solution is then achieved
for a range of γαβ and ε derived through the overlap of the
isolevels of the σαβ and the resulting λαβ , which is fixed
upon choosing the isolevel for the surface energy [Fig. 7(b)].
The computational efforts can be compared between the two
models by estimating the interface widths used when the same
ε is chosen for both the models. At the temperature T = 0.988,
Fig. 8 displays the contours of a freely growing dendrite at a
temperature of T = 0.988 (Tm = 0.99) simulated using the
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FIG. 7. Defined contour level of the surface energy σ and the
interface width λ plotted as a function of the simulation parameters
γαβ and ε. In (a), the contours are calculated for the temperature
T = 0.9843, while in (b) they are for a temperature of T = 0.988. The
contours of the interface width are calculated from the defined level
for the surface energy and the value of the ε used in the simulation.
All terms are dimensionless in the graphs.
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FIG. 8. Phase-field contours of a free growing equiaxed dendrite,
with ε = 1688 at a temperature of T = 0.988 (Tm = 0.99) with the
grand-potential formulation.

grand-potential formulation with ε = 1688. Corresponding to
this ε, the interface width is λ = 430 for the case of the free
energy functional [Fig. 7(b)]. To have an interface resolution
of 10 cells would result in a grid resolution of �x = 43 when
simulations are performed using a regular grid. In contrast,
for the case with a grand-potential functional, we have used
�x = 500 for the simulation of the dendrite displayed in
Fig. 8, keeping the same interface resolution and conditions,
which implies the computational effort increases 10d times
(d denoting the dimension), when using the free energy
functional. The situation is more favorable for the free energy
functional at the higher undercooling at T = 0.9843 (smaller
tip radii), as can be seen from Fig. 7(a), where the interface
width for the free energy case results in 164 compared to a
value of 281.5 for the grand-potential functional at the same
ε = 112.5. This is, however, not the largest interface width
that can be employed at this undercooling, and much larger
interface widths can be used for the case of the grand-potential
functional as was seen in Fig. 4, while the interface widths
that can be employed, when a free energy functional is used,
gets limited to a smaller range. In summary, we conclude that
at higher undercoolings (finer microstructures), the models
based on the free energy functional and the grand-potential
functionals come closer. However, at lower velocities or at
lower undercoolings, the grid resolution can be scaled up
significantly using the grand-potential functional, which is,
however, not a possibility using the free energy functional.

The comparison of the two models is incomplete without
the discussion on the interface kinetics. As we have derived,
larger interface widths can be employed for simulating the case
of lower undercoolings with the grand-potential functional.
For such cases, the thin-interface limit is appropriate, and in
this limit, the parameters can be chosen in such a manner
that interface kinetics vanishes, which is relevant at lower
undercoolings. To perform a similar asymptotics for the free
energy functional seems daunting and less useful because of
the following reasoning. We recall that while performing the
thin-interface asymptotics of the grand-potential functional,
we have repeatedly used the antisymmetric properties (odd
functions) of the leading order phase-field profile φ0

α(x), which
reduced the terms contributing to the first order correction
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FIG. 9. Comparison of the leading order solution of the phase
field in the case of the grand-potential functional and the free energy
functional. The profiles have been superimposed, and the vertical
line representing the position of the binary interface is drawn for
comparison.

to the chemical potential. However, with the free energy
functional, the leading order solution is modified due to
the grand-potential excess and is derived using Eq. (104).
Figure 9 compares the profiles in both cases, which show
slight asymmetry about the φα = 0.5 line in the case of the free
energy functional. The magnitude of the asymmetry depends
on the nature of the grand-potential excess and scales with the
interface widths. This asymmetry would rule out any general
simplification of the solvability integrals appearing in the
asymptotic analysis. Second, all solvability integrals depend
on the leading order solution, which change with the interface
widths the temperature and the system one is simulating, thus
certainly hindering the universal applicability of the analysis.
Lastly, due to the limitation of the interface widths, the thin-
interface limit is less applicable, and performing simulations
with vanishing interface kinetics is computationally expensive
as the sharp-interface and thin-interface limits coincide for
smaller interface widths.

To conclude, the grand-potential formulation offers signif-
icant flexibility in comparison to the free energy functionals
because the range of applicability of the phase-field models
is improved significantly without a corresponding increase
in computational overhead, and additionally, a thin-interface
asymptotics with universal applicability can be performed.

IV. CONCLUSIONS

We present a multi-phase-field model based on the grand-
potential functional. This modification enables us to effectively
decouple the bulk and interface contributions, which in turn
allows us to upscale the length of simulations. This formulation
is consistent with existing quantitative phase-field models and
places it in a common framework starting from a grand-
potential functional. We perform an asymptotic analysis of the
derived model and obtain the thin-interface limit for the kinetic
coefficient and an expression for the antitrapping current
for the special case of double-obstacle-type potentials. It is
noteworthy to mention that, computationally, the obstacle-type
potentials are more efficient because the interface is finitely
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defined. Hence, computations of the gradient terms can be
finitely limited to a fixed number of points in the interface.
This computational efficiency was offset until now because
there was no existing thin-interface limit and no expressions
for the antitrapping current for these types of potentials.
This precluded the possibility of performing any quantitative
simulations for the case of alloys. However, with the present
thin-interface asymptotics, this can now be realized. One must
also note that although this study has been performed for the
case of two-phase alloy solidification, this is not a limitation
and the analysis can be easily generalized similar to earlier
works [6]. For example, the antitrapping current for the case
of multiphase, multicomponent alloy solidification, where all
the solid phases have zero diffusivities, can be obtained by
averaging each of the individual fluxes for each component i

given by

(
jα�l
at

)
i
= −πε

4

gα

(
φ0

α

)[
1 − hα

(
φ0

α

)]√
φ0

α

(
1 − φ0

α

)
× [

c
β

i (μ) − cα
i (μ)

]∂φα

∂t

∇φα

|∇φα| , (105)

and summing up all the fluxes projected along the normal to
the liquid phase-field contour as

(jat )i =
N∑

α=1

(
jα�l
at

)
i

(
− ∇φα

|∇φα| · ∇φl

|∇φl|
)

. (106)

Other possibilities also exist, and the generalized normal
vector qαl can itself be used for the projection. Similarly,
the relaxation constant for a vanishing interface coefficient
for more than two components can be obtained similar to
[13], which is an extension of our present analysis. With
such modifications, quantitative simulations of multiphase,
multicomponent systems at larger scales have become compu-
tationally feasible.
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